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Schutzenberger graphs and embedding theorems

Akihiro Yamamura *

Abstract

The embedding of an inverse semigroup into a variant of HNN extension is obtained. We
charcterize HNN extensions where the set of idempotents do not get larger by the construction.
We clarify the relationship among the definitions of HNN extensions of inverse semigroups;
the embedding theorem for HNN extensions is obtained by the automata theoretical technique
based on the combinatorial and geometrical properties of Sch\"utzenberger graphs. This paper is
an extended abstract and the detailed version will be published elsewhere.

1 Introduction

The concept of an HNN extension of groups is introduced by Higman, Neumann and Neumann
[5]. Several generalizations are possible for inverse semigroups depending upon the interpretations
of the concept of conjugacy. The concept is generalized to the class of semigroups and inverse
semigroups in [8]. HNN extensions of groupoids are considered in Higgins [4] and transfered into
inverse semigroups by Gilbert [2]. The constructions in [8] and [2] are defined under different
assumptions and seem to stand apart away from one another. The definition in [8] has the features
of abstraction of free objects in inverese semigroups such as free inverse semigroups. On the

other hand, the construction in [2] has a strong connection to groupoid theory. In this paper, we
clarify the relationship between these two constructions. First, we show that HNN extension in the

sense of Gilbert can be extended to more general context and embeddability property still holds.
Second, we show that every HNN extension in the sense of [2] can be naturally embedded into an
HNN extension of the original inverse semigroup adjoined two extra idempotents in the sense of

[8]. Therefore, twese two constructions share almost identical algebraic structures. To prove the

embedability, we use the iterative construction of automata based on Sch\"utzenberger graphs by

Stephen [7].

1.1 Concepts of HNN extensions

We recall the concept of HNN extensions in $[2, 8]$ . Let $S$ be an inverse semigroup, and let $A$ and
$B$ be inverse subsemigroups of $S$ . Suppose that $e\in A\subseteq eSe$ , $f\in B\subset fSf$ for some idempotents
$e$ , $f$ of $S$ and that $\phi$ : $Aarrow B$ is an isom orphism. Then the inverse semigroup presented by

Inv $(5, t|t^{-1}at=\phi(a)$ for $\forall a\in A$ , $t^{-1}t$ $=f$, $tt^{-1}=e$ ), (1.1)
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or equivalently,
Inv(S, $t|t^{-1}at=\phi(a)$ for $\forall a\in A’$ , $t^{-1}t=f$ , $tt^{-1}=e$ ), (1.2)

where $A’$ is a set of generators of $A$ , is called the $HNN$ extension of $S$ associated with $\phi$ : $Aarrow B$ .
We here denote the inverse semigroup presented by (1.1) (or (1.2)) by $S(\phi : Aarrow B)$ . The element
$t$ in $S(\phi:Aarrow B)$ is called the stable Jetter. Higgins [4] introduces a concept of an HNN extension
of a groupoid. Interpreting into inverse semigroups context, Gilbert [2] defines the HNN extension
$S_{*U,\varphi}$ of an inverse semigroup $S$ with associated order ideals $U$ and $V$ to be presented by

Inv(S, $t_{e}(e\in E(U))|t_{e}t_{f}^{-1}=ef$ , $t_{ef}^{-1}t=\varphi(ef)$ , $t_{uu^{-1}}^{-1}ut_{u^{-1}u}=\varphi(u)$ , $u\in U$ ). (1.3)

2 Embedding theorems

Suppose that $S$ is an inverse semigroup, $A$ and $B$ are isomorphic inverse subsernigroups of $S$ . We
do not assume $A$ and $B$ are order ideals. Let $\phi$ be an isomorphism of A onto $B$ . We consider the
inverse semigroup $S[\phi : Aarrow B]$ presented by

Inv(S, $t_{e}(e\in E(A))|t_{e}t_{f}^{-1}=ef$ , $t_{e}^{-1}t_{f}=\phi(ef)\}t_{aa^{-1}}^{-1}at_{a^{-1}a}=\phi(a),a\in A$). (2.1)

When $A$ and $B$ are order ideals, $S[\phi : Aarrow B]$ is exactly the construction of Gilbert. Thus, this
is a generalization of the construction by Gilbert. Because of the normal form of the Gilbert’s
construction, the original semigroup $S$ is embedded into $S[\phi : Uarrow V]$ provided $U$ is an ordere
ideal.

First of all, we shall show that the embeddability holds even though we do not assume that $A$

and $B$ are order ideals. Next, we discuss the relationship between the constructions by [2] and [8].
We shall show that $S[\phi:Aarrow B]$ is embedded into $S_{1_{A},1_{B}}$ $(\phi:Aarrow B)$ , where $S_{1_{A},1_{B}}$ is the inverse
semigroup obtained from $S$ by adjoining new idempotents $1_{A}$ and $1_{B}$ , in such a way that $A\cup\{1_{A}\}$

and $B\cup$ {I $B$ } are inverse monoids of $S_{1_{A},1_{B}}$ . As a matter of fact, we shall obtain the following
commutative diagram

$S$ $arrow\mu$ $S[\phi : Aarrow B]$

$\nu\downarrow$ $\downarrow\eta$

$S_{1_{A\prime}1_{B}}\vec{\xi}S_{1_{A},1_{B}}$
$(\phi:A\cup\{1_{A}\}arrow B\cup\{1_{B}\})$ ,

where each homomorphism is an embeddings. In fact, the mapping $\eta$ is defined by

$\eta(x)=\{$
$x$ if $x\in S$ ,
$et\phi(e)$ if $x=t_{e}$ .

(2.2)

Because $\eta$ is an embedding, $S[\phi : Aarrow B]$ can be considered as a subsemigroup of $S_{1_{A},1_{B}}(\phi$ :
$A\cup\{1_{A}\}arrow B\cup\{1_{B}\})$ .
Theorem 2.1 S is naturally embedded into $S[\phi:$ A $arrow B]$ .
Theorem 2.2 (Main theorem) The homomorphism $\eta$ given by (2.2) is an embedding of $S[\phi$ :
$Aarrow B]$ into $S_{1_{A},1_{B}}$ $(\phi:Aarrow B)$ .

It seems hard to prove this theorem by a linear method and so we employ automaton theoretic
methods using geometry of Schiitzenberger graphs
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3 Schiitzenberger graphs and automata

3.1 Schiitzenberger graphs

Let $S$ be an inverse semigroup and $\mathrm{X}$ the set of generators of $S$ . The Schiitzenberger graph
$\mathrm{S}\Gamma(S, \mathrm{X}, u)$ for the word $u$ is given by

Vert $(\mathrm{S}\Gamma(S, \mathrm{X}, u))$ $=\{s|s\in S, s\mathcal{R}u\}$ ,
Edge(SI ($S$, $\mathrm{X}$ , $u$ )) $=\{(s_{1}, x, s_{2})|s_{1}x=s_{2}, s_{1}R s_{2}\mathcal{R}u, s_{1}, s_{2}\in S, x\in \mathrm{X}\cup \mathrm{X}^{-1}\}$ .

The initial and terminal vertex are given by

$\alpha(s_{1}, x, s_{2})=s_{1}$ , $\omega(s_{1}, x, s_{2})=s_{2}$ .

Even in the case that $x=x^{-1}$ in $S$ , we distinguish the edges labeled by $ and $x^{-1}$ . The
Schiitzenberger graph $\mathrm{S}\Gamma(S, \mathrm{X}, u)$ for the word $u$ is denoted by $\mathrm{S}\Gamma(u)$ if the presentation is un-
derstood.

Suppose that $A$ is an automaton with input alphabet $X\cup X^{-1}$ . We say that $A$ is an inverse word
automaton if the tansition is consistent with the involution $xarrow x^{-1}$ , that is, if $q_{1x}q\circarrow\circ^{2}$

is an edge in
$A$ , then so is $qq_{2}\circ^{1\underline{x^{-1}}}\circ$ . We can regard $\mathrm{S}\Gamma(u)$ as an inverse word automaton. The initial and terminal
state of the automaton $\mathrm{S}\Gamma(u)$ are $ss^{-1}$ and $s$ , respectively. We call $\mathrm{S}\Gamma(u)$ the Schiitzenberger
automaton.

We define a morphism of inverse word automata. Suppose that $A$ and $B$ are inverse word
automata with input alphabets $X_{1}\mathrm{U}$ $X_{1}^{-1}$ and $X_{2}\cup X_{2}^{-1}$ , respectively. We identify automata and
their transition graphs, respectively. Suppose that $\tau$ is a mapping of $X_{1}$ into $X_{2}$ . A graph morphism

4of $A$ and $B$ is called a morphism of inverse word automata with $\tau$ if 4 maps an edge $q_{1}xq_{2}\mapsto \mathrm{f}\mathrm{f}\mathrm{i}$ in $A$

$\xi(q_{1}\}(x\mathrm{f}^{(q_{2})}$

to 0–, $\circ$ in $B$ and 4 maps the initial and final states of $A$ to those of N. If $\tau$ is a mapping of
$X_{1}$ into $X_{2}$ and $w$ is a word $x_{1}x_{2}\cdots$ $x_{n}$ on $X_{1}\cup X_{1}^{-1}$ , then we denote the word $\tau(x[perp])\tau(x_{2})\cdots$ $\tau(x_{n})$

simply by $\tau(w)$ .

Lemma 3.1 ([7]) For each word u the language accepted by the Schiitzenberger automaton $S\Gamma(u)$

is given by
$\mathrm{L}(\mathrm{S}\mathrm{T}(\mathrm{u}))=u\uparrow=$ { $w|u\leq w$ in $S$}.

The words $u$ and $w$ reprent the same element in $S$ if and only if $u\uparrow=w$ $\uparrow \mathrm{i}f$ and only if the
Sch\"utzenberger automata of $u$ and $w$ accept the same languages.

3.2 Automata production

In [7] the construction of Schiitzenberger graph from Munn tree [6] is given. There are two opera-
tions for the automata production process; expansions and reductions. Suppose that we are given
an inverese semigroup presenation $\mathrm{l}\mathrm{n}\mathrm{v}(\mathrm{X} |R)$ , where $R$ is a set of defining relations. We consider
inverse word automata whose input alphabets are $X\cup X^{-1}$ .

Expansions. Given an automaton A, an expansion B of A is obtained as follows. Suppose that
there is a path form the state $q_{1}$ to $q_{2}$ labeled by the word $r_{1\}}$ where $r_{1}=r_{2}$ is a defining relation
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belonging to $R$ , and there is no path from $q_{1}$ to $q_{2}$ labeled by $r_{2}$ . Now $B$ is obtained from A by
adding a new path from $q_{1}$ to $q_{2}$ labeled by $r_{2}$ . The automaton $B$ is called an expansion of $A$ .

Reductions. Given an automaton $A$ , an expansion $B$ of $A$ is obtained as follows. Suppose that
in $A$ there are two edges $qarrow q_{1}$ and $qarrow q_{2}$ labeled by the same letter $x$ . The new automaton is
obtained from A by identifying these edges. Note that the states $q_{1}$ and $q_{2}$ are identified in $B$ . The
automaton $B$ is called a reduction of A.

Schiitzenberger automaton We review the construction of automata $A_{x}(u)$ $(\mathrm{i}=1,2,3, \ldots)$ and
$B_{i}(u)$ $(\mathrm{i}=0,1, 2, \ldots)$ in general. The automaton BBq (u) is the linear automaton of the word $u$ , that
is, Bq(u) is the linear automaton reading the word $u$ . Suppose $u$ is the word SIS2 $\cdots s_{k}$ . Then the
linear automaton $B_{0}(u)$ is represented by

$\mapsto 0arrow 0arrow 0arrow\downarrow s_{1}s_{2}s_{3}s_{4}$ . . . $\mathrm{o}\mathrm{o}\underline{s_{k}}\uparrow$ . (3.1)

The automaton $A_{1}(u)$ is obtained from $B_{0}(u)$ applying finite sequence of reductions until no more
reductions can be applied. We note that $A_{1}(u)$ is graph isomorphic to the Munn tree for $u$ .

Suppose now that $A_{k}(u)$ has been constructed. We construct an automaton $B_{k}(u)$ by applying
all possible expansions to $A_{k}(u)$ . Clearly only finite number of expansions can be applicable. Then
$A_{k+1}(u)$ is obtained from $B_{k}(u)$ by applying reductions to $B_{k}(u)$ until no more reductions can be
applied. It is shown in [7] that the Schiitzenberger automaton $\mathrm{S}\Gamma(u1$, for $u$ is given by the join
$\mathrm{V}_{k=1}^{\infty}A_{k}(u)$ and $\mathrm{L}\{\mathrm{A}\mathrm{k}\{\mathrm{u}$ )) $\subseteq L(A_{k+1}(u))$ for every $k=0$ , 1, 2, $\ldots$ and

$k=1\cup L(A_{k}(u))\infty=L(S\Gamma(u))=u\uparrow=$ {$w|u\leq w$ in $S$ }. (3.2)

4 Synchronous production of automata

To prove Theorem 2.2, we synchronously construct automata $C_{i}$ $(\eta(u), S_{1_{A},1_{B}}(\phi : Aarrow B))_{\}}N_{i}(u,$ $S[\phi$

$Aarrow B])$ and $N_{i}(\eta(u), S_{1_{A},1_{B}}(\phi : Aarrow B))$ so that these satisfy some desired properties. We start
from the linear automata and use expansions and reductions like the construction in the previous
section.

Let us suppose that $\eta(u)=\eta(w)$ , where $u$ and $w$ are words on the generators of $S[\phi : Aarrow B]$ .
Then we shall show that $u=w$ . Recall that the set of generators of $S[\phi : Aarrow B]$ consists of that
of $S$ and the set of stable letters $\{t_{e}|e\in E(A)\}$ . We introduce the follow ing convension. Let $w$

be a word on the set of generators of $S[\phi : Aarrow B]$ . We denote the word obtained ffom $w$ by
substituting $et_{e}\phi(e)$ for every stable letter $t_{e}$ by

$w(t_{e}arrow et_{e}\phi(e))$ . (4.1)

Likewise, we denote the word obtained &om $w$ by substtituting $et_{d}\phi(e)$ for some stable letters by

$w[t_{e}arrow et_{d}\phi(e)]$ , (4.2)

where $d$ may be any idempotent $d\in E(A)$ . The replacement in $w[t_{e}arrow et_{d}\phi(e)]$ is not necessarily
compatible for each occurence of the stable letter in $w$ . Therefore, $w(t_{e}’arrow et_{e}\phi(e))$ is uniquely
determined, but there are many candidates for $w[t_{e}arrow et_{d}\phi(\mathrm{e})]$ .
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The automaton Afo $(u, S[\phi : Aarrow B])$ is obtained from the automaton $B_{0}(u(t_{e}arrow et_{e}\phi(e)), S_{*A,\phi})$

by making every edge labeled by an idempotent letter a loop. The automaton No $(u, S[\phi : Aarrow B])$

is uniquely determined (and well-defined). By the construction, for any edge $y$ labeled by $t_{e}$ , there
exist loops $y_{1}$ and $y_{2}$ labeled by $e$ and $\phi(e)$ rooted at $\alpha(y)$ and $\omega(y)$ , respectively. The automaton
$\Lambda^{r}0(\eta(u), S_{1_{A},1_{B}}(\phi : Aarrow B))$ is obtained from $B_{0}(\eta(u), S_{1_{A},1_{B}}(\phi : Aarrow B))$ by making every edge
labeled by an idempotent letter a loop. The automaton $N_{0}$ $(\eta(u), S_{1_{A},1_{B}}(\phi : Aarrow B))$ is uniquely
determined (and well-defined). The automata $C_{i}(\eta(u), S_{1_{A},1_{B}}(\phi : Aarrow B))$ , $N_{i}(u, S[\phi : Aarrow B])$

and $N_{i}(\eta(u), S_{1_{A},1_{B}}(\phi:Aarrow B))$ and the morphisms $\rho_{l}$ and $\lambda_{i}$ satisfy the following.

1. Ni $(u, S[\phi : Aarrow \mathrm{B}])$ $\subset \mathrm{L}(\mathrm{S}\mathrm{r}(\mathrm{t}\mathrm{z}, S[\phi : Aarrow \mathrm{J}5]))$ for every $\mathrm{i}=0$ , 1, 2, $\ldots$ , $n$ .
2. There exists a morphism $\rho_{i}$ of $C_{i}(\eta(u), S_{1_{A},1_{B}}(\phi : Aarrow B))$ into $N_{i}(\eta(u), S_{1_{A},1_{B}}(\phi:Aarrow B))$

associating with the identity mapping.

3. There exists a locally surjective morphism $\lambda_{i}$ of 14. $(u, S[\phi : Aarrow B])$ into $N_{i}(\eta(u),$ $S_{1_{A},1_{B}}(\phi$ :
$Aarrow B))$ associated with $\tau$ , where $\tau$ is a mapping of $S\cup\{t_{e}|e\in E(A)\}$ into $S\cup\{t\}$ defined
by $\mathrm{t}(\mathrm{s})=s$ for $s\in S$ and $\tau(t_{e})=t$ for $t_{e}\in E(A)$ .

4. The morphisms $\lambda_{i}$ are bijective on the sets of vertices.

5. In $N_{i}(u, S[\phi:Aarrow B])$ , for any edge $y$ labeled by $t_{e}$ , there exist loops $y_{1}$ and $y_{2}$ labeled by $e$

and $\phi(e)$ rooted at $\alpha(y)$ and $\omega(y)$ , respectively.

6. The morphisms $\lambda_{i}$ and $\rho i$ make the following diagram commutative.

No
$(u, S[\phi\cdot. A\downarrowarrow B])$

$arrow\xi_{0}$

$N_{1}(u, S[\phi.\cdot A\downarrow\lambda_{n}arrow B])$

$arrow\xi_{1}$ . . .

$N_{0}(r’(u), S_{1_{A)}1_{B}}(\phi : Aarrow B))arrow^{l/_{\beta}}\Lambda^{\Gamma_{1}}(\eta(u), S_{1_{A},1_{B}}(\phi : Aarrow B))arrow\nu_{1}$ . . .

$\mathrm{f}$

$\uparrow\rho_{n}$

Co($\eta(u)$ , $S_{1_{A},1_{B}}(\phi$ : A $arrow B)$ ) $arrow^{\mu 0}\mathrm{C}_{1}(\eta(u), S_{1_{A},1_{B}}(\phi : Aarrow B))$
$arrow^{\mu 1}$ . . .

The construction of the automata are intricate and so we do not give the detail of the construc-
tion here. The detail will be given in the full version of the paper.

5 Proof of Main Theorem

Recall that we are assuming $\eta(u)=\eta(w)$ in $S_{1_{A},1_{B}}(\phi : Aarrow B)$ and $\eta(w)$ is accepted by
$C_{n}(\eta(u)\}S_{1_{A},1_{B}}(\phi : Aarrow B))$ . It follows that $\eta(w)$ is accpeted by $N_{n}(\eta(u), S_{1_{A},1_{B}}(\phi : Aarrow B))$ as
well.

Suppose that $A$ and $B$ be automata and $\lambda$ a morphism of $A$ into $B$ . A path yr , $y2$ , $\ldots$ , $y_{n}$ in $A$

is called a lifting of a path $z_{1}$ , $z_{2}$ , $\ldots$ , $z_{n}$ in $B$ by A if $\mathrm{a}(\mathrm{y})=z_{i}$ for every $\mathrm{i}=1$ , 2, $\ldots$ , $n$ . In such

a case, we also say that the path $z_{1}$ , $z_{2}$ , $\ldots$ , $z_{n}$ is lifted up to $y_{1}$ , $y_{2}$ , . . . , $y_{n}$ by $\lambda$ . The proof of the

main theorem is obtained in the succession of the lemmas. The proof of these lemmas are omitted
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Lemma 5.1 If a graph morphism $\lambda$ of A into B is locally surjective and sujective on the set of
vertices, every path in B can be lifted up to A by A.

Lemma 5.2 Suppose that $A$ and $B$ are automata with the input alphabet $A$ and B. Let A be $a$

morphism of $A$ into $B$ associated with $\tau$ : $Aarrow B$ . Suppose that A is locally surjective and bijective
on the set of vertices. If a word $w$ is accepted by $B$ , then there exists a word $w_{1}$ in $\tau^{-1}(w)$ that is
accepted by $A$ .

Lemma 5.3 if $\eta(w)$ is accepted by $N_{n}(\eta(u), S_{1_{A},1_{B}}(\phi:$ A $arrow B))_{f}$ then there exists $w_{2}$ in $\tau^{-1}(\eta(w))$

so that $w_{2}$ is accepted by $N_{n}(u, S[\phi$: A $arrow B])$ .

Lemma 5.4 If $w_{2}$ belongs to $\tau^{-1}(\eta(w))$ , then $w_{2}$ is expressed as $w[t_{e}\Rightarrow et_{d}\phi(e)]$ .

Lemma 5.5 For every $\mathrm{i}=1,2,3$ , $\ldots$ , $n$ , toe have $L(N_{i}(u, S_{*A,\phi}))\subseteq L(S\Gamma(u, S_{*A,\phi}))$ .

Lemma 5.6 If $w[t_{e}\Rightarrow etd\phi(e)]$ is accepted by $S\Gamma(u, S_{*A,\phi})$ , then so is $w(t_{e}\Rightarrow et_{e}\phi(e))$ .

Proof of Theorem 2.2, Recall that we are assuming $\eta(u)=\eta(w)$ in $S_{1_{A},1_{B}}(\phi : Aarrow B)$ . Then
$\eta(w)$ is accepted by $\mathrm{S}\Gamma(\eta(u), S_{1_{A},1_{B}}(\phi : Aarrow B))$ by Lemma 3.1. We note that the morphism
$\lambda_{n}$ of $N_{n}(u, S_{*A,\phi})$ into $\Lambda_{n}^{\Gamma}(\eta(u), S_{1_{A},1_{B}}(\phi : Aarrow B))$ . By Lemmas 5.3, 5.4, 5.5, a certain word
$w[t_{e}\Rightarrow et_{d}\phi(e)]$ is accepted by $\mathrm{S}\Gamma(u, S_{*A,\phi})$ . By Lemma 5.6, the word $w(t_{e}\Rightarrow et_{e}\phi(e))$ is also
accepted by $\mathrm{S}\Gamma(u, S_{*A,\phi})$ . On the other hand, $w(t_{e}\Rightarrow et_{e}\phi(e))$ represents the element represented
by $w$ in $S[\phi:Aarrow B]$ . This implies $w$ is accepted by $\mathrm{S}\mathrm{F}(\mathrm{u}, S_{*A,\phi})$ as well.

Similarly, it is shown that $u$ is accepted by $\mathrm{S}\Gamma(w, S_{*A,\phi})$ . Therefore, we have $\mathrm{L}(\mathrm{S}\mathrm{F}(\mathrm{u}, S_{*A,\phi}))=$

$L(\mathrm{S}\Gamma(w, S_{*A,\phi}))$ and so $u$ and $w$ represent the same element in $S_{*A,\phi}$ . Consequently, $\eta$ is an
embedding. 0
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