A sound and complete CPS-translation for $\lambda\mu$ -calculus

- Extended abstract -

Ken-etsu Fujita (藤田 憲悅) Gunma University (群馬大学) fujita@cs.gunma-u.ac.jp

Abstract

We provide a bijective CPS-translation for type-free $\lambda\mu$ -calculus. This method can be naturally carried over to second order typed $\lambda\mu$ -calculus, which leads to a bijective CPS-translation between classical proofs and intuitionistic proofs. We also investigate an abstract machine for $\lambda\mu$ -calculus, which handles explicitly environments.

1 Introduction

The term CPS-translation, in general, denotes a program translation method into continuation passing style that is the meaning of the program as a function taking the rest of the computation. The method has been studied for program transformation, definitional interpreter, or denotational semantics [Reyn93].

On the other hand, according to Griffin [Grif90], a CPS-translation corresponds to a logical embedding from classical logic into intuitionistic logic under the Formulae-as-Types correspondence [How80]. Parigot [Pari92, Pari93, Pari97] introduced the $\lambda\mu$ -calculus from the viewpoint of classical logic, and established an extension of the Curry-Howard isomorphism [Grif90, Murt91]. A semantics of monomorphic $\lambda\mu$ -calculus has been investigated recently from the viewpoint of continuations. There have been noteworthy investigations including Hofmann-Streicher [HS97], Streicher-Reus [SR98], and Selinger [Seli01]: In terms of a category of continuations, a continuation semantics of simply typed $\lambda\mu$ -calculus is proved to be sound and complete for any $\lambda\mu$ -theory [HS97]. Under the control category, it is established that an isomorphism between call-by-name and call-by-value $\lambda\mu$ -calculi with conjunction and disjunction types [Seli01]. The category of negated domains is introduced as a model of type free $\lambda\mu$ -calculus [SR98]. Streicher-Reus also remarked that a CPS-translation naïvely based on Plotkin [Plot75] cannot validate (η) -rule. All of the work involve a novel CPS-translation which requires, at least, products as a primitive notion, so that the extensionality, (η) -rule can be validated by the surjective pairing, as observed in [Fuji03a].

An analysis on the calculi without type restrictions reveals core properties of the CPS-translation and the universe consisting of the image of the translation. Continuations are

handled as a list of denotations, and formalized as a pair consisting of a denotation and a continuation in this order. The study on the type free cases also makes clear the distinction between λ -calculus and $\lambda\mu$ -calculus, from the viewpoint of continuations: an λ -abstraction is viewed as a function taking only the first component of such a pair, and on the other hands, an μ -abstraction is interpreted as an λ -abstraction over continuations. This paper is a revised version of both work [Fuji03b] presented at the 6th International Conference on Typed Lambda Calculi and Applications, TLCA 2003, Valencia, Spain, June 2003; and at the 5th Symposium on Algebra and Computation, Tokyo Metropolitan University, October 2003. The method in this article can be naturally carried over to second order typed $\lambda\mu$ -calculus, which leads to a bijective CPS-translation between classical proofs and intuitionistic proofs.

2 CPS-Translation of type free λ -calculus with extensionality

We first study already known CPS-translations [Plot75, HS97] and yet another translation with let-expressions [Fuji05]. This section also serves as a gentle introduction to CPS-translations.

2.1 Plotkin's call-by-name CPS-translation and (η) -rule

The definitions of terms and reduction rules are given to the extensional λ -calculi, respectively, denoted by Λ , $\Lambda^{\langle \rangle}$ and Λ^{let} .

Definition 1 (λ -calculus Λ)

$$\Lambda \ni M ::= x \mid \lambda x.M \mid MM$$

- (β) $(\lambda x.M_1)M_2 \rightarrow M_1[x := M_2]$
- (η) $\lambda x.Mx \to M$ if $x \notin FV(M)$

Definition 2 (λ -calculus with surjective pairing $\Lambda^{(i)}$)

$$\Lambda^{\left\langle {}\right\rangle }\ni M \ ::= \ x\mid \lambda x.M\mid MM\mid \left\langle M,M
ight\rangle \mid \pi_1(M)\mid \pi_2(M)$$

- $(\beta) \ (\lambda x.M_1)M_2 \to M_1[x:=M_2]$
- (η) $\lambda x.Mx \to M$ if $x \notin FV(M)$
- (π) $\pi_i\langle M_1, M_2\rangle \to M_i$ (i=1,2)
- (sp) $\langle \pi_1(M), \pi_2(M) \rangle \to M$

Definition 3 (λ -calculus with let Λ^{let})

$$\Lambda^{ extsf{let}}
ightarrow M ::= x \mid \lambda x.M \mid MM \mid \langle M,M
angle \mid extsf{let} \langle x,x
angle = M$$
 in M

$$(\beta)$$
 $(\lambda x.M_1)M_2 \rightarrow M_1[x := M_2]$

$$(\eta)$$
 $\lambda x.Mx \to M$ if $x \notin FV(M)$

(let) let
$$\langle x_1, x_2 \rangle = \langle M_1, M_2 \rangle$$
 in $M \to M[x_1 := M_1, x_2 := M_2]$

$$(\mathsf{let}_\eta) \ \mathsf{let} \ \langle x_1, x_2 \rangle = M_1 \ \mathsf{in} \ M[x := \langle x_1, x_2 \rangle] \to M[x := M_1] \ \mathit{if} \ x_1, x_2 \not \in FV(M)$$

The term $M_1[x := M_2]$ denotes the result of substituting M_2 for the free occurrences of x in M_1 . FV(M) stands for the set of free variables in M. The term $M[x_1 := M_1, x_2 := M_2]$ denotes the result of substituting simultaneously M_1 and M_2 respectively for the free occurrences of x_1 and x_2 in M. The one step reduction relation is denoted by \to_R where R consists of (β) , (η) , etc. We write \to_R^+ and \to_R^* to denote the transitive closure and the reflexive and transitive closure of \to_R , respectively. We employ the notation $=_R$ to indicate the symmetric, reflexive and transitive closure of \to_R . The binary relation \equiv denotes the syntactic identity under renaming of bound variables.

A term M is always evaluated in a certain context $\mathcal{E}[\]$ roughly understood as a term with a hole or the rest of the computation. Such a context can be formalized as a function $\lambda x.\mathcal{E}[x]$ and called a continuation with respect to M. Then an application of a continuation to an argument means filling the argument with the hole of the evaluation context. A CPS-translation of a term M gives a function M such that the function explicitly takes, as an argument, the continuation with respect to M.

Definition 4 (Plotkin's call-by-name CPS-translation [Plot75])

- (i) $\underline{x} = x$
- (ii) $M_1M_2 = \lambda k.M_1(\lambda m.mM_2k)$
- (iii) $\underline{\lambda x.M} = \lambda k.k(\lambda x.\underline{M})$

According to Plotkin's definition, the second clause says that a continuation of the function M_1 is informally a context in the form of $[]\underline{M}_2k$ where k is a continuation of M_1M_2 . Here this context is formalized as the code of the pair consisting of \underline{M}_2 and k in this order. That is, a continuation k is to be understood as the form of $\langle \pi_1 k, \pi_2 k \rangle$. Then we can grasp an informal meaning $[M_1M_2] \sim \lambda k.[M_1]\langle [M_2],k \rangle$. The third clause means filling $\lambda x.\underline{M}$ with the hole of the evaluation context of $\lambda x.M$, which is in the form of a pair from the second clause. Then the hole of $[](\pi_1 k)(\pi_2 k)$ is filled by $\lambda x.\underline{M}$. Hence the third clause can be understood as $[\![\lambda x.M]\!] \sim \lambda k.(\lambda x.[\![M]\!])(\pi_1 k)(\pi_2 k)$. An λ -abstraction is interpreted as a function taking, as an argument, a first component of such a pair. One may find less distinction between $\underline{\ }$ and $[\![]\!]$. However, considering an interpretation of the (η) -rule reveals a deep gap between the two definitions. Let $x \notin FV(M)$.

$$[\![\lambda x.Mx]\!] \sim \lambda k.(\lambda x.\lambda k.[\![M]\!] \langle \lambda k.xk,k\rangle)(\pi_1 k)(\pi_2 k) \rightarrow_{\beta\eta}^+ \lambda k.[\![M]\!] \langle \pi_1 k,\pi_2 k\rangle$$

The above computation including (β) and (η) means that we cannot interpret (η) -rule following the original definition of Plotkin, since adding the surjective pairing to the (β) and (η) calculus breaks down the Church-Rosser property as proved by Klop [Bare84]. In other words, we should prepare a target calculus with the surjective pairing in order to validate

(η)-rule [HS97, Seli01] along the line of Plotkin's idea. This method also discussed in the previous version [Fuji03b] interprets m-input Curried function as un-Curried function with (m+1)-component, under β -reductions, as follows:

$$[\![\lambda x_1 \dots x_m . x M_1 \dots M_n]\!] \sim \lambda k . x \langle [\![M_1]\!], \dots, \langle [\![M_n]\!], k \rangle \dots \rangle \theta$$

where θ is a substitution $[x_1 := \pi_1 k, x_2 := \pi_1(\pi_2 k), \dots, x_m := \pi_1(\pi_2^{m-1} k)]$. Here, the first m components contain the denotations of m arguments, respectively, and the last component is for the rest continuation. Although this method of course works well as done in [HS97, Seli01], we introduce here yet another way such that projections are packed into an let-expression, as follows:

Definition 5 (CPS-translation : $\Lambda \to \Lambda^{let}$) (i) [x] = x

- (ii) $[\![\lambda x.M]\!] = \lambda a.(\text{let } \langle x,b \rangle = a \text{ in } [\![M]\!]b)$
- (iii) $[M_1 M_2] = \lambda a . [M_1] \langle [M_2], a \rangle$

This modification seems to be trivial where the let-expression is not syntactic sugar. However, the use of let-expressions makes it possible to handle the substitution information in a suspended way, in general, environments elegantly, and to simplify extremely technical matters on the completeness¹, comparing with the previous version [Fuji03b].

3 Type free $\lambda\mu$ -calculus

Secondly we study type free $\lambda\mu$ -calculus from the view point of the CPS-translation introduced in the previous section.

3.1 Extensional $\lambda\mu$ -calculus and CPS-translation

We give the definition of type free $\lambda\mu$ -calculus with (η) . The syntax of the $\lambda\mu$ -terms is defined from variables, λ -abstraction, application, or μ -abstraction over names denoted by α , where a term in the form of $[\alpha]M$ is called a named term.

Definition 6 ($\lambda\mu$ -calculus $\Lambda\mu$)

$$\Lambda \mu \ni M ::= x \mid \lambda x.M \mid MM \mid \mu \alpha.N \qquad N ::= [\alpha]M$$

- (β) $(\lambda x.M_1)M_2 \rightarrow M_1[x := M_2]$
- (η) $\lambda x.Mx \to M$ if $x \notin FV(M)$
- $(\mu) \ (\mu\alpha.N)M \to \mu\alpha.N[\alpha \Leftarrow M]$
- $(\mu_{\beta}) \ \mu \alpha.[\beta](\mu \gamma.N) \to \mu \alpha.N[\gamma := \beta]$
- $(\mu_{\eta}) \ \mu \alpha. [\alpha] M \to M \ if \ \alpha \notin FN(M)$

¹This point is also important in the polymorphic case.

FN(M) stands for the set of free names in M. The $\lambda\mu$ -term $N[\alpha \Leftarrow M]$ denotes a term obtained by replacing each subterm of the form $[\alpha]M'$ in N with $[\alpha](M'M)$. This operation is inductively defined as follows:

1.
$$x[\alpha \Leftarrow M] = x$$

2.
$$(\lambda x.M_1)[\alpha \Leftarrow M] = \lambda x.M_1[\alpha \Leftarrow M]$$

3.
$$(M_1M_2)[\alpha \Leftarrow M] = (M_1[\alpha \Leftarrow M])(M_2[\alpha \Leftarrow M])$$

4.
$$(\mu\beta.N)[\alpha \Leftarrow M] = \mu\gamma.N[\beta := \gamma][\alpha \Leftarrow M]$$
 where γ is a fresh name

5.
$$([\beta]M_1)[\alpha \leftarrow M] = \begin{cases} [\beta]((M_1[\alpha \leftarrow M])M), & \text{for } \alpha \equiv \beta \\ [\beta](M_1[\alpha \leftarrow M]), & \text{otherwise} \end{cases}$$

The term $M[\alpha \Leftarrow M_1, \dots, M_n]$ denotes $M[\alpha \Leftarrow M_1] \cdots [\alpha \Leftarrow M_n]$.

The binary relation $=_{\lambda\mu}$ over $\Lambda\mu$ denotes the symmetric, reflexive and transitive closure of the one step reduction relation, i.e., the equivalence relation induced from the reduction rules.

Definition 7 (CPS-Translation : $\Lambda \mu \to \Lambda^{\text{let}}$) (i) $[\![x]\!] = x$

(ii)
$$[\![\lambda x.M]\!] = \lambda a.(\text{let } \langle x,b \rangle = a \text{ in } [\![M]\!]b)$$

(iii)
$$[M_1 M_2] = \lambda a. [M_1] \langle [M_2], a \rangle$$

(iv)
$$[\![\mu a.[b]M]\!] = \lambda a.[\![M]\!]b$$

Proposition 1 (Soundness) Let $M_1, M_2 \in \Lambda \mu$. If we have $M_1 =_{\lambda \mu} M_2$ then $[\![M_2]\!] =_{\lambda^{\mathrm{let}}} [\![M_2]\!]$.

Proof. By induction on the derivation of $M_1 =_{\lambda\mu} M_2$, together with the following facts:

1. Case of (β) :

$$\begin{split} & \llbracket (\lambda x. M_1) M_2 \rrbracket = \lambda a. ((\lambda b. \mathtt{let} \ \langle x, c \rangle = b \ \mathtt{in} \ \llbracket M_1 \rrbracket c) \langle \llbracket M_2 \rrbracket, a \rangle) \\ & \rightarrow_{\beta} \lambda a. (\mathtt{let} \ \langle x, c \rangle = \langle \llbracket M_2 \rrbracket, a \rangle \ \mathtt{in} \ \llbracket M_1 \rrbracket c) \\ & \rightarrow_{\mathtt{let}} \lambda a. \llbracket M_2 \rrbracket a \llbracket x := \llbracket M_1 \rrbracket \rrbracket = \lambda a. \llbracket M_1 \llbracket x := M_2 \rrbracket \rrbracket a \\ & \rightarrow_{\eta} \llbracket M_1 \llbracket x := M_2 \rrbracket \rrbracket \end{split}$$

2. Case of (η) :

$$\begin{split} & [\![\lambda x. Mx]\!] = \lambda a. (\text{let } \langle x,b \rangle = a \text{ in } (\lambda c. [\![M]\!] \langle x,c \rangle) b) \\ & \to_{\beta} \lambda a. (\text{let } \langle x,b \rangle = a \text{ in } [\![M]\!] \langle x,b \rangle) \\ & \to_{\text{let}_{\eta}} \lambda a. [\![M]\!] a \\ & \to_{\eta} [\![M]\!] \end{split}$$

3. Case of (μ) :

$$\begin{split} & \llbracket (\mu\alpha.[\beta]M_1)M_2 \rrbracket = \lambda a.(\lambda\alpha.\llbracket M_1 \rrbracket \beta) \langle \llbracket M_2 \rrbracket, \alpha \rangle \\ & \to_{\beta} \lambda a.(\llbracket M_1 \rrbracket \beta)[\alpha := \langle \llbracket M_2 \rrbracket, \alpha \rangle] \\ & =_{\beta} \left\{ \begin{array}{c} \lambda a.\llbracket M_1 \llbracket \alpha \Leftarrow M_2 \rrbracket \rrbracket \beta \llbracket \alpha := \alpha \rrbracket = \llbracket \mu\alpha.[\beta](M_1 \llbracket \alpha \Leftarrow M_2 \rrbracket) \rrbracket & \text{if } \alpha \not\equiv \beta \\ \lambda a.\llbracket M_1 \llbracket \alpha \Leftarrow M_2 \rrbracket \rrbracket \langle \llbracket M_2 \rrbracket, \alpha \rangle \llbracket \alpha := \alpha \rrbracket = \llbracket \mu\alpha.[\beta]((M_1 \llbracket \alpha \Leftarrow M_2 \rrbracket)M_2) \rrbracket & \text{if } \alpha \equiv \beta \end{array} \right. \end{split}$$

4. Case of (μ_n) :

$$\llbracket \mu \alpha. [\alpha] M \rrbracket = \lambda \alpha. \llbracket M \rrbracket \alpha$$

$$\rightarrow_{\eta} \llbracket M \rrbracket$$

5. Case of (μ_{β}) :

$$\llbracket \mu \alpha. [\beta] (\mu \gamma. [\delta] M) \rrbracket = \lambda \alpha. (\lambda \gamma. \llbracket M \rrbracket \delta) \beta$$

$$\rightarrow_{\beta} \lambda \alpha. \llbracket M \rrbracket \delta [\gamma := \beta] = \llbracket \mu \alpha. [\delta] M [\gamma := \beta] \rrbracket$$

3.2 Inverse translation and completeness

We define a set of $\Lambda^{\texttt{let}}$ -terms called Univ, which is the image of the CPS-translation closed under reductions.

$$Univ \stackrel{\text{def}}{=} \{P \in \Lambda^{\text{let}} \mid \llbracket M \rrbracket \to_{\lambda^{\text{let}}}^* P \text{ for some } M \in \Lambda \mu\}$$

We introduce a grammar \mathcal{R} that describes Univ. Let $n \geq 0$. Then we write $\langle M_0, M_1, \ldots, M_n \rangle$ for $\langle M_0, \langle M_1, \ldots, M_n \rangle \rangle$, and $\langle M \rangle \equiv M$.

$$\mathcal{R} ::= x \mid \lambda a. \mathcal{R} \langle \mathcal{R}_1, \dots, \mathcal{R}_n, a \rangle$$
$$\mid \lambda a. (\text{let } \langle x, a \rangle = \langle \mathcal{R}_1, \dots, \mathcal{R}_n, a \rangle \text{ in } \mathcal{R} \langle \mathcal{R}_1, \dots, \mathcal{R}_n, a \rangle)$$

(1) The category \mathcal{R} is closed under reduction rules of λ^{let} . Lemma 1

(2) $Univ \subseteq \mathcal{R}$

Proof. (1) Let $R, R_i \in \mathcal{R}$. Then we have the facts that $R[x := R_1] \in \mathcal{R}$ and $R[a := R_1]$ $\langle R_1,\ldots,R_n,b\rangle]\in \mathcal{R}.$

(2)
$$\llbracket M \rrbracket \in \mathcal{R}$$
 and \mathcal{R} is closed under reduction rules.

We introduce an inverse translation $\mbox{$\sharp$}$ from $\mbox{$\mathcal{R}$}$ back to $\mbox{$\Lambda\mu$}$.

Definition 8 (Inverse Translation atural: $\mathcal{R} \to \Lambda \mu$)

(i)
$$x^{\natural} = x$$

(ii)
$$(\lambda a.R\langle R_1,\ldots,R_n,b\rangle)^{\natural} = \mu a.[b](R^{\natural}R_1^{\natural}\ldots R_n^{\natural})$$

(iii)
$$(\lambda a.(\text{let }\langle x,b\rangle = \langle R_1,\ldots,R_m,c\rangle \text{ in } S\langle S_1,\ldots,S_n,d\rangle))^{\natural}$$

= $\mu a.[c]((\lambda x.(\lambda b.S\langle S_1,\ldots,S_n,d\rangle)^{\natural})R_1^{\natural}\ldots R_m^{\natural})$

Lemma 2 (1) Let $M \in \Lambda \mu$. Then we have that $[\![M]\!]^{\natural} \to_{\mu_{\eta}}^* M$.

(2) Let $P \in \mathcal{R}$. Then we have $\llbracket P^{\natural} \rrbracket \to_{\beta}^* P$.

Proof. By induction on the structure of $M \in \Lambda \mu$ and $R \in \mathcal{R} \supseteq Univ$, respectively.

(1) (i)
$$[\![\lambda x.M]\!]^{\natural} = \{\lambda a.(\text{let }\langle x,b\rangle = a \text{ in } [\![M]\!]b)\}^{\natural}$$

$$= \mu a.[a]\lambda x.\{\lambda b.[\![M]\!]b\}^{\natural} = \mu a.[a]\lambda x.\mu b.[b][\![M]\!]^{\natural}$$

$$\to^{+}_{\mu_{\eta}} \lambda x.M$$
(ii) $[\![M_{1}M_{2}]\!]^{\natural} = \{\lambda a.[\![M_{1}]\!]\langle [\![M_{2}]\!],a\rangle\}^{\natural}$

$$= \mu a.[a][\![M_{1}]\!]^{\sharp}[\![M_{2}]\!]^{\natural} \to_{\mu_{\eta}} M_{1}M_{2}$$
(iii) $[\![\mu a.[b]\!]M]\!]^{\natural} = \{\lambda a.[\![M]\!]b\}^{\natural}$

 $=\mu a.[b][M]^{\natural} \to_{\mu_{\eta}}^{*} \mu a.[b]M$ by the induction hypothesis.

$$\begin{split} & [(\lambda a.R\langle R_1,\ldots,R_n,b\rangle)^{\natural}] = [\mu a.[b](R^{\natural}R_1^{\natural}\ldots R_n^{\natural})] \\ & \to_{\beta}^{} \lambda a.(\lambda a'.[R^{\natural}]\langle [R_1^{\natural}],\ldots,[R_n^{\natural}],a'\rangle)b \\ & \to_{\beta}^{} \lambda a.[R^{\natural}]\langle [R_1^{\natural}],\ldots,[R_n^{\natural}],b\rangle \\ & \to_{\beta}^{} \lambda a.R\langle R_1,\ldots,R_n,b\rangle \text{ by the induction hypotheses.} \\ & (iii) \\ & [(\lambda a.(\text{let }\langle x,b\rangle=\langle R_1,\ldots,R_m,c\rangle \text{ in }S\langle S_1,\ldots,S_n,d\rangle))^{\natural}] \\ & = [\mu a.[c]((\lambda x.(\lambda b.S\langle S_1,\ldots,S_n,d\rangle)^{\natural})R_1^{\natural}\ldots R_m^{\natural}]c \\ & = [\mu a.[(\lambda x.(\lambda b.S\langle S_1,\ldots,S_n,d\rangle)^{\natural})R_1^{\natural}\ldots R_m^{\natural}]c \\ & \to_{\beta}^{} \lambda a.(\lambda e.[\lambda x.(\lambda b.S\langle S_1,\ldots,S_n,d\rangle)^{\natural}]\langle [R_1^{\natural}],\ldots,[R_m^{\natural}],e\rangle)c \\ & \to_{\beta}^{} \lambda a.[\lambda x.(\lambda b.S\langle S_1,\ldots,S_n,d\rangle)^{\natural}]\langle [R_1^{\natural}],\ldots,[R_m^{\natural}],c\rangle \\ & = \lambda a.(\lambda e.\text{let }\langle x,f\rangle=e \text{ in }[(\lambda b.S\langle S_1,\ldots,S_n,d\rangle)^{\natural}]f)\langle [R_1^{\natural}],\ldots,[R_m^{\natural}],e\rangle \\ & \to_{\beta}^{} \lambda a.(\text{let }\langle x,f\rangle=\langle [R_1^{\natural}],\ldots,[R_m^{\natural}],e\rangle \text{ in }[(\lambda b.S\langle S_1,\ldots,S_n,d\rangle)^{\natural}]f) \\ & \to_{\beta}^{} \lambda a.(\text{let }\langle x,f\rangle=\langle R_1,\ldots,R_m,c\rangle \text{ in }(\lambda b.S\langle S_1,\ldots,S_n,d\rangle)f) \\ & \text{by the induction hypotheses} \\ & \to_{\beta}^{} \lambda a.(\text{let }\langle x,b\rangle=\langle R_1,\ldots,R_m,c\rangle \text{ in }S\langle S_1,\ldots,S_n,d\rangle) \end{split}$$

Lemma 3 Let $R, R_1, \ldots, R_n \in \mathcal{R}$. Then we have $(R[a := \langle R_1, \ldots, R_n, a \rangle])^{\natural} = R^{\natural}[a \Leftarrow R_1^{\natural}, \ldots, R_n^{\natural}]$

Proof. By induction on the structure of R.

Proposition 2 (Completeness) Let $P, Q \in \mathcal{R}$.

(1) If $P \to_{\beta} Q$ then $P^{\natural} \to_{\mu\mu_{\beta}}^{+} Q^{\natural}$.

(2) If
$$P \to_{\eta} Q$$
 then $P^{\flat} \to_{\mu_n} Q^{\flat}$.

(3) If
$$P \to_{\text{let}} Q$$
 then $P^{\natural} \to_{\beta \mu \mu_{\beta}}^{+} Q^{\natural}$.

(4) If
$$P \to_{\mathsf{let}_{\eta}} Q$$
 then $P^{\natural} =_{\beta \eta \mu \mu_{\eta}} Q^{\natural}$.

Proof.

(1) Let
$$K$$
 be $\langle S_1, \ldots, S_n, d \rangle$.

$$(\lambda a.(\lambda b.R\langle R_1, \ldots, R_m, c \rangle)K)^{\natural} = \mu a.[d]((\mu b.[c]R^{\natural}R_1^{\natural} \ldots R_m^{\natural})S_1^{\natural} \ldots S_n^{\natural})$$

$$\to_{\mu}^* \mu a.[d](\mu b.[c]R^{\natural}R_1^{\natural} \ldots R_m^{\natural}[b \Leftarrow S_1^{\natural}, \ldots, S_n^{\natural}])$$

$$\to_{\mu_{\beta}} \mu a.[c]R^{\natural}R_1^{\natural} \ldots R_m^{\natural}[b \Leftarrow S_1^{\natural}, \ldots, S_n^{\flat}][b := d]$$

$$= (\lambda a.R\langle R_1, \ldots, R_m, c \rangle[b := \langle S_1, \ldots, S_n, d \rangle])^{\natural}$$

(2)
$$(\lambda a.Ra)^{\natural} = \mu a.[a]R^{\natural} \rightarrow_{\mu_{\eta}} R^{\natural}$$

$$(3) \ (\lambda a.(\text{let } \langle x,b\rangle = \langle R_0,R_1,\ldots,R_m,c\rangle \text{ in } S\langle S_1,\ldots,S_n,d\rangle))^{\natural} \\ = \mu a.[c]((\lambda x.(\mu b.[d]S^{\natural}S_1^{\natural}\ldots S_n^{\natural}))R_0^{\natural}R_1^{\natural}\ldots R_m^{\natural}) \\ \to_{\beta} \mu a.[c]((\mu b.[d]S^{\natural}S_1^{\natural}\ldots S_n^{\natural})[x:=R_0^{\natural}]R_1^{\natural}\ldots R_m^{\natural}) \\ \to_{\mu}^* \mu a.[c](\mu b.[d]S^{\natural}S_1^{\natural}\ldots S_n^{\natural}[x:=R_0^{\natural}][b \Leftarrow R_1^{\natural},\ldots,R_m^{\natural}]) \\ \to_{\mu\beta} \mu a.[d]S^{\natural}S_1^{\natural}\ldots S_n^{\natural}[x:=R_0^{\natural}][b \Leftarrow R_1^{\natural},\ldots,R_m^{\natural}][b:=c] \\ = (\lambda a.S\langle S_1,\ldots,S_n,d\rangle[x:=R_0,b:=\langle R_1,\ldots,R_m,c\rangle])^{\natural}$$

(4) (let) can play the role of (let_n) except for the following case:

 $\lambda a. \mathtt{let} \ \langle x,b \rangle = c \ \mathtt{in} \ R \langle R_1, \ldots, R_m, d \rangle [e := \langle x,b \rangle] \ o \ \lambda a. R \langle R_1, \ldots, R_m, d \rangle [e := c],$ where $x,b \not\in FV(RR_1 \ldots R_m d).$

We also have $\mu\alpha.M =_{\lambda\mu} \lambda x.(\mu\alpha.M)x =_{\lambda\mu} \lambda x.\mu\alpha.M[\alpha \Leftarrow x].$

Then we have as follows:

$$\begin{split} &(\lambda a. \mathtt{let}\ \langle x,b\rangle = c\ \mathtt{in}\ R\langle R_1,\ldots,R_m,d\rangle [e:=\langle x,b\rangle])^{\natural} \\ &= \mu a. [c] (\lambda x. \mu b. ([d] (R^{\natural}R_1^{\natural}\ldots R_m^{\natural})) [e \Leftarrow x] [e:=b]) \\ &=_{\lambda\mu} \ \mu a. [c] \mu b. ([d] (R^{\natural}R_1^{\natural}\ldots R_m^{\natural})) [e:=b] \\ &\to_{\mu\beta} \ \mu a. [d] R^{\natural}R_1^{\natural}\ldots R_m^{\natural} [e:=b] [b:=c] \\ &= \mu a. [d] R^{\natural}R_1^{\natural}\ldots R_m^{\natural} [e:=c] = (\lambda a. R\langle R_1,\ldots,R_m,d\rangle [e:=c])^{\natural} \end{split}$$

Theorem 1 (i) Let $M_1, M_2 \in \Lambda \mu$. $M_1 =_{\lambda \mu} M_2$ if and only if $[\![M_1]\!] =_{\lambda^{\text{let}}} [\![M_2]\!]$.

(ii) Let
$$P_1, P_2 \in \mathcal{R}$$
. $P_1 =_{\lambda^{let}} P_2$ if and only if $P_1^{\natural} =_{\lambda \mu} P_2^{\natural}$.

Proof.

- (i) From Propositions 1 and 2 and Lemma 2 (1).
- (ii) From Propositions 1 and 2 and Lemma 2 (2).

Corollary 1 $Univ = \mathcal{R}$

Proof. We have $Univ \subseteq \mathcal{R}$ from Lemma 1. Let $P \in \mathcal{R}$. Then $\llbracket P^{\natural} \rrbracket \to_{\beta}^{*} P$ from Lemma 2, and hence we have $P \in Univ$.

Corollary 2 The inverse translation \natural : Univ $\to \Lambda \mu$ is bijective, in the following sense:

- (1) If we have $P_1^{\natural} =_{\lambda \mu} P_2^{\natural}$ then $P_1 =_{\lambda^{\text{let}}} P_2$ for $P_1, P_2 \in Univ$.
- (2) For any $M \in \Lambda \mu$, we have some $P \in Univ such that <math>P^{\natural} =_{\lambda \mu} M$.

4 Abstract machine with explicit environment

Finally we briefly introduce an abstract machine for $\lambda\mu$ -calculus, which handles environments explicitly and is motivated by our target calculus with let-expressions.

There exists a well-known connection between continuation passing style [Seli98, SR98] and abstract machines [Plot75, Bier98, deGr98]. For instance, according to [SR98], we have relations between denotation and closure; coninuation and stack; and environments.

Continuation	denotation D	continuation K	environment E
Denotational	$[] : \Lambda \times E \to D$	$D \times K$	$Var \rightarrow D$
Semantics	$D = [K \to R]$		$Cvar \rightarrow K$
Abstract	closure Clos	$\operatorname{stack} S$	environment E
Machine	$\Lambda imes E$	Clos imes S	Var o Clos

where Λ is a set of terms, and R is a domain of responses.

Due to [SR98], let $D=R^K$ be the solution of $K=R^K\times K$ where R is non-empty. Let Env be a set of environments, such that $Env=({\tt Var}\to D)\times({\tt Name}\to K)$. The semantic function $[\![]\!]_D:\Lambda\mu\times Env\to D$ is defined as follows [SR98]:

- 1. $[x]_D e k = e(x) k$
- 2. $[\![\lambda x.M]\!]_D \ e \ \langle d,k \rangle = [\![M]\!]_D \ (e[x:=d]) \ k$
- 3. $[\![M_1M_2]\!]_D$ e $k = [\![M_1]\!]_D$ e $\langle [\![M_2]\!]_D$ $e,k \rangle$
- 4. $\llbracket \mu \alpha \cdot [\beta] M \rrbracket_D e k = \llbracket M \rrbracket_D (e[\alpha := k]) (e[\alpha := k](\beta))$

We introduce here an abstract machine with a modification, such that the environment explicitly handles substitution information consisting of continuations. The machine has configurations of the form $\langle [M, E], K \rangle$, where [M, E] is the closure consisting of a term M (instruction) and the environment E, and K is the continuation. Environments are defined by continuations (a list of substitution information where :: denotes cons), and continuations consist of a closure and a continuation.

Environment (list of continuations)

$$E ::= nil \mid (\langle x, k \rangle = K) :: E \mid (k = K) :: E$$

Continuation (list of closures)

$$K ::= k \mid \langle cl, K \rangle \mid E(k) \mid \operatorname{snd}(K)$$

Closure

$$cl := [M, E] \mid E(x) \mid fst(K)$$

The transition function \Rightarrow specifies how to execute the terms, in the sense that one step execution transforms the configuration $\langle [M, E], K \rangle$.

1.
$$\langle [x, E], K \rangle \Rightarrow \langle E(x), K \rangle$$

2.
$$\langle [\lambda x.M, E], K \rangle \Rightarrow \langle [M, E_1], \operatorname{snd}(K) \rangle$$

where $E_1 = ((\langle x, k \rangle = K) :: E)$ with fresh variable k

3.
$$\langle [M_1M_2, E], K \rangle \Rightarrow \langle [M_1, E], \langle [M_2, E], K \rangle \rangle$$

4.
$$\langle [\mu\alpha.[\beta]M, E], K \rangle \Rightarrow \langle [M, E_1], E_1(\beta) \rangle$$

where $E_1 = ((\alpha = K) :: E)$

Moreover, environments are also handled by the transition function \Rightarrow_e .

(i)
$$((k = K) :: E)(x') \Rightarrow_e E(x')$$

(ii)
$$((\langle x, k \rangle = K) :: E)(x') \Rightarrow_e \begin{cases} \mathtt{fst}(K) & \text{if } x \equiv x' \text{ and } K \text{ is a pair} \\ \mathtt{fst}(E(k_1)) & \text{if } x \equiv x' \text{ and } K \text{ is a variable } k_1 \\ E(x') & \text{otherwise} \end{cases}$$

(iii)
$$((k = K) :: E)(k') \Rightarrow_e \begin{cases} E(k_1) & \text{if } k \equiv k' \text{ and } K \text{ is a variable } k_1 \\ K & \text{if } k \equiv k' \text{ and } K \text{ is a pair } \\ E(k') & \text{otherwise} \end{cases}$$

(iv)
$$((\langle x, k \rangle = K) :: E)(k') \Rightarrow_e \begin{cases} \operatorname{snd}(E(k_1)) & \text{if } k \equiv k' \text{ and } K \text{ is a variable } k_1 \\ \operatorname{snd}(K) & \text{if } k \equiv k' \text{ and } K \text{ is a pair} \\ E(k') & \text{otherwise} \end{cases}$$

where $\mathtt{fst}\langle cl, K \rangle \Rightarrow_e cl$, $\mathtt{snd}\langle cl, K \rangle \Rightarrow_e K$, and $\langle \mathtt{fst}(K), \mathtt{snd}(K) \rangle \Rightarrow_e K$.

References

- [Bare84] H. P. Barendregt: The Lambda Calculus, Its Syntax and Semantics (revised edition), North-Holland, 1984.
- [Bier98] G. M. Bierman: A computational interpretation of the $\lambda\mu$ -calculus, Lecture Notes in Computer Science 1450, pp. 336-345, 1998.
- [deGr98] Ph. de Groote: An environment machine for the $\lambda\mu$ -calculus, Math. Struct. in Compu. Science, 1998.
- [Fuji03a] K. Fujita: Simple Models of Type Free $\lambda\mu$ -Calculus, Computer Software, Japan Society for Software Science and Technology, Vol. 20, No. 3, pp. 73–79, 2003.

- [Fuji03b] K. Fujita: A sound and complete CSP-translation for $\lambda\mu$ -Calculus, Lecture Notes in Computer Science 2701, pp. 120–134, 2003.
- [Fuji05] K. Fujita: Galois embedding from polymorphic types into existential types, Lecture Notes in Computer Science 3461, pp. 194–208, 2005.
- [Grif90] T. G. Griffin: A Formulae-as-Types Notion of Control, Proc. the 17th Annual ACM Symposium on Principles of Programming Languages, pp. 47–58, 1990.
- [HS97] M. Hofmann and T. Streicher: Continuation models are universal for $\lambda\mu$ -calculus, Proc. the 12th Annual IEEE Symposium on Logic in Computer Science, pp. 387–395, 1997.
- [How80] W. Howard: The Formulae-as-Types Notion of Constructions, in: To H.B. Curry: Essays on combinatory logic, lambda-calculus, and formalism, Academic Press, pp. 479–490, 1980.
- [Murt91] C. R. Murthy: An Evaluation Semantics for Classical Proofs, *Proc. the 6th Annual IEEE Symposium on Logic in Computer Science*, pp. 96–107, 1991.
- [Pari92] M. Parigot: $\lambda\mu$ -Calculus: An Algorithmic Interpretation of Classical Natural Deduction, Lecture Notes in Computer Science 624, pp. 190–201, 1992.
- [Pari93] M. Parigot: Classical Proofs as Programs, Lecture Notes in Computer Science 713, pp. 263–276, 1993.
- [Pari97] M. Parigot: Proofs of Strong Normalization for Second Order Classical Natural Deduction, J. Symbolic Logic, Vol. 62, No. 4, pp. 1461–1479, 1997.
- [Plot75] G. Plotkin: Call-by-Name, Call-by-Value and the λ -Calculus, Theoretical Computer Science, Vol. 1, pp. 125–159, 1975.
- [Reyn93] J. C. Reynolds: The discoveries of continuation, Lisp and Symbolic Computation, Vol. 6, pp. 233–247, 1993.
- [Seli98] P. Selinger: An implementation of the call-by-name $\lambda\mu\nu$ -calculus, manuscript, 1998.
- [Seli01] P. Selinger: Control Categories and Duality: on the Categorical Semantics of the Lambda-Mu Calculus, *Math. Struct. in Compu. Science*, Vol. 11, pp. 207–260, 2001.
- [SR98] T. Streicher and B. Reus: Classical Logic, Continuation Semantics and Abstract Machines, J. Functional Programming, Vol. 8, No. 6, pp. 543–572, 1998.