
37

Generic Binding Signatures

Miki Tanaka
National Institute of Information and Communications Technology

4-2-1 Nukui-Kitamachi, Koganei, Tokyo, Japan, 184-8795
Tel:+81-(0)42-327-5782, Email:miki.tanaka@nict.go.jp

Abstract

We present a new definition of binding signatures, i.e., signatures for

operators with variable binding, along the line of the work by Fiore,

Plotkin and Turi, The definition given by them was only for cartesian
binders, as found in λ-calculus, whereas ours cover binding in any con-
texts generated by a pseudo-monad S on Ca_{v}^{4} . Our generalisation also

includes the construction of initial algebra semantics with substitution
for the signatures.

1 Introduction
In the study of programming languages, the notion of variable binding has

always been a common one, yet presenting subtle and difficult problems. As

early as in late 60’s, de Bruijn discussed in [1] how to dispense with names of

bound variables, and started AUTOMATH, a project for automated verification

of mathematics. The basic idea of de Bruijn was to provide a $\mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}_{A}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}$ way of

describing a canonical representative of equivalence classes induced by renaming

of bound variables in a formal system, $\mathrm{i}.\mathrm{e},$, a-equivalence classes.

In 1999, in LICS, Fiore, Plotkin and Turi [4] then gave a model for such

a-equivalence classes on a presheaf category, together with the definition of

signatures for binding operators. The model has a natural operation of sub-

stitution on it, which is compatible with algebras for the signatures. Their

construction was applied only to binding in cartesian contexts as found in λ

calculus, although underneath their work lied some constructions which gener-

alise to a framework that accounts for variable binding and substitution in more

general settings. This fact was also endorsed by the paper [16] on linear binders,

which gave constructions that go parallel to those in [4] in a slightly different

setting. The definitions of binding signatures given in [4] and [16], for cartesian

and linear contexts, respectively, coincide. The difference becomes visible only

when one tries to construct algebras for the signatures in different categories.

However, when one wants to deal with more complex settings, one immedi-

ately sees that their definition of binding signatures is not good enough. As a

leading example of such cases we focus on bunched contexts [15], where contexts

数理解析研究所講究録 1437巻 2005年 37-44

38

are freely generated from both cartesian and linear variables. In this case, on\’e

needs to be able to specify for each operator how it combines cartesian and
linear variables, and how many variables it should bind (including none.) Our
definition of binding signatures enables this for any given context generated by
a pseudo-monad S on Cat.

The paper is organised as follows: in Section 2 we give a list of pseudo-
monads that generate the categories of contexts we use in later sections. Then,
after recalling the definitions of binding signatures for cartesian and linear cases
in Section 3.1, we give the definition of binding signatures for generic contexts
in Section 3.3. The following section (Section 4) contains the discussion on
construction of algebras for the binding signatures, leading to the initial algebra
semantics. In Section 5, we look at the leading example of bunched contexts,
which is explained in detail alongside the comparison with the cartesian and
linear cases.

In this paper, our emphasis is on the definitions of binding signatures. For
readers interested in the semantic aspects of variable binding for generic contexts
are referred to $[17, 12]$; in particular, the mathematical foundations of how
pseudo-distributivity plays an important role in the whole construction can be
found in [17]. For the further analysis and proofs related to signatures, see [13].
The constructions in the paper are based on the category theory. In particular,
in order to have a full understanding of the details, some knowledge on pseudo-
monads is essential, which is not presented in this paper. For readers who are not
familiar with such techniques are referred to other documents such as $[17, 12]$.
Notation 1.1. We sometimes use a natural number k to denote the discrete
category with k objects, expressed as $\{$ 1, . . . , $k\}$. It should be clear from the
context whether k denotes a natural number or a category, although the reader
needs to be aware of the obvious overloading.

2 Categories for Contexts
The main ingredient of the discussion in this paper is contexts; in [4], the con-
texts they focused on were cartesian ones, and they used the category F of finite
sets and all functions to model them. In [16], the contexts dealt there were
linear ones, modelled by the category P of finite sets and permutations between
them. We take the view that contexts are generated by suitable pseudo-monads

on Cat, the category of small categories. The notion of pseudo-monad on Cat is
a variant of the notion of monad on Cat. For space reasons, we shall not define
pseudo-monad, their 2-categories of pseudo-algebras, etcetera, here, beyond re-
marking that they are the definitive variant of the notions of monad, algebra,
etcetera, that respect natural transformations and for which equalities in the
various axioms are systematically replaced by coherent isomorphisms $[12, 17]$.

In the following, we give descriptions of several pseudo-monads and the con-
texts generated by them. The first two examples are those implicitly used in
the papers [4] and [16], The third is for our leading example, which we will
investigate further in Section 5.

38

Example 2.1. Let T_{fp} denote the pseudo-monad on Cat for small categories
with finite products. The 2-category Ps-Tfp-Alg has objects given by small cate-
gories with finite products, maps given by functors that preserve finite products
in the usual sense, i.e., up to coherent isomorphism, and 2-cells given by all nat-
ural transformations. So Ps-Tfp-Alg is the 2-category FP. The category $T_{fp}(X)$

is the free category with finite products on X . Taking $X=1$, the category
$T_{fp}(X)$ is given, up to equivalence, by the category of cartesian contexts F^{op}

used by Fiore et al [4].

Example 2.2. Let T_{sm} denote the pseudo-monad on Cat for small symmet-
$\mathrm{r}\mathrm{i}\mathrm{c}$ monoidal categories. The 2-category $Ps- T_{sm^{-}}Alg$ has objects given by small

symmetric monoidal categories, maps given by strong symmetric monoidal func-
tors, $\mathrm{i}.\mathrm{e}.$, functors together with data and axioms to the effect that the symmetric
monoidal structure is preserved up to coherent isomorphism, and 2-cells given

by all symmetric monoidal natural transformations, i.e., those natural transfor-
mations that respect the symmetric monoidal structure. Therefore, $Ps- T_{sm^{-}}^{\cdot}Alg$

is the 2-category SymMon_{str} and $T_{sm}(X)$ is the free symmetric monoidal cat-

egory on X . Taking $X=1$, it foilow s , up to equivalence, that $T_{sm}(X)$ is the

category P^{op} of finite sets and permutations used by Tanaka [16] for modelling

linear contexts.

Example 2.3. Combining the first two examples by taking the sum of pseudo-

monads, we may consider the pseudo-monad T_{BI} on Cat for small symmetric
monoidal categories with finite products. The 2-category $Ps- T_{BI^{-}}Alg$ has ob-

jects given by small symmetric monoidal categories with finite products, maps

given by strong symmetric monoidal functors that preserve finite products, and

2-cells given by all symmetric monoidal natural transformations. This struc-

ture is the free category on 1 independently generated by finite-product and

symmetric monoidal structures used in the Logic of Bunched Implications [15].

The objects of $T_{BI}(X)$ where $X=1$ are precisely the bunches of Bunched Im-

plications. More syntactic descriptions of bunched contexts are found in later

sections.

3 Binding Signatures

In [4] and [16], their definitions of binding signatures, which are identical, are

given as a generalisation of the usual notion of signatures in universal alge-
$\mathrm{b}\mathrm{r}\mathrm{a}$. Instead of having simple natural numbers as arities, they use sequences of

natural numbers to account for the number of variables to be bound in each ar-

gument of an operator. Unfortunately, this generalisation is not general enough

when one wants to give signatures for more complex contexts, such as those for

the Logic of Bunched Implications. By further generalising the definition in a

category theoretic way, we give a nevx definition of binding signatures which can

describe such cases.
The definition of binding signatures is followed by the construction of a

corresponding endofunctor on a suitable category. In [4] and [16], the preshea

40

categories [F , Set] and [P , Set] are used respectively to define the endofunctors
and then to construct algebras. For the case of the generic contexts generated
by S , we use the category [$(S1)^{op})$ Set] of presheaves.

We first look at the cases where $S=T_{fp}$ and $S=T_{sm}$, the send -monads
for cartesian contexts and linear contexts. Then we give the definition of binding
signatures for S in general

3-1 Cartesian and Linear Cases
As mentioned earlier, Fiore, Plotkin and Turi in their paper in LICSJ99 [4]
discussed the case $S=T_{fp\}}$ for carteisan contexts. The contexts are modelled by
the category F^{op} , which is equivalent to $T_{fp}1$ (Example 2.1). For linear contexts,
the case $S=T_{sm}$ in [16] uses the category $\mathrm{P}^{op}(=\mathrm{P})$, which is equivalent to
$T_{sm}1$ (Example 2.2). Therefore, they use different categories for constructing
algebras, although their definitions of binding signatures coincide.

Definition 3.1 ([4, 16]). A binding signature I $=(O, a)$ consists of a set O

of operations, and a function a : $Oarrow \mathrm{N}^{*}$. Elements of the codomain of a are
called arities.

If $a(0)=\langle n_{1}, \ldots, n_{k}\rangle$ for an operator 0 , it means that 0 takes k arguments
and binds n_{i} variable in the i-th argument.

Example 3.2. The signature Σ_{λ} of A-calculus

? $::=x|$ Xx.t $|\mathrm{a}\mathrm{p}\mathrm{p}(t$, ?$)$

is given by $\Sigma_{\lambda}=(\{\lambda, \mathrm{a}\mathrm{p}\mathrm{p}\}, a)$. The arities of operators are given as $a(\lambda)=\langle 1\rangle$

and a(app) $=\langle 0, 0\rangle$.
Given a signature, one constructs an endofunctor associated to it on a suit-

able category in which one considers algebras of the signature. For the cartesian
case, an endofunctor associated to a binding signature Σ is constructed on the
category [F , Set]. The operation on carteisan contexts corresponds to the oper-
ation $+$ (coproduct in F) in the category F. This operation naturally extends
to the operation on terms, in this case the operation x of taking products in
[F , Set]. Using these two operations, the endofunctor I on [F , Set] is defined to
send X to

$\Sigma X=$
$\prod_{o\in O}$

$X(n_{1}+-)\mathrm{x}$ $\cdots \mathrm{x}$ $X(n_{k}+-)$.

$a(0)=\langle n_{i}\rangle_{1\leq i\leq k}$

Similarly, but instead of $+$ and x , operations \otimes and $\overline{\otimes}$ in IP and [P , Set],
respectively, are used for the linear contexts: the endofunctor I on [P , Set] is
defined to send X to

$\Sigma X=$
$\prod_{o\in O}$

$X(n_{1}\otimes-)\overline{\otimes}\cdots\overline{\otimes}X$ (n_{k} X-),

$a(0)=\langle n_{\mathrm{i}}\rangle_{1\leq\leq k}j$

41

3.2 Bunched contexts
Naturally, we can think of more variations in contexts other than cartesian and
linear cases. One of such structural variations is the contexts found in the Logic
of Bunched Implications, a logic for resources and sharing introduced by Pym
in 1999 [15], In this logic, the contexts are called “Bunches”, and two different
kinds of operations are allowed on them; one is the usual operation in cartesian
contexts, and the other is that in linear contexts. Hence the category of bunched
contexts, denoted by $T_{BI}1$ as in Example 2.3, is given as a symmetric monoidal
category with finite products, freely generated on 1. The two operations on con-
texts result in two different operations on terms, as seen in the $\alpha\lambda- \mathrm{c}\mathrm{a}\mathrm{l}\mathrm{c}\mathrm{u}\mathrm{l}\mathrm{u}\mathrm{s}[10]$,

which corresponds to the logic:

$t::=x|\lambda x.t$ $|\mathrm{a}\mathrm{p}\mathrm{p}(t_{1}, t_{2})|\alpha x.t|@(t_{1}, t_{2})$

where A and app are the operators of linear binding and application, while a

and @ are those for cartesian binding and application.
One can immediately see that it is impossible to give signatures for such

a calculus with the definition of binding signatures given above. So, We need

something more sophisticated than the two binding signatures defined so far.

3.3 Binding Signatures for Context S

As we have seen in the preceding sections, in order to give the signature for

aA-calculus, the definitions of binding signatures given in $[4, 16]$ are not broad

enough. In particular, it is necessary to be able to specify, firstly, how one
wants to apply arguments to an operator, and secondly, how one wants to bind

variables in each of the arguments. The definition we give below [13] provides

the facility for these issues.

Definition 3.3 (Generalised, [13]), For a pseudo-monad S on Cat, a binding

signature $\Sigma^{S}=(O, a)$ is a set of operations O together with an arity function
a : $\mathit{0}arrow Ar_{S}$ where an element $(k, \alpha, (\alpha_{i})_{1\leq i\leq k})$ of Ars consists of a natural

number k , an object α of the category Sk , and, for $1\leq \mathrm{i}\leq k$, an object α_{i} of

the category S2.

The idea is that, if an operator 0 has an arity $(k, \alpha, (\alpha_{i})_{1\leq i\leq k})$, then it takes
k arguments, which are combined in a way specified by α , and in each of the k

arguments binds variables in the way specified by α_{i} , for $\mathrm{i}=1$, \ldots , k .

4 Algebras for the Signatures

In this section, we present the generic construction of the endofunctor associ-
ated to a generic binding signature Σ^{S} , on the presheaf category [(S1), Set].

For this purpose, we need to explain how objects of Sk , where k is a discrete

category, gives rise to a functor. Then, for each operator 0 , we apply this to the

components of its arity to obtain an endofunctor which interprets o . Putting

42

all together by taking the coproduct over all the operators, we obtain an endo-
functor associated to the signature.

4.1 Functors induced by objects of Sk
In general, given an S-algebra (A, a) , each object of Sk induces a functor from
A^{k} to A . Let γ be an object of Sk . Then γ induces a functor $\overline{\gamma}_{A}$: $A^{k}arrow A$ by
composing arrows as:

$A^{k}\cong A^{k}\mathrm{x}$ $1arrow(SA)^{Sk}S\cross\gamma \mathrm{x}$ $Skarrow SAarrow^{a}Aev_{\gamma}$.

So given an object f of A^{k} , the value $\overline{\gamma}_{A}(f)$ is $a(Sf(\gamma))$ as seen in:

A^{k} $\cong A^{k}\mathrm{x}1$
$\underline{S\cross\chi}$

, $($SA$)^{Sk}$ $\rangle\langle$ Sk $\frac{ev_{\gamma_{\mathrm{t}}}}{r}$ SA $arrow^{a}$ A
f $(f,1\rangle$ (Sf,γ) $Sf(\gamma)$ $a(Sf(\gamma))$

Since f can be expressed as a k-tuple $($ 51, \ldots , $s_{k})$ of objects of Sk , the value
$Sf(\gamma)$ is calculated by substituting s_{i} for all i ’s appearing in γ , for $1\leq \mathrm{i}\leq k$.

For the case of contexts generated by S , using \star to denote an operation
in Sk , and $\overline{\star}$ for its extension to the presheaf category, we have the following
constructions: since $S1$ is a free category, it has a natural structure of 5-algebra
$(51, \mu)$. So $\alpha_{i}\in S2$ induces a functor

$\overline{\alpha_{iS1}}$: $(S1)^{2}arrow S1$

For example, the object 1 in 82 induces a functor $\overline{1}_{S1}$: $(S1)^{2}arrow S1$ such
that (s_{1}, s_{2}) in $S2$ is sent to s_{1} And, the object 1 $\star 2$ in $S2$ induces a functor
$\overline{1\star 2}s1$: $(S1)^{2}arrow S1$ such that (s_{1}, s_{2}) in $S2$ is sent to $s_{1}\star s_{2}$.

On the other hand, the category [(S1), Set] is also an S-algebra. So α in
Sk induces a functor

$\overline{\alpha}$

[$\langle S1)\circ p$,Se f] : $[(S1)^{op}, Set]^{k}arrow[(S1)^{op}$, Set3.

Letting $\alpha=1\star 2$ in $S2$, 1 $\star 2$ induces a functor that sends $(X, Y)\in S2$ to $X\overline{\star}Y$

$\overline{1\star 2}[(S1)\circ p,get]$: $[(S1)^{op},$ Set$]^{\mathit{2}}arrow$ [$(S1)^{op}$, Set].

Example 4.1. For 132 in $T_{sm}2_{1}$ the value at f $=(m,$n) in P^{2} is

1$\overline{\otimes 2}_{\mathbb{P}}(f)=m$ (& n

In the next section, using the above construction, we define an endofunctor
that corresponds to a generic binding signature Σ^{S} .

4.2 Σ^{S}-algebras
Using the functors defined as in the previous subsection, we now construct an
endofunctor for a given binding signature Σ^{S} for contexts S . Each operato

43

o with an arity $(k, \alpha, (\alpha_{\dot{x}})_{1\leq i\leq k})$ induces an endofunctor on [(S1), Set] that
sends X to

$\overline{\alpha}_{[(S1)^{\circ p}}$,Set] $(X(\overline{\alpha_{1S1}}(1, -))$, \ldots , $X(\alpha_{k}S1(1, -)))$.

Then, a signature Σ^{S} induces an endofunctor Σ^{S} on [(S1), Set] that sends X

to

$\mathit{0}\in O\mathrm{I}\mathrm{I}$ $\overline{\alpha}_{[(S1)^{\circ p},Set]}(X(\overline{\alpha_{1S1}}(1, -)),$
\ldots ,

$X(\overline{\alpha_{kS1}}(1, -)))$

$a(\mathit{0})=(k,\alpha_{1}(\alpha_{2})_{1\leq\tau\leq k})$

by taking coproducts over all operators in O . One has initial algebra semantics
with substitution for a signature Σ^{S} in [$(S1)^{op}$, Set]$]$ ([17, 12, 14]).

5 Bunched Contexts

In this section, as one example demonstrating that our definition of binding sig-
natures is indeed a generalisation of those found in $[4, 16]$, we show the signature
of the $\alpha\lambda$-calculus, whose syntax was given in Section 5. We use the category
$T_{BI}1$ as the model of contexts, and define an endofunctor on [$(T_{BI})^{op}$, Set].

In order to define the signature $\Sigma_{\alpha\lambda}$ for this calculus, we choose k , α $\in T_{BI}k$

and $\alpha_{i}\in T_{BI}2$, for $1\leq \mathrm{i}\leq k$, for each of the four operators. For instance, the
linear binder A takes one argument, hence k should be 1, and since there is no
way of combining single argument, a should be the object 1 of $T_{BI}1$ (this object
induces the identity functor). Finally, since A binds one variable linearly, α_{1} is
given by the object $1\otimes 2$ in $T_{BI}2$. To summarise, the arities for the operators
of $\alpha\lambda$-calculus are given as follows:

$a(\lambda)=(1,1,$ 1 $($& $2)$ $a(\mathrm{a}\mathrm{p}\mathrm{p})=(2, 1\otimes 2, (2,2))$

$a(\alpha)=(1,1,1\mathrm{x} 2)$ a (@)= $(2, 1 \mathrm{x} 2, (2, 2))$

Then, an easy calculation shows that this signature $\Sigma_{\alpha\lambda}$ induces an end functor

on [(T_{BI}) op , Set] that sends X to

$\Sigma_{\alpha\lambda}X=X(1\otimes-)+X\otimes X+X(1+-)+X\rangle\langle X$.

6 Conclusion
We have presented a definition of binding signatures for contexts generated by a
pseudo-monad S on Cat, generalising the definitions given in [4] and [16]. Our
definition accommodates contexts such as those for the Logic of Bunched Impli-

cations, which was not the case for the definitions in $[4, 16]$, The endofunctor
on [$(S1)^{op}$, Set] which the signature induces is constructed using the fact that,

given an S algebra (A, a) , each object of Sk induces a functor from A^{k} to A .
One has initial algebra semantics for the signature in this presheaf category,
which also has a structure that models substitution [17, 12, 14]

44

References
[1] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool

for automatic formula manipulation, with application to the Church-Rosser
theorem. Indagationes Mathematicae, 34:381-392, 1972.

[2] B. Day. On closed categories of functors. In Lec ture Notes in Mathematics
137, pages 1-38. Springer-Verlag, 1970.

[3] M. Fiore, Semantic analysis of normalisation by evaluation for typed
lambda calculus. In Proc. PPDP 02, ACM Press, pages 26-37, 2002.

[4] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding.
In Proc. LICS 99, pages 193-202. IEEE Press, 1999.

[5] M. Gabbay and A. M. Pitts. A new approach to abstract syntax involving
binders. In Proc. LICS 99, pages 214-224. IEEE Press, 1999.

[6] M. Hofmann, Semantical analysis of higher-order abstract syntax. In Proc.
LICS 99, IEEE Press, pages 204-213, 1999,

[7] G. M. Kelly. Basic Concepts of Enriched Category Theory, London Math.
Soc. Lecture Notes Series 64 Cambridge University Press, 1982.

[8] S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag,
1971.

[9] M. Miculan and I. Scagnetto, A framework for typed HOAS and semantics.
In Proc. PPDP 2003, ACM Press, pages 184-194, 2003.

[10] P. O’Hearn, On Bunched Typing, Journal of functional Programming,
13:747-796, Cambridge University Press, 2003.

[11] A. J. Power. A Unified Category-Theoretic Approach to Variable Binding.
In Proc. MERLIN 2003, A CM Digital Library, 2003.

[12] A. J. Power and M. Tanaka. Pseudo-Distributive Laws and Axiomatics for
Variable Binding. Submitted.

[13] A. J. Power and M. Tanaka. Binding Signatures for Generic Contexts In
Proc. TLCA 2005, LNCS 3461, pages 308-323, 2005.

[14] A. J. Power and M. Tanaka. A Unified Category-Theoretic Semantics for
Binding Signatures in Substructural Logics. Submitted.

[15] D. Pym. The Semantics and Proof Theory of the Logic of Bunched Impli-
cations, Applied Logic Series. Kluwer, 2002.

[16] M. Tanaka. Abstract syntax and variable binding for linear binders. In
Proc. MFCS 2000, LNCS 1893, pages 670-679, 2000.

[17] M. Tanaka. Pseudo-Distributive Laws and a Unified Framework for Vari-
able Binding. Edinburgh Ph.D. thesis, 2004

