The Simple Graphs Associated with Rings and Semigroups

Mitsuo Kanemitsu ${ }^{1}$

Let R be a commutative ring，and let $Z(R)$ denote its set of zero－divisors． We associate a simple graph $\Gamma(R)$ to R with vertices $Z(R)^{*}=Z(R)-\{0\}$ ，the set of nonzero zero－divisor of R ．Two distinct vertices x and y are adjacent if $x y=0$ ．This graphs are called the zero－divisor graphs of rings R ．

We also associate a simple graph $\Delta\left(\mathbf{Z}_{n}\right)$ to \mathbf{Z}_{n} with vertices \mathbf{Z}_{n} and for distinct elements $x, y \in \mathbf{Z}_{n}$ ，the vertices x and y are adjacent if and only if $y=x^{2}(x \neq y)$ ．This graphs are called the parabola graphs．

For a commutative multiplicative semigroup S with $0(0 x=0$ for all $x \in S$ ），we can defined the zero－divisor graph $\Gamma(S)$ as above（［DMS］）．

We denote an edge such that a and b are adjacent by $a-b$ ．We also denote a path by．$a-b-c-d$ etc．Also，let $\chi(G)$ denote the chromatic number of the graph G and let $\chi^{\prime}(G)$ denote the edge chromatic number of the graph G ．

The notion of a zero－divisor graph was first introduced by I．Beck in［B1］ and further investigated in［A1］，though their vertices set included the zero element．Let G be a graph．

The diameter of G is

$$
\operatorname{diam}(G)=\sup \{d(x, y) \mid x \text { and } y \text { are distinct vertices of } G\},
$$

where $d(x, y)$ denotes the length of the shortest path from x to y ．The grith of G ，denoted by $g(G)$ ，is defined as the length of the shortest cycle in G ．

A complete subgraph of G is called clique．$\omega(G)$ ，the clique number of G ，is the greatest integer $r \geq 1$ such that $K^{r} \subset G$ ．Also，$c(G)$ ，the circumference of G ，is the length of the longest cycle in G ．Let $n=p_{1}^{2 n_{1}} \cdots p_{k}^{2 n_{k}} q_{1}^{2 m_{1}+1} \cdots q_{r}^{2 m_{r}+1}$ for distinct primes p_{i}, q_{j} and integers $n_{i}, m_{j} \geq 0$ ．Then

$$
\omega\left(\Gamma\left(\mathbf{Z}_{n}\right)\right)=p_{1}^{n_{1}} \cdots p_{k}^{n_{k}} q_{1}^{m_{k}} \cdots q_{r}^{m_{r}}+r-1
$$

[^0]by [B, Proposition 2.3].
For a graph G and an integer $n \geq 1$, we define $\lambda(G, n)$ to be the number of complete subgraphs (cliques) of G of order n. Note that $\lambda(G, 1)$ is the number of vertices of $G, \lambda(G, 2)$ is the number of edges of $G, \lambda(G, 3)$ is the number of triangles in G and $\lambda(G, n)=0$ for all $n \geq \omega(G)+1$ ([AFLL]).

A graph G is planar if it can be drawn in such a way that no two edges intersect.

We examine the zero-divisor graph $\Gamma\left(Z_{n}\right)$, of the ring Z_{n} where the residue class ring modulo n where n is a positive integer. Many parts of this note are contained in [DS] and [AF].

We also investigate the parabora graphs.
For any commutative semigroup S, let $C(S)=$ the core of $\Gamma(S)$ be the union of the cycles in $\Gamma(S)$. A vertex x of $\Gamma(S)$ is called an end point in case there is at most one edge in $\Gamma(S)$ with vertex x.
§1. Some exapmles of zero-divisor graphs and parabora graphs.
Example 1. Let S be the commutative nilsemigroup

$$
S=<a, b \mid a^{3}=a^{2} b=a b^{2}=b^{3}=0>=\left\{a, b, a^{2}, a b, b^{2}, 0\right\} .
$$

For this zero-divisor graph $\Gamma(S)=(V(\Gamma(S)), E(\Gamma(S)))$, we have that

$$
V(\Gamma(S))=\left\{a, b, a^{2}, a b, b^{2}\right\}
$$

is the set of all vertices and $E(\Gamma(S))=\left\{a-a^{2}, a-b^{2}, a-a b, b^{2}-a b, b^{2}-a^{2}, b^{2}-\right.$ b,$\} . This graph is connected, d\left(a, b^{2}\right)=1, d(a, b)=2$ and $a-a^{2}-b^{2}-a$ is a cycle of length 3 . And so $\operatorname{diam}(\Gamma(S))=2$ and $g(\Gamma(S))=3$. There is not an end poitnt in $\Gamma(S)$ and $C(S)=\Gamma(S)$. Also, we have that $\omega(\Gamma(S))=4$. Also we have that $\lambda(S, 1)=5, \lambda(S, 2)=9$ and $\lambda(S, 2)=6$.

Example 2. Let S be the commutative nilsemigroup

$$
S=<a, b \mid a^{3}=a^{2} b=a b^{2}=b^{3}=0, a^{2}=b^{2}>=\left\{a, b, a^{2}, a b, 0\right\} .
$$

$\Gamma(S)$ is connected, $d\left(a, a^{2}\right)=1, d(a, b)=2$ and $a-a^{2}-a b-a$ is a cycle of length 3. And so $\operatorname{diam}(\Gamma(S))=2$ and $g(\Gamma(S))=3$. There is not an end poitnt in $\Gamma(S)$ and $C(S)=\Gamma(S)$. Also, we ahve that $\omega(\Gamma(S))=3$ and $c(\Gamma(S))=3$. Also we have that $\lambda(S, 1)=4, \lambda(S, 2)=5$ and $\lambda(S, 2)=2$.

This graph $\Gamma(S)$ is planar.
Example 3. $V\left(\Gamma\left(\mathbf{Z}_{12}\right)\right)$ of the zero-divisor graph $\Gamma\left(\mathbf{Z}_{12}\right)$ is the set

$$
\{2,3,4,6,8,9,10\} \text { and }
$$

$$
E\left(\Gamma\left(\mathbf{Z}_{12}\right)\right)=\{2-6,3-4,3-8,4-6,4-9,6-8,6-10,8-9\}
$$

The elements 4,9 are idempotent elements and 6 is a nilpotent element. Also, $\{0,6\}$ is an ideal of $\mathbf{Z}_{12}, \omega\left(\Gamma \mathbf{Z}_{12}\right)=4$. Also we have that $\lambda\left(\mathbf{Z}_{12}, 1\right)=$ $7, \lambda\left(\mathbf{Z}_{12}, 2\right)=8$ and $\lambda\left(\mathbf{Z}_{12}, 3\right)=0$. Also $\operatorname{diam}\left(\Gamma\left(\mathbf{Z}_{12}\right)\right)=3, g\left(\Gamma\left(\mathbf{Z}_{12}\right)\right)=4$ and $c\left(\Gamma\left(\mathbf{Z}_{12}\right)\right)=4$. We have that $\chi\left(\Gamma\left(\mathbf{Z}_{12}\right)\right)=2$ abd $\chi^{\prime}\left(\Gamma\left(\mathbf{Z}_{12}\right)\right)=4$. $\Gamma\left(\mathbf{Z}_{12}\right)$ is planar.

Example 4. $V\left(\Gamma\left(\mathbf{Z}_{15}\right)\right)$ of the zero-divisor graph $\Gamma\left(\mathbf{Z}_{15}\right)$ is the set

$$
\{3,5,6,9,10,12\} \text { and }
$$

$$
E\left(\Gamma\left(\mathbf{Z}_{15}\right)\right)=\{3-5,3-10,5-6,5-9,5-12,6-10,9-10,10-12\}
$$

The elements 6, 10 are idempotent elements. The ring \mathbf{Z}_{15} has no ideals contained only two elements. We have that $\omega\left(\mathbf{Z}_{15}\right)=4, c\left(\mathbf{Z}_{15}\right)=4$ and also we have that $\lambda\left(\mathbf{Z}_{15}, 1\right)=6, \lambda\left(\mathbf{Z}_{15}, 2\right)=8$ and $\lambda\left(\mathbf{Z}_{15}, 2\right)=0$. Also $\operatorname{diam}\left(\Gamma\left(\mathbf{Z}_{15}\right)\right)=2$ and $g\left(\Gamma\left(\mathbf{Z}_{15}\right)\right)=4$. We have that $\chi\left(\Gamma\left(\mathbf{Z}_{15}\right)\right)=2$ abd $\chi^{\prime}\left(\Gamma\left(\mathbf{Z}_{15}\right)\right)=4 . \Gamma\left(\mathbf{Z}_{15}\right)$ is planar.

Example 5. $V\left(\Gamma\left(\mathbf{Z}_{16}\right)\right)$ of the zero-divisor graph $\Gamma\left(\mathbf{Z}_{16}\right)$ is the set

$$
\begin{gathered}
\{2,4,6,8,10,12,14\} \text { and } \\
E\left(\Gamma\left(\mathbf{Z}_{16}\right)\right)=\{2-8,4-8,4-12,6-8,8-10,8-12,8-14\} .
\end{gathered}
$$

The element 8 is an idempotent element and 4,12 are nilpotent elements. The set $\{0,8\}$ is an ideal of \mathbf{Z}_{16}. We have that $\omega\left(\mathbf{Z}_{16}\right)=3$. Also we have that $\lambda\left(\mathbf{Z}_{16}, 1\right)=7, \lambda\left(\mathbf{Z}_{16}, 2\right)=7$ and $\lambda\left(\mathbf{Z}_{16}, 3\right)=1$. Also $\operatorname{diam}\left(\Gamma\left(\mathbf{Z}_{16}\right)\right)=$
$2, g\left(\Gamma\left(\mathbf{Z}_{16}\right)\right)=3$ and $c\left(\Gamma\left(\mathbf{Z}_{16}\right)\right)=3$. We have that $\chi\left(\Gamma\left(\mathbf{Z}_{16}\right)\right)=3$ and $\chi^{\prime}\left(\Gamma\left(\mathbf{Z}_{16}\right)\right)=6 . \Gamma\left(\mathbf{Z}_{16}\right)$ is planar.

Example 6. Let $\Gamma\left(\mathbf{Z}_{4}[X] /\left(X^{2}\right)\right)=\Gamma\left(\mathbf{Z}_{4}[x]\right)\left(x^{2}=0\right)$ be a zero-divisor graph associated with the ring $\mathbf{Z}_{4}[X] /\left(X^{2}\right)$. Set $R_{4}[x]=\mathbf{Z}_{4}[x]$. Then $V\left(\Gamma\left(R_{4}[x]\right)\right)=\{2, x, 2+x, 2 x, 2+2 x, 3 x, 2+3 x\}$ and $E\left(R_{4}[x]\right)=\{2-2 x, 2-$ $2+2 x, x-2 x, x-3 x, 2+x-2 x, 2 x-2+2 x, 2+3 x-2 x\}$.

We have that $\omega\left(R_{4}[x]\right)=3, c\left(R_{4}[x]\right)=3$ and also we have that $\lambda\left(R_{4}[x], 1\right)=7, \lambda\left(R_{4}[x], 2\right)=8, \lambda\left(R_{4}[x], 3\right)=2$ and $\lambda\left(R_{4}[x], 4\right)=0$. Also $\operatorname{diam}\left(\Gamma\left(R_{4}[x]\right)\right)=2$ and $g\left(\Gamma\left(R_{4}[x]\right)\right)=3$. We have that $\chi\left(\Gamma\left(R_{4}[x]\right)\right)=3$ and $\chi^{\prime}\left(\Gamma\left(R_{4}[x]\right)\right)=6$.
$\Gamma\left(R_{4}[x]\right)$ is planar.
Lemma 1. $\Gamma\left(\mathbf{Z}_{n}\right)$ is connected and $\operatorname{diam}\left(\mathbf{Z}_{n}\right) \leq 3$.
Lemma 2. If $\Gamma\left(\mathbf{Z}_{n}\right)$ contains a cycle, then $g\left(\mathbf{Z}_{n}\right) \leq 4$.
Conjecture. The number of end points of $\Gamma\left(\mathbf{Z}_{n}\right)$ is an even number.
This conjecture is valid for $n \leq 30$.
Lemma 3. If $n \geq 9$ and $\Gamma\left(\mathbf{Z}_{n}\right)$ is a zero-divisor graph of \mathbf{Z}_{n}, then there exists an element x such that $\{0, x\}$ is an ideal of \mathbf{Z}_{n}, Ann (x) is a maximal ideal of \mathbf{Z}_{n} and $\mathbf{Z}_{n} / A n n(x) \cong \mathbf{Z}_{2}$.

If p is a prime number $(\neq 2)$, then $\{0, p\}$ is an ideal of $\mathbf{Z}_{2 p}$. So $\Gamma\left(\mathbf{Z}_{2 p}\right)$ is a star graph.

Lemma 4. If any vertex in $\Gamma\left(\mathbf{Z}_{n}\right)$ is either a vertex of the core $C\left(\Gamma\left(\mathbf{Z}_{n}\right)\right)$ or else is an end point of $\Gamma\left(\mathbf{Z}_{n}\right)$.

Lemma 5 ([B] and [AN]). Let p, q and r be all distinct prime numbers. The following satements are satisfied.
(1) $\omega\left(\Gamma\left(\mathbf{Z}_{n}\right)\right)=1$ if and only if $n=4$.
(2) $\omega\left(\Gamma\left(\mathbf{Z}_{n}\right)\right)=2$ if and only if $n=8,9, p q, 4 p(p \neq 2)$.
(3) $\omega\left(\Gamma\left(\mathbf{Z}_{n}\right)\right)=3$ if and only if $n=p r q, 4 p q(p \neq 2, q \neq 2), 8 p(p \neq$ 2), $9 p(p \neq 3), 16,27$.

§2. The parabola graph $y=x^{2}$

We associate a simple graph $\Delta\left(\mathbf{Z}_{n}\right)$ to \mathbf{Z}_{n} with vertices \mathbf{Z}_{n} and for distinct elements $x, y \in \mathbf{Z}_{n}$, the vertics x and y are adjacent if and only if $y=x^{2}(x \neq$ $y)$.

Example 1. The vertices set $V\left(\Delta\left(\mathbf{Z}_{7}\right)\right)$ of the simple graph $\Delta\left(\mathbf{Z}_{7}\right)$ is the set \mathbf{Z}_{7} and $E\left(\Delta\left(\mathbf{Z}_{7}\right)\right)=\{1-6,2-3,2-4,4-5\} . \quad \lambda\left(\Delta\left(\mathbf{Z}_{7}\right), 1\right)=$ $7, \lambda\left(\Delta\left(\mathbf{Z}_{7}\right), 2\right)=4$ and $\lambda\left(\Delta\left(\mathbf{Z}_{7}\right), 3\right)=0$. We have that $\operatorname{diam}\left(\Delta\left(\mathbf{Z}_{7}\right)\right)=$ $3, \omega\left(\Delta\left(\mathbf{Z}_{7}\right)\right)=2, c\left(\Delta\left(\mathbf{Z}_{7}\right)\right)=g\left(\Delta\left(\mathbf{Z}_{7}\right)\right)=0$.

Example 2. Let $\Delta\left(\mathbf{Z}_{11}\right)=\left(V\left(\Delta\left(\mathbf{Z}_{11}\right)\right), E\left(\Delta\left(\mathbf{Z}_{11}\right)\right)\right)$ be a simple graph associated with \mathbf{Z}_{11}. We have that $V\left(\Delta\left(\mathbf{Z}_{11}\right)=\mathbf{Z}_{11}\right.$ and $E\left(\Delta\left(\mathbf{Z}_{11}\right)\right)=\{2-$ $10,3-5,3-6,3-9,4-5,4-9,5-7,8-9\}$.
$\lambda\left(\Delta\left(\mathbf{Z}_{11}\right), 1\right)=11, \lambda\left(\Delta\left(\mathbf{Z}_{11}\right), 2\right)=8$ and $\lambda\left(\Delta\left(\mathbf{Z}_{11}\right), 3\right)=0, \lambda\left(\Delta\left(\mathbf{Z}_{11}\right), 4\right)=1$. We have that $\operatorname{diam}\left(\Delta\left(\mathbf{Z}_{11}\right)\right)=4, \omega\left(\Delta\left(\mathbf{Z}_{11}\right)\right)=2, c\left(\Delta\left(\mathbf{Z}_{11}\right)\right)=4, g\left(\Delta\left(\mathbf{Z}_{11}\right)\right)=$ 4. This graph is not a forest.

Theorem. (a) Let $\Delta\left(\mathbf{Z}_{7}\right)$ be a parabola graph and let A_{7} be an adjacent matrix of a parabola graph $\Delta\left(\mathbf{Z}_{7}\right)$. Also, $f_{n}(X)=f_{A^{n}}(X)$ be a minimal polynomial of A_{7}. Then the following statements hold.
(1) If n is an even natural number, then $f_{n}(X)$ has a divisor $X^{2}-L_{n} X+1$.
(2) If n is an odd natural number, then $f_{n}(X)$ has a divisor $X^{2}-L_{n} X-1$, where L_{n} is a Lucas number.
(b) (1) $\Delta\left(\mathbf{Z}_{p}\right)$ has no triangles, that is, $\lambda\left(\Delta\left(\mathbf{Z}_{p}\right), 3\right)=0$ for a prime number p.
(2) $\lambda\left(\Delta\left(\mathbf{Z}_{n}\right)\right)=0$ for $1 \leq n \leq 10$ and $12 \leq n \leq 20$.
(3) For parabora graphs $\Delta\left(\mathbf{Z}_{n}\right)(2 \leq n \leq 20)$, their graphs are forest except $n=11$.

References

[AF] D.F.Anderson, A.A.Frazier, A.Lauve and P.S.Livingston, The zerodivisor graph of a commutative ring II, Lecture Notes in Pure and Appli. Math., Marcel Dekker, New York, 220 (2001), 61-72.
[A1] D.D.Anderson and M.Naseer, Beck's coloring of a commutative ring, J. Algebra 1993, 159, 500-514.
[B1] I.Beck, Coloring of commutative rings. J. Algebra 1988, 116, 208-226.
[DS] F.DeMeyer and K.Schneider, Automorphisms and zero divisor graphs of commutative rings, International J. of commutative rings, to appear.
[DMS] F.R. DeMeyer, T. McKenzie and K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forums, 65 (2002) 206-214.

Department of Mathematics
Aichi University of Education
Kariya-shi, Aichi, 448-8542, JAPAN
e-mail: mkanemit@auecc.aichi-edu.ac.jp

[^0]: ${ }^{1}$ This is a part of an abstract and details will be published elsewhere．

