On Strongly Closed Subgraphs with Diameter Two and Q-Polynomial Property

国際基督教大学・教養学部・理学科 鈴木 寛 (Hiroshi Suzuki) Division of Natraul Sciences, College of Liberal Arts, International Chrisitian University

1 Introduction

Let $\Gamma = (X, R)$ be a distance-regular graph (DRG) of diameter D with vertex set X and edge set R. For vertices x and y, $\partial(x, y)$ denotes the distance between x and y, i.e., the length of a shortest path connecting x and y. For a vertex $u \in X$ and $j \in \{0, 1, \ldots, D\}$, let

 $\Gamma_j(u) = \{x \in X \mid \partial(u, x) = j\}$ and $\Gamma(u) = \Gamma_1(u)$.

For two vertices u and $v \in X$ with $\partial(u, v) = j$ let

$$C(u,v) = \Gamma_{j-1}(u) \cap \Gamma(v),$$

$$A(u,v) = \Gamma_j(u) \cap \Gamma(v), \text{ and }$$

$$B(u,v) = \Gamma_{j+1}(u) \cap \Gamma(v).$$

The cardinalities $c_j = |C(u, v)|$, $a_j = |A(u, v)|$ and $b_j = |B(u, v)|$ depend only on $j = \partial(u, v)$, and they are called the *intersection numbers* of Γ . The number $k = b_0 = |\Gamma(u)|$ is called the *valency* of Γ .

A subset Y of the vertex set X is said to be strongly closed if

 $C(u, v) \cup A(u, v) \subset Y$ for all $u, v \in Y$.

We often identify a subset of X with the induced subgraph on it. In particular, when Y is strongly closed, Y is referred to as a strongly closed subgraph of Γ . A parallelogram of length $j \ge 2$ is a four-vertex configuration (w, x, y, z) such that

$$\begin{array}{lll} \partial(w,x) &=& \partial(y,z) = j-1 = \partial(x,z), \\ \partial(x,y) &=& \partial(z,w) = 1 \ \text{and} \ \partial(w,y) = j. \end{array}$$

A distance-regular graph Γ of diameter D is called a *regular near polygon* if there is no parallelogram of length 2 and that

 $a_i = c_i a_1$ for $i = 1, 2, \dots, D - 1$.

In addition, if $a_D = c_D a_1$, then Γ is called a regular near 2D-gon.

Recently, in [7] P. Terwilliger and C. Weng showed that if θ_1 is the second largest eigenvalue of a regular near polygon with diameter $D \ge 3$, valency k and intersection numbers $a_1 > 0$, $c_2 > 1$, then

$$\theta_1 \le \frac{k - a_1 - c_2}{c_2 - 1}.\tag{1.1}$$

Equality is attained above if and only if Γ is *Q*-polynomial with classical parameters with respect to θ_1 .

Every regular near polygon contains a strongly closed subset Y such that the induced subgraph on Y is strongly regular, i.e., distance-regular of diameter 2. We noticed that the inequality in (1.1) and its equality condition are closely related to the existence of tight vectors that we defined in [4]. In this exposition, we shall explain the relation, apply the theory to parallelogram-free distance-regular graphs, and give a generalization of the results of Terwilliger and Weng above.

2 Terwilliger Algebra and Tight Vectors

Let $\Gamma = (X, R)$ be a distance-regular graph of diameter D. For $i \in \{0, 1, \ldots, D\}$ let A_i denote the *i*-th adjacency matrix in $Mat_X(C)$ whose (x, y)-entry is defined by

$$(A_i)_{x,y} = \begin{cases} 1 & \text{if } \partial(x,y) = i, \\ 0 & \text{otherwise.} \end{cases}$$

Let E_0, E_1, \ldots, E_D be primitive idempotents corresponding to the eigenvalues $\theta_0 > \theta_1 > \cdots > \theta_D$ of A.

Let Y be a nonempty subset of X. $E_i^* = E_i^*(Y) \in \operatorname{Mat}_X(C)$ $(i = 0, 1, \dots, D)$ is defined by

$$(E_i^*)_{x,y} = \begin{cases} 1 & \text{if } x = y \text{ and } \partial(x, Y) = i, \\ 0 & \text{otherwise,} \end{cases}$$

and $E^* = E_0^*$. Then the Terwilliger algebra with respect to Y is a semisimple subalgebra of $Mat_X(C)$ defined by:

$$\mathcal{T} = \mathcal{T}(Y) = \langle A, E_0^*, E_1^*, \dots, E_D^* \rangle.$$

Let $V = \mathbf{C}^X$, and $W = E^*V$. For $x \in X$, let \hat{x} denote the element of V with a 1 in the x-coordinate and 0 in all other coordinates. Then W is the vector subspace of V spanned by the set $\{\hat{y} \mid y \in Y\}$.

Let $w(Y) = \max\{\partial(y, y') \mid y, y' \in Y\}$ denote the width of Y. Then we have the following.

Proposition 1 ([4, Proposition 9.2]) For $0 \neq v \in W$,

$$|\{i \mid i \in \{0, 1, \dots, D\}, E_i v = 0\}| \le w(Y).$$
(2.2)

Now a nonzero vector $v \in W$ is said to be *tight* (with respect to Y), if equality is attained in (2.2), i.e.,

 $|\{i \mid i \in \{0, 1, \dots, D\}, E_i v = 0\}| = w(Y).$

3 Strongly Closed, Strongly Regular Case

In this section, we review a result to guarantee the existence of strongly closed strongly regular subgraph Y, and inequalities related to the existence of tight vectors with respect to Y.

Proposition 2 ([10, Theorem 1], [3, Theorem 1.1]) Let $\Gamma = (X, R)$ be a distance-regular graph of diameter $D \ge 3$. Suppose $b_1 > b_2$ and $a_2 \ne 0$. Then the following are equivalent.

- (i) For every pair of vertices x and y with $\partial(x, y) = 2$, there is a strongly closed subgraph containing x and y of diameter 2.
- (ii) There is no parallelogram of length 2 or 3.

Moreover, if the conditions are satisfied, then strongly closed subgraphs guaranteed to exist are strongly regular.

Let Y be a strongly closed subset of X. Suppose the induced subgraph on Y is strongly regular, i.e., w(Y) = 2.

Set $\overline{A} = E^*AE^*$. Then there are three distinct eigenvalues η_0, η_1, η_2 of A on W, and they satisfy

 $\eta_0 = c_2 + a_2 > \eta_1 > -1 > \eta_2.$

Let $\mathbf{1}_Y$ denote the characteristic vector of Y defined by

$$\mathbf{1}_Y = \sum_{y \in Y} \hat{y} \in W.$$

Let W_0 , W_1 and W_2 be the eigenspaces of \tilde{A} in W corresponding to eigenvalues η_0 , η_1 and η_2 , respectively.

Then $W_0 = \langle \mathbf{1}_Y \rangle$, and

$$W = W_0 \oplus W_1 \oplus W_2.$$

Note that if $\boldsymbol{v} \in W_1 \oplus W_2$, then $E_0 \boldsymbol{v} = \boldsymbol{0}$. Hence an eigenvector \boldsymbol{v} of \tilde{A} in $W_1 \oplus W_2$ is tight if $E_i \boldsymbol{v} = \boldsymbol{0}$ for some i > 0 as w(Y) = 2.

Proposition 3 ([4, Proposition 11.7]) Let $v \in W_j$ (j = 1 or 2) be an eigenvector of \tilde{A} ,

(1) For $i \in \{0, 1, \dots, D\}$,

$$\frac{\|E_i \boldsymbol{v}\|^2}{\|\boldsymbol{v}\|^2} = \frac{m_i (k - \theta_i)((1 + \eta_j)(1 + \theta_i) + b_1)}{k b_1 |X|} \ge 0.$$

(2) The following hold.

$$\theta_1 \leq -1 - \frac{b_1}{1 + \eta_2}, \text{ and } \theta_D \geq -1 - \frac{b_1}{1 + \eta_1}.$$

- (3) The following are equivalent.
 - (a) v is tight.
 - (b) One of the following holds.

(i)
$$\theta_1 = -1 - \frac{b_1}{1 + \eta_2}$$
, or
(ii) $\theta_D = -1 - \frac{b_1}{1 + \eta_1}$.

Proof. The inequality in Proposition 3 (1) can be obtained by simple computation, and both (2) and (3) follow from (1) as $\theta_1 \ge \eta_1 > -1$ and $\theta_D \le \eta_2 < -1$.

Suppose $\Gamma = (X, R)$ is a regular near polygon of diameter $D \ge 3$. Then it is known that Γ does not contain parallelograms of any length. In addition, assume that $a_1 > 0$ and $c_2 > 1$. Then by Proposition 2 there is a strongly closed subset Y such that the induced subgraph on Y is strongly regular. It is called a quad, and it has the following intersection array.

$$\left\{\begin{array}{c} c_i\\ a_i\\ b_i\end{array}\right\} = \left\{\begin{array}{c} * & 1 & c_2\\ 0 & a_1 & c_2a_1\\ c_2(a_1+1) & (c_2-1)(a_1+1) & *\end{array}\right\}.$$

Hence in this case the eigenvalues can be expressed in a very simple form.

 $\eta_0 = c_2(a_1 + 1) > \eta_1 = a_1 > \eta_2 = -c_2.$

Now the inequalities of Proposition 3 (2) yield

$$\theta_1 \leq -1 - \frac{b_1}{1 - c_2}$$
, and $\theta_D \geq -1 - \frac{b_1}{1 + a_1}$.

The first inequality can also be expressed as

$$\theta_1 \le -1 - \frac{b_1}{1 - c_2} = \frac{k - a_1 - c_2}{c_2 - 1}.$$
(3.3)

4 A Theorem of Terwilliger and Weng

Theorem 4 (Terwilliger–Weng [7]) Let Γ denote a regular near polygon with diameter $D \geq 3$, valency k and intersection numbers $a_1 > 0$, $c_2 > 1$. Let θ_1 denote the second largest eigenvalue of Γ . Then

$$\theta_1 \le \frac{k - a_1 - c_2}{c_2 - 1}.\tag{4.4}$$

Moreover, the following (i) - (iii) are equivalent.

- (i) Equality is attained in (4.4).
- (ii) Γ is Q-polynomial with respect to θ_1 .
- (iii) Γ is a dual polar graph or a Hamming graph.

The inequality in (4.4) is nothing but the one in (3.3). Terwilliger and Weng obtained it using a so-called balanced condition and showed that Γ satisfies the *Q*-polynomial property if equality is attained.

In view of Proposition 3, the theorem above asserts under the same assumption that the following are equivalent.

(i) There is a tight vector in W_2 .

(ii) Γ is Q-polynomial with respect to θ_1 .

The following theorem identifies typical tight vectors in W_1 and W_2 .

Theorem 5 Let $\Gamma = (X, R)$ be a distance-regular graph with diameter $D \ge 3$, and an intersection number $a_2 > 0$. Let Y be a strongly closed subset of X of width 2. Then the induced subgraph on Y is strongly regular with eigenvalues $\eta_0 = c_2 + a_2 > \eta_1 > -1 > \eta_2$, and the following are equivalent.

- (i) There is a nonzero vector $\mathbf{v} \in E^*V$ such that $E_0\mathbf{v} = E_i\mathbf{v} = 0$ for some $i \in \{1, 2, ..., D\}$.
- (ii) Either one of the following holds.
 - (a) For every $x, y \in Y$ with $\partial(x, y) = 2$, $E_1 u = 0$ and $\theta_1 = -1 b_1/(1 + \eta_2)$, where

$$u = \sum_{z \in A(y,x)} \hat{z} - \sum_{w \in A(x,y)} \hat{w} - \eta_2(\hat{x} - \hat{y}), \ or$$

(b) For every $x, y \in Y$ with $\partial(x, y) = 2$, $E_D u = 0$ and $\theta_D = -1 - b_1/(1 + \eta_1)$, where

$$u = \sum_{z \in A(y,x)} \hat{z} - \sum_{w \in A(x,y)} \hat{w} - \eta_1(\hat{x} - \hat{y}).$$

The conditions in (ii) are related to a balanced condition in the following theorem.

Theorem 6 (Terwilliger [5]) Let $\Gamma = (V, R)$ be a distance-regular graph of diameter $D \geq 3$. Let

$$E_i = \frac{1}{|X|} \sum_{j=0}^{D} q_i(j) A_j$$

be a primitive idempotent such that $q_i(j) \neq q_i(0)$ for every j = 1, ..., D. Then the following are equivalent.

- (i) Γ is Q-polynomial with respect to E_i .
- (ii) The following two 'balanced' conditions are satisfied.
 - (a) For all $x, y \in X$ with $\partial(x, y) = 2$,

$$\sum_{z \in A(y,x)} E_i \hat{z} - \sum_{w \in A(x,y)} E_i \hat{w} \in \langle E_i (\hat{x} - \hat{y}) \rangle.$$

(b) For all
$$x, y \in X$$
 with $\partial(x, y) = 3$,

$$\sum_{z \in C(y,x)} E_i \hat{z} - \sum_{w \in C(x,y)} E_i \hat{w} \in \langle E_i (\hat{x} - \hat{y}) \rangle.$$

In view of Theorem 6, there is a tight vector in W_2 if and only if Γ satisfies (ii)(a), the first half of the condition for Γ to be Q-polynomial.

5 Parallelogram Free DRGs

Recall that every regular near polygon is parallelogram-free. If we assume that Γ is of parallelogram free, we can prove a bit more. Before we state our result, we review the definition of a distance-regular graph with classical parameters. Such graph is always Q-polynomial. See [1].

Definition 1 Let Γ denote a distance-regular graph with diameter $D \geq 3$. We say Γ has classical parameters (D, q, α, β) whenever the intersection numbers are given by

$$c_{i} = \begin{bmatrix} i \\ 1 \end{bmatrix} \left(1 + \alpha \begin{bmatrix} i - 1 \\ 1 \end{bmatrix} \right) \quad (0 \le i \le D),$$
$$b_{i} = \left(\begin{bmatrix} D \\ 1 \end{bmatrix} - \begin{bmatrix} i \\ 1 \end{bmatrix} \right) \left(\beta - \alpha \begin{bmatrix} i \\ 1 \end{bmatrix} \right) \quad (0 \le i \le D),$$

where

$$\begin{bmatrix} j \\ 1 \end{bmatrix} := 1 + q + q^2 + \dots + q^{j-1}.$$

Now we assume the following.

Hypothesis 1 Let $\Gamma = (X, R)$ be a parallelogram-free distance-regular graph with diameter $D \ge 3$. Suppose $a_2 > 0$ and $b_1 > b_2$.

Then by Proposition 2, Γ contains a strongly closed subset Y such that the induced subgraph on Y is strongly regular. Let

 $\eta_0 = c_2 + a_2 > \eta_1 > \eta_2$

be its distinct eigenvalues.

Theorem 7 Under Hypothesis 1, the following hold.

(i)
$$\theta_1 \leq -1 - \frac{b_1}{1 + \eta_2}$$
, and $\theta_D \geq -1 - \frac{b_1}{1 + \eta_1}$

- (ii) Suppose $\theta \in \{\theta_1, \theta_D\}$ attains one of the bounds above. Let $q = b_1/(\theta + 1)$. Then the following hold.
 - (a) The intersection numbers of Γ are such that

$$qc_i - b_i - q(qc_{i-1} - b_{i-1})$$

is independent of $i \ (1 \le i \le D)$.

- (b) $c_3 \ge (c_2 q)(q^2 + q + 1).$
- (c) If $\theta = \theta_1$, then $q+1 \ge c_2$ and $q^2 + q + 1 \ge c_3$, and if $\theta = \theta_D$, then $q+1 \le -a_1$.
- (d) The equality holds in (b) if and only if Γ is Q-polynomial with classical parameters (D, q, α, β) with suitable choices of real numbers α and β.

If Γ is a regular near polygon, then $\eta_2 = -c_2$ and $q = c_2 - 1$. Hence by (b), $c_3 \ge q^2 + q + 1$ and by (c), $q^2 + q + 1 \ge c_3$. Therefore Γ is *Q*-polynomial with classical parameters by (d).

As a by-product, we obtained the following result as well.

Proposition 8 Let $\Gamma = (X, R)$ be a parallelogram-free distance-regular graph with diameter $D \ge 3$ and intersection numbers $a_2 = s - 1 > 0$, $b_1 = b_2$. Suppose for all $x, y \in X$ with $\partial(x, y) = 2$,

$$\sum_{z \in A(y,x)} E_i \hat{z} - \sum_{w \in A(x,y)} E_i \hat{w} \in \langle E_i (\hat{x} - \hat{y}) \rangle.$$

Then Γ is a regular near 2D-gon and $c_3 \ge 1-q^3$, where $q = -s = -(a_1+1)$. If equality holds, then Γ is a classical distance-regular graph with parameters

$$(D, q, \alpha, \beta) = (D, -s, \frac{s}{1-s}, \frac{k(1+s)}{1-(-s)^D}).$$

If D = 3, then Γ is a generalized hexagon. No examples are known if D > 3.

6 Examples

- 1. If Γ contains a strongly closed subgraph isomorphic to (the collinearity graph of) a generalized quadrangle, θ_D attains the bound if and only if $\theta_D = -k/(a_1 + 1)$.
- 2. Dual polar graphs and Hamming graphs are the only Q-polynomial regular near polygons of diameter $D \geq 4$ with intersection numbers $c_2 > 1$ and $a_1 > 0$ and these are distance-regular graphs having classical parameters with $\alpha = 0$ and $a_1 \neq 0$. These graphs are Q-polynomial with respect to θ_1 and attain both of the bounds.
- 3. Let Γ be a parallelogram-free Q-polynomial distance-regular graph of diameter $D \geq 4$ with $a_2 > 0$. Then Γ has classical parameters (D, q, α, β) and Γ is either a regular near polygon or q < -1. Distance-regular graphs having classical parameters (D, q, α, β) with q < -1 are said to be of negative type. These graphs satisfy the bound for θ_D .

Finally we include a table of the list of known parallelogram-free Q-polynomial distance-regular graphs taken from [1]. There is a series of excellent articles on parallelogram-free distance-regular graphs by C. Weng and others. See [2, 6, 8, 9, 10, 11]. We hope that our observations may shed light on the classification of this class of distance-regular graphs.

Name	Diam.	b	$\alpha + 1$	$\beta + 1$
H(D,q)	D	1	1	q
DP(D,q,e)	D	q	1	$q^{e} + 1$
U(2D,r)	D	-r	$\frac{1+r^2}{1-r}$	$\frac{1-(-r)^{D+1}}{1-r}$
$Her_D(r)$	D	-r	-r	$-(-r)^{D}$
$GH(q,q^3)$	3	-q	$\frac{1}{1-q}$	$q^2 + q + 1$
M_{24}	3	-2	3	11
M_{23}	3	-2	-1	6
ExtTGolay	3	-2	-2	9

Known Parallelogram-Free Q-DRGs

References

- [1] A. E. Brouwer, A. M. Cohen and A. Neumaier, *Distance-Regular Graphs*, Springer Verlag, Berlin, Heidelberg, 1989.
- Y-J. Liang, and C-W. Weng, Parallelogram-free distance-regular graphs. J. Combin. Theory Ser. B 71 (1997), 231-243.
- [3] H. Suzuki, Strongly closed subgraphs of a distance-regular graph with geometric girth five, Kyushu Journal of Mathematics, 50 (1996), 371– 384.
- [4] H. Suzuki, The Terwilliger algebra associated with a set of vertices in a distance-regular graph, to appear in Journal of Algebraic Combinatorics.
- [5] P. Terwilliger, A new inequality for distance-regular graphs, Discrete Math. 137 (1995), 319-332.
- [6] P. Terwilliger, Kite-free distance-regular graphs, Europ. J. Combin. 16 (1995), 405-414.
- [7] P. Terwilliger and Chih-wen Weng, An inequality for regular near polygons, to appear in Europ. J. Combin.
- [8] C-W. Weng, Kite-free P- and Q-polynomial schemes. Graphs Combin. 11 (1995), 201–207.
- [9] C-W. Weng, D-bounded distance-regular graphs. European J. Combin. 18 (1997), 211-229.
- [10] C-W. Weng, Weak-geodetically closed subgraphs in distance-regular graphs. Graphs Combin. 14 (1998), 275–304.
- [11] C-W. Weng, Classical distance-regular graphs of negative type. J. Combin. Theory Ser. B 76 (1999), 93-116.

The content of this exposition is included in the following.

[12] H. Suzuki, On strongly closed subgraphs with diameter two and Qpolynomial property, preprint.