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1 Introduction
This is a survey of the preprint [Od], We study the Grothendieck (character) rings of the
Drinfel’d double of a finite group $G$ over the complex field C. Witherspoon studied the
representation rings of the Drinfel’d double of the group algebra in positive characteristic
[Wi96]. In particular, she gave a direct sum decomposition of the representation ring into
ideals involving Green rings of subgroups by using Thevenaz’ twin functor construction
for Green functors [Th88]. Dress introduced how to construct a Mackey functor $\lambda I_{\Gamma}$ from
a Mackey functor $M$ by simply setting $M_{\Gamma}(X)$ $:=M(X\rangle\langle\Gamma)$ for all finite G-set $X$ when $\Gamma$

is a finite G-set [Dr73]. This construction for Mackey functors is called Dress construction.
Bouc introduced the Dress construction for a Green functor ( $[\mathrm{B}\mathrm{o}03\mathrm{a}]$ Theorem 5.1); If
$A$ is a Green functor for $G$ over a commutative ring $\mathcal{O}$ , and $\Gamma$ is a crossed G-monoid,
then the Mackey functor $A_{\Gamma}$ obtained by the Dress construction has a natural structure
of Green functor, and its evaluation $A_{\Gamma}(G)$ is an $\mathcal{O}$-algebra. The Bouc’s construction
involves as special cases the construction of the crossed Burnside ring obtained from the
Burnside ring Green functor, the Hochschild cohomology ring of $G$ obtained from the
group cohomology Green functor, and the Grothendieck ring of the Drinfel’d double of $G$

obtained from the Grothendieck ring Green functor for a group algebra. We also point
out that Bouc’s construction is discussed in [Wi04]. In this note, we show an induction
theorem for Drinfel’d double for $G$ by using a formula of primitive idempotents of the
crossed Burnside ring [OYOI], Bouc’s construction, and some properties of Witherspoon’s
Green functor $R(D_{G}(*))$ . The theorem implies Artin induction theorem for a group
algebra over C. This is a new proof of Artin induction theorem.

We refer the reader to [Bo97], [BoOO], [TW95] or [WeOO] for standard definitions and
results regarding Burnside rings and Green functors, and to $[\mathrm{B}\mathrm{o}03\mathrm{a}]$ , $[\mathrm{B}\mathrm{o}03\mathrm{b}]$ , [GYOI],
and [OY04] for basic results about crossed $G$-sets and crossed Burnside rings.

2 Results

(2.1) Burnside Green functors. We recall the crossed Burnside ring Green functor
$X\Omega$ ( $*$ , Gc) in terms of subgroups of $G$ (see 4.1 of [OY04]). Let $S(H)$ be the family of all
subgroups of $H\leq G$ and $C_{G}(D)$ a centralizer of $D\leq H$ . Then the assignment

$H(\leq G)-X\Omega(H, G^{c})=\langle(H/D)_{s}|D\in[H\backslash S(H)]s\in[H\backslash C_{G}(D)]\rangle_{\mathbb{Z}}$
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gives a Green functor for $G$ over $\mathbb{Z}$ equipped with

$\mathrm{i}\mathrm{n}\mathrm{d}_{L}^{H}$ : $X\Omega(L, G^{c})--+X\Omega(H, G^{c})$ : $(L/D)_{s}-(H/D)_{s}$ ,
$\mathrm{r}\mathrm{e}\mathrm{s}_{L}^{H}$ : $X\Omega(H, G^{c})-X\Omega(L, G^{\mathrm{c}})$ :

$(H/D)_{s}- \sum_{g\in[L\backslash H/D]}(L/L\cap^{\mathit{9}}D)_{g_{S}}$
,

$\mathrm{c}o\mathrm{n}_{H,g}$ : $X\Omega(H, G^{\mathrm{c}})arrow X\Omega(^{\mathit{9}}H, G^{c})$ : $(H/D)_{s}rightarrow(^{g}H/gD)_{g}s$ ,

where $D\leq L\leq H\leq G$ and $g\in G$ .

(2.2) Witherspoon’s Green functor. Witherspoon gave a Green functor $R_{\mathbb{C}}(D_{G}(*))$

for $G$ over $\mathbb{Z}$ (see [Wi96] Section 5). For each subgroup $H$ of $G$ , there is a subalgebra

$D_{G}(H)= \sum_{g\in G,h\in H}\mathbb{C}\phi_{g}h$

of Drinfel’d (quantum) double $D(G)$ of $\mathbb{C}G$ [Dr86], where $\phi_{g}$ is an element of the ba-
sis $\{\phi_{g}\}_{g\in G}$ of the dual space (CG)’ $=\mathrm{H}\mathrm{o}\mathrm{m}_{\mathbb{C}}(\mathbb{C}G, \mathbb{C})$ . Note that $D_{G}(G)=D(G)$ and
$R(D(G))$ is the representation ring of $D(G)$ or equivalentary the Grothendieck ring of
Hopf bimodules for the Hopf algebra $\mathbb{C}G$ ([?], $[\mathrm{B}\mathrm{o}03\mathrm{a}]$ , [OY04]). Let $R_{\mathbb{C}}(D_{G}(H))$ be the
Grothendieck (representation) ring of $D_{G}(H)$ for subgroup $H$ of $G$ . Then the assignment

$H(\leq G)-R_{\mathbb{C}}(D_{G}(H))$

gives a Green functor for $G$ over $\mathbb{Z}$ equipped with

$\mathrm{D}\mathrm{r}\mathrm{e}\mathrm{s}_{L}^{H}$ : $R_{\mathbb{C}}(D_{G}(H))$ $arrow$ Rc $(\mathrm{D}\mathrm{G}(\mathrm{L}))$ : $U$ $-U\downarrow D_{G}(L)$ ,
$\mathrm{D}\mathrm{i}\mathrm{n}\mathrm{d}_{L}^{H}$ : $R_{\mathbb{C}}(D_{G}(L))$ $arrow$ $\mathrm{R}\mathrm{C}\{\mathrm{D}\mathrm{G}\{\mathrm{H}$)) : $V$ $\mapsto D_{G}(H)\otimes_{D_{G}(L)}V$,
Dconj $H,g$ : $R_{\mathbb{C}}(D_{G}(H))$ $arrow$ $R_{\mathbb{C}}(D_{G}(^{g}H))$ : $U$ $-\mathit{9}U$ $=gD_{G}(H)\otimes_{D_{G}(H\rangle}U$,

where $U\downarrow D_{G}(L)$ is a $DG(H)$ -module by restriction of the action from $D_{G}(H)$ to $D_{G}(L)$ ,
$L\leq H\leq G$ and $g\in G$ . We use the equivalence of the category of $H$ vector bundle on $G^{c}$

vith the category of $D_{G}(H)$ -modules (see [Wi96] Section 2).
The following theorem obtained by Bouc is the essential tool of the proof of our

theorem.

(2.3) Theorem. $([\mathrm{B}\mathrm{o}03\mathrm{a}]5.1)$ Let $A$ be a Green functor for $G$ over a comrmutative ring
$\mathcal{O}$ and $\Gamma$ a crossed $G$ -monoid. Then the functor $A_{\Gamma}$ is a Green functor for $G$ over 0,
with unit $\epsilon_{A_{\Gamma}}$ . Moreover the correspondence $A\vdash+A_{\Gamma}$ is an endo-functor of the category
of Green functor for $G$ over 0.

(2.4) Sub-Green functors. There is a sub-Green functor $X\Omega(*, G^{c})_{1}$ which assigns to
each subgroup $H$ of $G$ to a subring $\mathrm{X}\mathrm{Q}(\mathrm{H}, G^{\mathrm{c}})_{1}$ of $\mathrm{X}\mathrm{Q}(\mathrm{H}, G^{\mathrm{c}})$ generated by the elements
$(H/L)_{1_{G}}$ . There is also a sub-Green functor $R_{\mathbb{C}}(D_{G}(*)_{1})$ which assigns to each subgroup $H$

of $G$ to a subring $R_{\mathbb{C}}(D_{G}(H)_{1})$ of $R_{\mathbb{C}}(D_{G}(H))$ generated by $\mathrm{I}\mathrm{n}\mathrm{c}1_{H,1_{\mathrm{G}}}$ $(V)’s$ , where $\mathrm{I}\mathrm{n}\mathrm{c}1_{H,1_{G}}$

is a functor embedding the category of $\mathbb{C}H$-modules as a full subcategory of the category
of $D_{G}(H)$ -module (see, [Wi96] Section 1) and $V$ is a $\mathbb{C}H$-moduie. It is easy to see that
$X\Omega(H, G^{c})_{1}$ is isomorphic to the Burnside ring $\Omega(H)$ and $R_{\mathbb{C}}(D_{G}(H)_{1})$ is isomorphic to
the ordinary character ring $R_{\mathbb{C}}(H)$ . The homomorphism $9\mathrm{G}\mathrm{c}$ is the natural ring
homomorphism from $\mathrm{Q}(\mathrm{H})$ to $R_{\mathbb{C}}(H)$ .

The proof of the following theorem is an analogue of Theorem 3.5.2 of [BoOO]
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(2.5) Theorem. Let G be a finite group. Then

$\mathbb{C}R_{\mathbb{C}}(D(G))=\sum_{H\in \mathrm{C}(G)}\mathrm{D}\mathrm{i}\mathrm{n}\mathrm{d}_{H}^{G}\mathbb{C}R_{\mathbb{C}}(D_{G}(H))$
,

where $\mathrm{C}(G)$ is the family of cyclic subgroups of $G$ .

The previous theorem and (2.4) show the following corollary.

(2.6) Corollary (Artin). Let G be a finite group. Then

$\mathbb{Q}R_{\mathbb{C}}(G)=\sum_{H\in C(G)}\mathrm{I}\mathrm{n}\mathrm{d}_{H}^{G}\mathbb{Q}R_{\mathbb{C}}(H)$
.
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