oboooooooooO 14370 20050 163-173

163

A sound and complete CPS-translation for
Apu~calculus
— Extended abstract —

Ken-etsu Fujita (BRH)
Gunma University (B RZF)
fujita@cs.gunma-u.ac.jp

Abstract

We provide a bijective CPS-translation for type-free Au-calculus. This method can
be naturally carried over to second order typed Au-calculus, which leads to a bijective
CPS-translation between classical proofs and intuitionistic proofs. We also investigate
an abstract machine for Ap-calculus, which handles explicitly environments.

1 Introduction

The term CPS-translation, in general, denotes a program translation method into contin-
uation passing style that is the meaning of the program as a function taking the rest of
the computation. The method has been studied for program transformation, definitional
interpreter, or denotational semantics [Reyn93].

On the other hand, according to Griffin [Grif90], a CPS-translation corresponds to a
logical embedding from classical logic into intuitionistic logic under the Formulae-as-Types
correspondence [How80]. Parigot [Pari92, Pari93, Pari97] introduced the Ap-calculus from
the viewpoint of classical logic, and established an extension of the Curry-Howard isomor-
phism [Grif90, Murt91]. A semantics of monomorphic Ap-calculus has been investigated
recently from the viewpoint of continuations. There have been noteworthy investigations
including Hofmann-Streicher [HS97], Streicher-Reus [SR98], and Selinger [Seli01]: In terms
of a category of continuations, a continuation semantics of simply typed Ap-calculus is
proved to be sound and complete for any Au-theory [HS97]. Under the control category,
it is established that an isomorphism between call-by-name and call-by-value Au-calculi
with conjunction and disjunction types [Seli01]. The category of negated domains is in-
troduced as a model of type free Au-calculus [SR98]. Streicher-Reus also remarked that a
CPS-translation naively based on Plotkin [Plot75] cannot validate (n)-rule. All of the work
involve a novel CPS-translation which requires, at least, products as a primitive-notion, so
that the extensionality, (n)-rule can be validated by the surjective pairing, as observed in
[Fuji03al.

An analysis on the calculi without type restrictions reveals core properties of the CPS-
translation and the universe consisting of the image of the translation. Continuations are

164

handled as a list of denotations, and formalized as a pair consisting of a denotation and a
continuation in this order. The study on the type free cases also makes clear the distinction
between A-calculus and Ap-calculus, from the viewpoint of continuations: an A-abstraction
is viewed as a function taking only the first component of such a pair, and on the other
hands, an p-abstraction is interpreted as an A-abstraction over continuations. This paper
is a revised version of both work [Fuji03b] presented at the 6th International Conference
on Typed Lambda Calculi and Applications, TLCA 2003, Valencia, Spain, June 2003;
and at the 5th Symposium on Algebra and Computation, Tokyo Metropolitan University,
October 2003. The method in this article can be naturally carried over to second order
typed Au-calculus, which leads to a bijective CPS-translation between classical proofs and
intuitionistic proofs.

2 CPS-Translation of type free A-calculus with exten-
sionality

We first study already known CPS-translations [Plot75, HS97] and yet another translation
with let-expressions [Fuji05]. This section also serves as a gentle introduction to CPS-
translations.

2.1 Plotkin’s call-by-name CPS-translation and (n)-rule

The definitions of terms and reduction rules are given to the extensional A-calculi, respec-
tively, denoted by A, AO and Alet.

Definition 1 (A-calculus A)
A>M = z|XeM|MM
(8) (Aw.M1)My — Mz = My)
(n) e.Mz—>M ifz & FV(M)
Definition 2 (A-calculus with surjective pairing A®)
AVsM o= | daM | MM | (M,M)|m(M)|m(M)
(B) (Az.Mi)My — Mz = M)
(n) de.Mz — M ifz ¢ FV(M)
(m) m(My, M) = M; (i=1,2)
(sp) {mi(M),mo(M)) = M
Definition 3 (\-calculus with let Ale%)

APE s M w= z| oM | MM | (M,M)|let (z,5)=M in M

165

(8) (\z.Mi)My — My[z = M|

(n) de.Mz — M if z & FV(M)

(1et) let (z,m5) = (My, My) in M — Mgy i= My, @y = My]

(let,) let (z1,72) = M in Mz := (z1,22)] = Mz := My} if ©1,22 & FV(M)

The term M,z := M>) denotes the result of substituting M, for the free occurrences of z
in My. FV(M) stands for the set of free variables in M. The term Mz, := My, 33 =
M,] denotes the result of substituting simultaneously M; and M, respectively for the free
occurrences of z; and 5 in M. The one step reduction relation is denoted by —r where
R consists of (8), (), etc. We write —4% and —% to denote the transitive closure and the
reflexive and transitive closure of — g, respectively. We employ the notation =z to indicate
the symmetric, reflexive and transitive closure of —g. The binary relation = denotes the
syntactic identity under renaming of bound variables.

A term M is always evaluated in a certain context £[| roughly understood as a term
with a hole or the rest of the computation. Such a context can be formalized as a function
Az.E[z] and called a continuation with respect to M. Then an application of a continuation
to an argument means filling the argument with the hole of the evaluation context. A
OPS-translation of a term M gives a function M such that the function explicitly takes, as
an argument, the continuation with respect to M.

Definition 4 (Plotkin’s call-by-name CPS-translation [Plot75])

(1)
(i)
(iii)

According to Plotkin’s definition, the second clause says that a continuation of the
function M, is informally a context in the form of [Mk where k is a continuation of
M, M,. Here this context is formalized as the code of the pair consisting of My and k in
this order. That is, a continuation k& is to be understood as the form of {mik, k). Then
we can grasp an informal meaning [M;M,] ~ Mk.[M;[([Mz], k). The third clause means
filling Az.M with the hole of the evaluation context of Az.M, which is in the form of a
pair from the second clause. Then the hole of [{(m;k)(m2k) is filled by Az.M. Hence the
third clause can be understood as [Az.M] ~ M.(Az.[M])(mk)(mk). An A-abstraction is
interpreted as a function taking, as an argument, a first component of such a pair. One
may find less distinction between __ and []. However, considering an interpretation of the
(n)-rule reveals a deep gap between the two definitions. Let = ¢ FV(M).

[Ae.Mz] ~ Ak.(Az e [M](\k.zk, k) (mi k) (mok) =5, Mo JM]{mik, mok) |

The above computation including (3) and (n) means that we cannot interpret (n)-rule
following the original definition of Plotkin, since adding the surjective pairing to the (4) and
(n) calculus breaks down the Church-Rosser property as proved by Klop [Bareg4]. In other
words, we should prepare a target calculus with the surjective pairing in order to validate

x

z =
MiMs = M. Mi(Am.mMyk)
M. M = Me.k(hz. M)

166

(n)-rule [HS97, Seli01] along the line of Plotkin’s idea. This method also discussed in the
previous version [Fuji03b] interprets m-input Curried function as un-Curried function with
(m + 1)-component, under B-reductions, as follows:

Mz1. . zmaMy .. M) ~ Mex([Mi],...,([Mn],k)...)0

where 6 is a substitution [Ty := mk, 25 = mi(mk), ..., Tm = 7 (n1k)]. Here, the
first m components contain the denotations of m arguments, respectively, and the last
component is for the rest continuation. Although this method of course works well as done
in [HS97, Seli01], we introduce here yet another way such that projections are packed into
an let-expression, as follows:

Definition 5 (CPS-translation : A — Al®%) (i) [z] ==
(ii) [Az.M] = Aa.(let (z,b) =a in [M]b)
(i) [MyM] = Ao [M:]([Mo], o)

This modification seems to be trivial where the let-expression is not syntactic sugar.
However, the use of let-expressions makes it possible to handle the substitution information
in a suspended way, in general, environments elegantly, and to simplify extremely technical
matters on the completeness!, comparing with the previous version [Fuji03b].

3 Type free \u-calculus

Secondly we study type free Au-calculus from the view point of the CPS-translation intro-
duced in the previous section.

3.1 Extensional Ay-calculus and CPS-translation

We give the definition of type free Au-calculus with (n). The syntax of the Au-terms is
defined from variables, A-abstraction, application, or u-abstraction over names denoted by
o, where a term in the form of [a]M is called a named term.

Definition 6 (Au-calculus Ay)
Aud M=z |z M| MM | po.N N o= [o|M
ﬁ) (/\I'Ml)MQ — Ml[a: = MQ]

(
(m) Ae.Mz— M ifz g FV(M)
(1) (ue.N)M = poNja & M)
(

pp) po[Bl(pry. Ny — pa.Nly == 6]
(k) pefa]M = M if a & FN(M)

!This point is also important in the polymorphic case.

167

FN(M) stands for the set of free names in M. The Apu-term No <= M| denotes a term
obtained by replacing each subterm of the form [@]M’ in N with [o](M'M). This operation
is inductively defined as follows:

1. zlee M=z

2. (\z.My)|o < M) = dz. Mo <= M]

3. (MiMy)ja < M| = (Mi|a < M})(Ms]a < M)

4. (uB.N)[a <= M) = wy.N[f := 9][a <= M] where v is a fresh name

Bl(Mila <= M])M), fora=p
5. ([AMy)[o = M] = { | [ﬂ](MlTa &= M]%, o(zherwise

The term Mo < My, ..., M,] denotes M{a < Mi] -+ [a & My].

The binary relation =), over Ay denotes the symmetric, reflexive and transitive closure
of the one step reduction relation, i.e., the equivalence relation induced from the reduction
rules.

Definition 7 (CPS-Translation : Ay — AYY) (i) [z] ==
(i) \z.M] = Xa.(let (z,b) =a in [M]b)

(iii) [MiMe] = Aa.[M]{[Ma], a)

(iv) [ua.[BlM] = da.[M]b

Proposition 1 (Soundness) Let My, My € Ap.
If we have My =y, My then [M,] =y [Ma].

Proof. By induction on the derivation of My =5, M, together with the following facts:

[Mi]lz = [M:]] = [Miz:=M]]
[Mila < My]] =5 [Mifa = ([Ma], 0)]

1. Case of (8):
[(Az. M) M,] = Aa.((Ab.let {(z,¢) =b in [Mi]c){[Mo],a))
—g Aa.(let (z,¢) = ([Ma],a) in [Mi]c)
—1et Ma.[Molalz = [M]] = Ae.[Mi[z := M]]a
—n [Mi]z = M}

2. Case of (n):
[M\z.Mz] = a.(let {z,b) =a in (Ac.[M](z,c))b)
—35 Aa.(let (z,b) =a in [M]{z,b))
—1et, Aa.[M]a
—y [M]

168

3. Case of (u):

[(po. (8] M) Ms] = Aa.(Aa[M] B)([M2], a)

—p Aa.([Mi]B)]a := ([Me], 0)]

{ Aa.[Mia < Myl Blo :
Aa.[My[a < M][{[M:], o)[er = a]

4. Case of (i)

[pajo]M] = Ao [M]a

—n [M]

a] = [pe.[Bl(Mia <= Mo])] fa#pB
[ua. [Bl(Mi]a <= My))Mp)] fa=p

i ll

5. Case of (ug):

[0 6) (7. [E1M)] = Aa.(3y.[M]6) 8
—p M. [M]o]y = B] = [ua.[d]M[y = F]] O

3.2 Inverse translation and completeness

We define a set of A'®®-terms called Univ, which is the image of the CPS-translation closed

under reductions.
Univ & {P € A" | [M] =% P for some M € Au}

We introduce a grammar R that describes Univ. Let n > 0. Then we write (M, M1, ..., My)
for (Mo, (M, ..., M), and (M) = M.

R = z|MaRRy,...,Rya)
| da.(let {z,a) = (R1,...,Rn,a) in R{Ry,..., Ry, a))

Lemma 1 (1) The category R is closed under reduction rules of A*€*.
(2) UnivC R

Proof. (1) Let R,R; € R. Then we have the facts that Rz := Ry] € R and R[a :=
(Ri,..., Ry B €R. ’
(2) [M] € R and R is closed under reduction rules. O

We introduce an inverse translation f from R back to Ap.
Definition 8 (Inverse Translation f: R — Ap)
(i) 28 =z
(i) (Aa.R(Ri,..., R, b))t = pa.[b)(R'R). .. RY)

(iii) (Aa.(let (z,6) = (Ry,...,Rm,c) in S(S1,...,Sn,d)))
= pa.[cl(Az.(X6.5(S1, ..., S, d)))RE ... RL)

169

Lemma 2 (1) Let M € Ap. Then we have that [M]} —; M.

(2) Let P € R. Then we have [P'] —% P.

Proof. By induction on the structure of M € Ay and R € R 2 Univ, respectively.

(1) () Pz.M]t = {)a.(let (z,b) =a in [M]b)}!
= pa.[a] Az { 0. [M]b} = pa.[a) Az pub.[b][M]F
—ﬁfﬂ Ax.M
(it) [M:Mo]! = {Aa.[MiJ([Me],)
= pa.fo][Mi [Ma]t =, MM,
(iii) [ua.p]MJt = {Xa.]M]b}"
= pa.[b][M]* = pa.[b]M by the induction hypothesis.
(2) (i)
[(Aa.R(Ry,..., Rn,))'] = [na.[b](R°RS ... RL)]
—F da.(d [RR, ..., [RL], o))b
—5 Ma.[RY(R], . .., [RE],)
—% Aa.R(Ry,. .., Ra,b) by the induction hypotheses.
(iii)
[(Ma.(let (z,6) = (Ri,..., Rmy¢) in S{(S1,...,Sn,)]
= [pa.[d((Az.(Ab.S(Sy, ..., Sy d))DRY ... RE)]
= Aa.J(Az.(0b.S(S1,. .., S, dDRL ... RE]c
3 da.Qera.(0.5(Sh, ..., Sn)R - [RL] €))e
5 A2z (Ab.S(Sh, - ., Sny AR, -, [RE]D ©)
— Ja.Qelet (z,f) =e in [O0.S(Sy, ..., Sa, d)1A(RI, ... [RE]LC)
5 Aa.(let (z, f) = ([RI],....[RL],¢) in [(Ab.S(S1, ..., Sn, d))']S)
—% Aa.(let (z,f) = (Ry,...,Rm,c) in (Ab.S(Sy,.. o Sy d)))
by the induction hypotheses
—5 da.(let (z,b) = (Ry,...,Rm,c) in S(51,.. 3 Sy d)) =

Lemma 3 Let R, Ry,...,R, € R.
Then we have (Rla = (Ry, ..., Rn,a)])! = Rifa < R:, ... R

Proof. By induction on the structure of R. g

Proposition 2 (Completeness) Let P, € R.
(1) If P —4 Q then P* —)ZM Q.

170

(2) If P —, Q then P* —, Q"
(3) If P —let Q then Pt —)ELW Qh.
(4) JfP _>let-v Q then Ph = Bnppn Qh.

Proof.

(1) Let K be (S1,...,5n,d).
(Aa.(M.R(Ry, ..., Rm,) K)! = pa.[d)((ub. [RIR! ... R1)S} ... S4)
—* pa.[d}(ub.[c]R“R” Rib<=S ..., St)

>y Ha[c]RURS . RL[b <= S8, ..., St][b = d]

= (/\G.R(Rl, ey Rm, C){b = <Sl, PR ,Sn, d>])h

(2) (Ma.Ra)' = pa.[a)R® —, R

(3) (Ma.(let {(z,b) = (R, Ry,...,Rm,c) in S{Si,..., S, d)))"

= pa.[c)(Ae.(ub.[d)SUS] ... SY)RER] ... RE,)
-—m pa.fel((ub.[d)SHST ...)z == RY|RY ... RL)
pa.[c)(ub.[d)S4SY ... Sijz == Ri)[b < RY, ... RL])

—w pa[d)SiSY . Sz = Rib < R,...,Ri][b:= (]
= (Aa.5(S1,...,Sn,d)z := Ry, b= (Ry,..., Rp, c)])"

{4) (let) can play the role of (Let,) except for the following case:

Aa.let (z,b) =c in R(Ri,...,Rn,d)e = (z,b)] — Aa.R(Ri,...,Ry,d)e :

where z,b ¢ FV(RR; ... R,.d).
We also have po. M =), Az.(pe. M)z =, Az.pa. Mo < z).
Then we have as follows:

(Aa.let (z,0) =c in R(Ri,..., Ry, d)[e == (z,b)])!

= pa.[(\z.ub.([d|(R'R ... R))]e <][:= b))

— s b ([A(RAR . RS) =)

e pa.[dIRIRY . RY [e:=b][b = c]

= pa.[d|R'R} ... RiJe:=c] = (A\a.R(Ry, ..., Ru,d)e :=])}

Theorem 1 (i) Let My, My € Ap. My =), My if and only if [M1] =y [[Mg}]
(ii) Let P, Py € R. Py =y Py if and only if P! =,, P}
Proof.

(i) From Propositions 1 and 2 and Lemma 2 (1).

(ii) From Propositions 1 and 2 and Lemma 2 (2).

117

Corollary 1 Univ=TR

Proof. We have Univ C R from Lemma 1. Let P € R. Then [P*] —} P from Lemma
2, and hence we have P € Univ. O

Corollary 2 The inverse translation f : Univ — Ap is bijective, in the following sense:
(1) If we have P! =y, P} then P, =y Py for Py, Py € Univ.
(2) For any M € Ap, we have some P € Univ such that P* =), M.

4 Abstract machine with explicit environment

Finally we briefly introduce an abstract machine for Ap-calculus, which handles environ-
ments explicitly and is motivated by our target calculus with let-expressions.

There exists a well-known connection between continuation passing style [Seli98, SR98]
and abstract machines [Plot75, Bier98, deGr98]. For instance, according to [SR98], we have
relations between denotation and closure; coninuation and stack; and environments.

Continuation | denotation D | continuation K | environment E

Denotational | []: Ax E— D Dx K Var — D
Semantics D =[K — R] Cvar — K
Abstract closure Clos stack S environment F
Machine AxXE " Closx S Var — Clos

where A is a set of terms, and R is a domain of responses.

Due to [SR98], let D = R¥ be the solution of K = RE x K where R is non-empty. Let
Env be a set of environments, such that Env = (Var — D) x (Name — K). The semantic
function []p : Ap x Env — D is defined as follows [SR98]:

1. [e]p e k = elz) k

2. DM ¢ (4, k) = [M]p (elz = d]) k

3. [MiMy]p e k= [Mi]p e ([Ma]p e, k)

4. [pe[BIM]p € k = [M]p (ela = ki) (elo = k(B))

We introduce here an abstract machine with a modification, such that the environment
explicitly handles substitution information consisting of continuations. The machine has
configurations of the form ([M, E], K), where [M, E] is the closure consisting of a term
M (instruction) and the environment E, and K is the continuation. Environments are
defined by continuations (a list of substitution information where :: denotes cons), and
continuations consist of a closure and a continuation.

Environment (list of continuations)

Eu=nil|({(z,k)=K):E|(k=K): E

Continuation (list of closures)
K :u=k|{c,K)|E(k)|snd(K)

172

Closure
c =[M,E}| E(z) | fst(K)

The transition function = specifies how to execute the terms, in the sense that one step
execution transforms the configuration ((M, F}, K).

L. ([z,E],K) = (E(z), K)
2. {((Mz.M,E],K) = ([M, Ey], snd(K))
where By = (({z,k) = K) :: E) with fresh variable k
3. (M1 M, E], K) = {[My, E], {{M>, E], K))
4. <[Ma[ﬂ]M7 E]: K) = <[M= El];El(ﬂ»
where By = ((a = K) = E)
Moreover, environments are also handled by the transition function =..
i) (k=K): E)(z') =. E(@)

fst(K) ifz =2 and K is a pair
(i) (({z,k) = K) = E)(z') =, { fst(E(k;)) ifz =1 and K is a variable k;
E(z') otherwise

E(k;) ifk=Fk and K is a variable &
(iif) (k= K) = E)(K') = K ifk=Fk and K is a pair
E(k') otherwise

snd(E(k;)) i k=Fk and K is a variable k;
(iv) (({z,k) = K) :: B)(K') = snd(K) if k=Fk"and K is a pair
E(k") otherwise

where fst(cl, K) = cl, snd{cl, K) =, K, and (fst(K),snd(K)) =, K.

References

[Bare84] H. P. Barendregt: The Lambda Calculus, Its Syntar and Semantics (revised edi-
tion), North-Holland, 1984.

[Bier98] G. M. Bierman: A computational interpretation of the Au-calculus, Lecture Notes
in Computer Science 1450, pp. 336-345, 1998.

[deGr98] Ph. de Groote: An environment machine for the Ap-calculus, Math. Struct. in
Compu. Science, 1998.

[Fuji03a] K. Fujita: Simple Models of Type Free Au-Calculus, Computer Software, Japan
Society for Software Science and Technology, Vol. 20, No. 3, pp. 73-79, 2003.

173

[Fujio3b] K. Fujita: A sound and complete CSP-translation for Au-Calculus, Lecture Notes
in Computer Science 2701, pp. 120~134, 2003.

[Fujio5] K. Fujita: Galois embedding from polymorphic types into existential types, Lecture
Notes in Computer Science 3461, pp. 194-208, 2005.

[Grif90] T. G. Griffin: A Formulae-as-Types Notion of Control, Proc. the 17th Annual
ACM Symposium on Principles of Programming Languages, pp. 47-58, 1990.

[HS97] M. Hofmann and T. Streicher: Continuation models are universal for Ap-calculus,
Proc. the 12th Annual IEEE Symposium on Logic in Computer Science, pp. 387-395,
1997.

[How80] W. Howard: The Formulae-as-Types Notion of Constructions, in: To H.B.Curry:
Essays on combinatory logic, lambda-calculus, and formalism, Academic Press, pp.
479-490, 1980.

[Murt91] C.R. Murthy: An Evaluation Semantics for Classical Proofs, Proc. the 6th Annual
IEEE Symposium on Logic in Computer Science, pp. 96-107, 1991.

[Pari92] M. Parigot: Ap-Calculus: An Algorithmic Interpretation of Classical Natural
Deduction, Lecture Notes in Computer Science 624, pp. 190-201, 1992.

[Pari93] M. Parigot: Classical Proofs as Programs, Lecture Notes in Computer Science
713, pp. 263-276, 1993.

[Pari97] M. Parigot: Proofs of Strong Normalization for Second Order Classical Natural
Deduction, J. Symbolic Logic, Vol. 62, No. 4, pp. 1461-1479, 1997.

[Plot75] G. Plotkin: Call-by-Name, Call-by-Value and the M-Calculus, Theoretical Com-
puter Science, Vol. 1, pp. 125-159, 1975.

[Reyn93] J. C. Reynolds: The discoveries of continuation, Lisp and Symbolic Computation,
Vol. 6, pp. 233-247, 1993.

[Selio8] P. Selinger: An implementation of the call-by-name Apv-calculus, manuscript,
1998.

[Seli01] P. Selinger: Control Categories and Duality: on the Categorical Semantics of the
Lambda-Mu Calculus, Math. Struct. in Compu. Science, Vol. 11, pp. 207-260, 2001.

[SR98] T. Streicher and B. Reus: Classical Logic, Continuation Semantics and Abstract
Machines, J. Functional Programming, Vol. 8, No. 6, pp. 543-572, 1998.

