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1 Introduction

Many researchers are working in the area of sequential estimation in the
two-sample exponential case. To cite some recent works, Mukhopadhyay and
Chattopadhyay [4] considered the sequential estimation of the difference be-
tween means. Sen [5] treated a sequential comparison of two exponential distri-
butions. Uno [6] provided second-order approximations of the expected sample
size and the risk of the sequential procedure for the ratio parameter § = o7 /0.
Tsogai and Futschik [2] dealt with the same parameter 0, using bounded risk es-
timation. Lim, et al. [3], investigated the construction of sequential confidence
intervals for positive functions of the scale parameters. In this paper, we will
use the results of Lim, et al. [3] for the function A(oy,03) = (01/02)",m # 0.
More specifically for the cases when r =1 and r = 2.

Let A(z,y) be a positive, real-valued and three-times continuously differen-
tiable function defined on R% = (0, +00) x (0, +00) with h; = Zh, hy = «%h
and h%(z,y) + R2(z,y) > 0 on RZ.

Let X1, X3, --- and Y1, Y3, - -+ be independent observations from two expo-
nential populations I1; and II,, respectively, with their corresponding densities
given as follows:

fi(e) = o exp(—a /o) I(e > 0) and  faly) = o3 - exp(~y/os) [(y > 0),

where the scale parameters oy > 0 and o > 0 are both unknown and I{-)
stands for the indicator function of (-). Taking samples of size n from II; and
II,, we estimate 8 = h(oy,02) by

A — —

b, = h(X,,Y2),
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TP | o =1 ~
where X, =n P, Xiand Y, =n rLY.

Given d > 0 and o € (0, 1), we want to construct a confidence interval I, for
6 = h{oy,02) with length 2d and coverage probability 1 — a, based on samples
of size n, {Xy, ---, X} and {Y3, ---, Yo}, from II; and Iz, respectively.

Throughout the paper, we shall assume that ‘—(£—>’, <Py and ‘=2 stand
for convergence in distribution, convergence in probability and almost sure
convergence, respectively.

Let us look at the succeeding result which gives the asymptotic distribution
of 0, = h(X,,Y,). This result provides the asymptotic normality of Vn(0,—8).

Proposition 1. ([3]) Let a function g on R% be defined by

gz, y) = hi(z,y)z’ + hiz,y)y*
Then )
vn(6, — 6) 25 N(0,g(o1,05)) asn — .

Foragivend >0and 0 <a<1,let I, = [én —d, 0, + d] be a confidence
interval for § with length 2d. This interval [, must satisfy

P{9el)y=P{l,—0<d}>1-a. (1)

Choose @ = a, > 0 such that ®(a) = 1 — &/2, where & is the standard normal
distribution function. Set
* a2
nt = E,;g(al,az). (2)

Then it follows from Proposition 1 that for all n > n”,
P{o € 1} = P{|vilb, — 0)/VValov, 02)| < v/ V/slor, )}
> P {l\/ﬁ(én — )/ g(o1,09)| < a} ~l—-a

if n* is sufficiently large. For simplicity, assume n* to be an integer. Then n* is
the asymptotically smallest sample size which approximately satisfies equation

(1).

2 Main Results

In this section, we will propose a sequential procedure and give its asymp-
totic properties. We have seen from the previous section that n* in (2) is the
asymptotically smallest sample size. Now, since oy and o3 are unknown, then
n* is also unknown. It is known that fixed sample size procedures are not
available for scale families. Thus, we propose the following stopping rule:

: 2
N = N, =inf {n >m:n> %g(f(n,?n)} , (3)



where m > 2 is the initial sample size. Then in view of the SLLN and the
definition of Ny, we can show the lemma below.

Lemma 1. ([3])
(1) P{Nj< +o0}=1 foreachd>0.
(1) Ny~ 400 asd— 0.
(2i7) Ny/n* 2251 asd—0.
The following proposition gives the asymptotic normality of vN(fy — 6)

which will play the important role in showing the asymptotic consistency of
the sequential confidence intervals {Iy}.

Proposition 2. ([3]) Asd—0,
VN~ 6) = N (0, 9(01,52)),

where ,
g(a'lao'z) = 52(01702)03 + 55(01;72)022-

Once sampling is stopped after taking N observations from populations II;
and II,, respectively, we use the confidence interval Iy = [éN~— d, On +d ] for 6.
The next result shows the asymptotic consistency of the sequential confidence
intervals {Iy}.

Theorem 1. {[3]) [Asymptotic Consistency]

imP{feclIy}=1-a.
d—0

Throughout the remainder of this section, we let
Ui=(Xi—0o1)/o1, Vi=Yi—03)/oy and X;=(U;,V;) fori=12,---.
Consider also the following notations:
A= \/ﬁ()—(n —o1)/o1, Dop = (Y, — oq)/ 02,

Dn = nU’n = ZUZ = 'n'(Xn - 01)/31 = '\Ezlfm

i=1
Qn - nVn - ZV; - n(Yn - 0-2)/0'2 - ‘\/77Z2n:
i=1

gz(o'lao.Z) gy(gla JZ))
L gyt
9(01,02) 9(‘71702)

S, =(D,,Qn) and c= <~al
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Define the function f on R% as f(z,y) = g(ay,02)/9(z,y). Since g is
positive and continuous on R2, so is f. Then the stopping time N in (3) can
be written as

N =inf{n >m:Z, 2 n"}, (4)
where
Zp = nf(Xn, ¥o) =1 — Uiml)n _ UQQ_?!(;'I_’_J?_).QH 6, (3)
9(61702) 9(61702)

1
fn = '2" {Ulzfxx(nlyn2)z12n + 2‘7102fwy(771a UZ)Zan%z + C"‘Znyy(m?nZ)Zan} ?

m and 7 are random variables satisfying |n — o] < | X, — o1} and |z — 02| <
Y, — 5|. In the notations of Aras and Woodroofe [1], we can rewrite (5) as

Zn =n-+ <C, Sn> '{"gna
where (-, -) denotes inner product. Let

_ B{(T + (e, S1))*}
QE{T + <C, ST>} '

T=inf{n>1:n+(c, S,) >0} and (6)

Consider the following assumptions:

473
(A1) { 1:<Zn - ;) } > m} is uniformly integrable for some 0 < ¢ < 1,
0

where z+ = max(«,0).

(A2) Z nP{{, < —en} < oo for some 0 < ¢ < L.

The following theorem gives the second-order approximation of the ex-
pected sample size E(N).

Theorem 2. ([3]) If (A1) and (A2) hold, then
E(N)=n"+p—-v+o(l) asd—0,

where
v = {0t fas(01,02) + 03 fyy(01,02) } /2
and p in (6) satisfies
0<p<{l+{c, c)}/2.
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3 Example

We consider the estimation of the rth power of the ratio of two scale pa-
rameters, namely, § = h{oy,02) = (01/02)" for r # 0. Theorem 3 that follows,
gives the expected sample size of the sequential procedure for the given func-
tion 8.

Theorem 3. If m > max{l, 6|r|}, then
E(N)=n*4+p—4rt+o(l) asd—0,
where p in (6) satisfies

0< o< 1+ 8r?
p 2 *
Proof. For this function, the stopping random variable N in (4) can be written
as
N = inf{n>m: 2, >n"},
where
Zpn=n—2r(Dyp—Qn)+& (7)
and :
2r 2 2
c — rg? <1’E> { o+ 1)z —4p 227 7 (2 —1 "izzn},
¢ L5 ( )?712 ! mre e ( )7722 :

my and 73 are random variables satisfying Im —o1] < | X, —o1] and |y — 09| <
|Y,, — 03]. In the notations of Aras and Woodroofe [1], we can rewrite (7) as

Zn=n+{e, Su) + &,

where ¢ = (—2r,2r). In order to use Theorem 2 to determine the expected
sample size, we need to satisfy conditions (Al) and (A2) of the theorem. Let
u>1and v > 1 be such that u=' +v~! =1 and M a generic positive constant.

To prove (Al), it suffices to show that
sup £ { [(Z. — n/60)+]3} < oo.

n>m

Now

(Z, —nfe)t =n { [(V, + 1)/ (T + 1)) = 651} o>}
Thus,

b {[(Z” —n/ €°)+]3} sk { (Ve + /(0 + D] I{[Wn+1>/<r7n+1)]2’“>e;l}}
<n’E {[(Vn + 1)/([7n + 1)]6r [{[(Vn+1)/(m+1)]”>e;‘,ﬁn+1<1—eo}}

=, - 6r
+n’E { (Ve +1)/(Ua +1)] I{{(Vn+1)/(t7n+1)]2’">e;1,(7n+121—50}}

= Ki(n) + Kz(n), say.
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By the independence of U, and V,, and by Holder’s Inequality, we have K;{n) <
n*E(V, + 1) {E(U, + 1)-6 3 L P(|T,) > ¢0)}'”. By Lemma 1 of Uno [6],
E(V, + 1)* < M and E(U,+1)%* < Mforn>m> 6|r|u. By Markov’s
Inequality, P(|U,] > &) < (ne) ?E|D,|? for ¢ > 2. But by Marcinkiewicz-
Zygmund Inequality, E|D,|* = O(n%/?) as n — oco. Thus, it follows that
Ki(n) < Mn®>9/* for n > m > 6[rJu. Since m > 6ir|, we can choose u > 1
such that m > 6|rlu. Then choose ¢ > max{2, 25}. Thus, 3 —¢/2v <0
which shows that sup,s, Ki(n) < co. Let & = V(1 —¢)>1andr >0
for small 0 < €5 < 1. Then :

{[(Vn L)/ + D] >t Tat1>1- eg} C{Vu+1>5}.
It follows that for » > 0,
Ky(n) <nP(l— &)™ E {(Vn + 1)6’-I{Vn+125}}

< n3(1 - Eo)npsr {E(Vn + I)Bru}llu {P(Vn 1> 5)}
< (1 @) {E(V, + D} (POl 26 - D),

1fv

where L + 1 =1 and v > 1. Thus, in the same way as Ki(n), sup,s.,, Ka(n) <
oo for m > 6r. For r < 0, by similar arguments as above, sup,>, Ks(n) < o
for m > 6|r|. This completes the proof of (Al).

By Taylor’s Theorem,
(vn+ 1)2r([_]n + 1)_-27‘
_ (1 2V, 4 r(2r — 1)¢§(’“”V§) (12T, +r(2r + 1)¢;2(’+”Uj) ,

where qb'i and @, are positive random variables between (U, + 1) and 1, and
(Vi + 1) and 1, respectively. Thus, it follows from (7) that

by =Zn—n+2(Dp— Qu)=n (Vo + V" (Un + 1) =14 2r(Un = V)]
—n [_4r2z7nvn +r(2r + D) 202 4 202 (2r + 1) ;2<’"+1)U;Vn}
+n [r(2r = DIV — 20 2r - 1)) TI0Y;
+ r(dr? = 1) VGV

Thus, setting €3 = ¢;1/6 for 0 < ¢ < 1, we have
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P{gn < —61?7,}

< P{4r*0.V,] > e} + P {|r(2r + 1)¢7 002

>eap+ P
o)
o)

+ P {|rart - ) gy

6

= Z I;(n), say.

=1

> 62}

+ P { 2r%(2r + 1)¢;‘2"“+”I73Vn r(2r — Dgtr=0y2

> 62}

+ P { 2r¥(2r — 1)¢§(T‘1)Un17,3

By the independence of U, and V.., and by Marcinkiewicz-Zygmund Inequality,
E{|D.Q.|"} = E{|D."} E{|Q.]"} < Mn?, for ¢ > 2. Thus, by Markov’s
Inequality,

Lin) = P {4r|D,@u| > n*e} < Mn™E {|D,QuI'} < Mn™?.

Now, since ¢, is a random variable between 1 and U, + 1, then ¢; > 1/2 on
the set {lUn[ < 1/4}. Thus, for r +1 > 0, we have

L(n) <P {M \qs;“’"“)af > e, |U,] < 1/4} + P{|U.] >1/4}
< P{M(1/2)73 (120 |U,| > e} + P {|Ua] > 1/4}
< P{|U.] > M} + Mn9? < Mn™92

In a similar way, we get

Iy(n) < P {M S22y | 6 (0] < 1/4} + P{|U,] > 1/4}
< P{|0 V] > M} + M2
< Mn 2E{|DnQ,|"} + Mn~%? < Mn=2.

Suppose that 7 +1 < 0. Then it follows by convexity and Lemma 1 of Uno 6]
that for any ¢ > 2

E {¢;4(T+1)9} <1+ E [(Un n 1)*‘*(?‘“)@] < M.

Thus, i T
h(n) < ME {7} T E{|0.["} T < M7, (8)
From (8), we obtain
Ln) < ME{ g2 0027, "} = M {60002 ) E {1

< Mn™n~? < Mn~92.



38

Thus, from the above relations, I;(n) < Mn~92 for { = 1,2, 3. Hence, taking
q =6, we have 3 00 nli{n) < ocofori=1,2,3. By similar arguments, we can
show that 2% nl;(n) < oo for i = 4,5,6. Therefore, (A2) is satisfied. Now,
v = 4r2. Hence, it follows from Theorem 2 that for m > max{l, 6|},

E(N)=n"+4+p—4r’+o(l) asd—0,
where 0 < p < (1 +8r?)/2. This completes the proof. 0O

To illustrate these results, let us consider two cases. For the case when r =1,
we consider two stopping rules; N in (3) and N* given in Isogai and Futschik
[2], and compare the coverage probabilities of the sequential confidence inter-
vals, corresponding to N and N*. The stopping rule N becomes

5, 2372
N:Nd:inf{an: RZZCL—);,R}
2y,

Then, letting L(n) = 1 and replacing w by d*/a*, N in (4) is the same as
N,, in Isogai and Futschik [2] who also showed that (Al) and (A2) bold with
m > 6 and ¢ = (=2, 2). Thus, it follows from Theorem 2 that

E(Ny=n"+p—4+0(1) and 0<p<9/2

By simulation, we can get p = 2.03. Thus, taking this p into account, we
consider another stopping rule:

QaZYi
427

N*:N;:inf{nzm:n>l}(n) } WhereL(n):1+1_‘9_Z_
n

From Theorem 2.1 of Isogai and Futschik [2], if m > 6 then E(N*) = n*+o(1)
as d — 0.

Now, from Proposition 2.1 of Isogai and Futschik [2] if m > 12, then

Blly) ~ 0= —

+ o(dz) as d — 0.

av/2n*

From this result, we propose the following bias-corrected sequential confidence
intervals:

IIE:[é}V_da é}\f'}"dl and IL,:[@}V*_.d7 éT*_*_d]’

where 81, =0y + (3d)/(av2N) and 6. =8y~ + (3d)/(aV2N7).

For the case when r = 2, the stopping rule in (3) becomes

g
N=N;=mf{n>m: nzsaff )
d¥Y




and by Theorem 3, for m > 12, the expected sample size is
E(N)=n"4+p—16+0(1) and 0<p<33/2.

Now, by simulation using 100,000 repetitions, we can get p = 4.02. Considering
this value for p, we propose another stopping rule as follows:

L 8a*X 11.98
N :Nd:mf{an: nZL(n)dz?i}, L(n)ml—(——n—.

Simulation Results.  We shall give simulation results for the case when
(01,09) = (2, 1). The coverage probability is set at 1 — a = 0.95 and the pilot
sample size at m = 13. The following results are based on 10,000 repetitions.

Table 1.1 Using N (r=1) =2
n* 20 100 200 500 1000
d 1.239588 0.554360 0.391992 0.247918 0.175304
E(N) 91.4789 96.7799 197.5324 497.2630 995.8871
E(y) 1.865092 1.917183 1.965773 1.986306 1.991834
E(0Y) 92172344 1.981733 1.996558 1.998415 1.997865
P(b e Iy) 0.9864  0.9079  0.9361  0.9477  0.9485
P(6 e I}) 0.9878  0.9241  0.9444  0.9501  0.9518

Table 1.2. Using N* (r=1) 0=2
n* 20 100 200 500 1000
d 1.239588 0.554360 0.391992 0.247918  0.175304
E(N7) 207216 OR.7350 199.7856 499.7327 1000.3485
E(fy-) 1.860984 1.920277 1.967711 1.987303  1.994298
E(0%) 2.160043 1.983678 1.998279 1.999382  2.000316
P(0 € In+) 0.9881  0.9122  0.9360  0.9460 0.9478
P(6 € I.) 0.0883  0.9271  0.9437  0.9476 0.9509

Table 2.1. Using N (r=2) 6#=4
n* 20 100 200 500 1000
d 4.958350 2.217442 1.567968 0.991670 0.701217
E(N) 93.7237  83.0451 173.9840 475.8522 980.8059
E(fy) 3.489305 3.288380 3.492996 3.812448 3.924260
P(6e Iy) 0.0992  0.8055  0.8122  0.8973  0.9298
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Table 2.2 Using N* (r=2) 0=4

n* 20 100 200 500 1000
d 4.958350 2.217442 1.567968 0.991670 0.701217
E(N%) 59.0472  98.0366 192.7931 493.2553 996.6286
E(fn+) 3.448231 3.438694 3.623196 3.853191 3.939215
P(6 € Iy) 0.9994  0.8556  0.8657  0.9184  0.9378

The tables show that the rate of convergence of the coverage probability
P(6 € Iy) to 1 — a seems to be slow. For the case when r = 1, the bias-
corrected sequential confidence intervals, I;:, and I}L\,-., are more effective than
the ordinary ones, [y and Iy«. Furthermore, there seems to be no significant
difference between the coverage probabilities of the intervals, Iy and Iys. An
improvement on the stopping rule in (4) is needed.
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