On Strongly Closed Subgraphs with Diameter Two and Q－Polynomial Property

国際基督教大学•教美学部•理学科 鈴木 寛（Hiroshi Suzuki）
Division of Natraul Sciences，College of Liberal Arts， International Chrisitian University

1 Introduction

Let $\Gamma=(X, R)$ be a distance－regular graph（DRG）of diameter D with vertex set X and edge set R ．For vertices x and $y, \partial(x, y)$ denotes the distance between x and y ，i．e．，the length of a shortest path connecting x and y ．For a vertex $u \in X$ and $j \in\{0,1, \ldots, D\}$ ，let

$$
\Gamma_{j}(u)=\{x \in X \mid \partial(u, x)=j\} \text { and } \Gamma(u)=\Gamma_{1}(u)
$$

For two vertices u and $v \in X$ with $\partial(u, v)=j$ let

$$
\begin{aligned}
& C(u, v)=\Gamma_{j-1}(u) \cap \Gamma(v), \\
& A(u, v)=\Gamma_{j}(u) \cap \Gamma(v), \text { and } \\
& B(u, v)=\Gamma_{j+1}(u) \cap \Gamma(v) .
\end{aligned}
$$

The cardinalities $c_{j}=|C(u, v)|, a_{j}=|A(u, v)|$ and $b_{j}=|B(u, v)|$ depend only on $j=\partial(u, v)$ ，and they are called the intersection numbers of Γ ．The number $k=b_{0}=|\Gamma(u)|$ is called the valency of Γ ．

A subset Y of the vertex set X is said to be strongly closed if

$$
C(u, v) \cup A(u, v) \subset Y \quad \text { for all } u, v \in Y
$$

We often identify a subset of X with the induced subgraph on it．In particu－ lar，when Y is strongly closed，Y is referred to as a strongly closed subgraph of Γ ．

A parallelogram of length $j \geq 2$ is a four-vertex configuration (w, x, y, z) such that

$$
\begin{aligned}
\partial(w, x) & =\partial(y, z)=j-1=\partial(x, z), \\
\partial(x, y) & =\partial(z, w)=1 \text { and } \partial(w, y)=j .
\end{aligned}
$$

A distance-regular graph Γ of diameter D is called a regular near polygon if there is no parallelogram of length 2 and that

$$
a_{i}=c_{i} a_{1} \text { for } i=1,2, \ldots, D-1
$$

In addition, if $a_{D}=c_{D} a_{1}$, then Γ is called a regular near $2 D$-gon.
Recently, in [7] P. Terwilliger and C. Weng showed that if θ_{1} is the second largest eigenvalue of a regular near polygon with diameter $D \geq 3$, valency k and intersection numbers $a_{1}>0, c_{2}>1$, then

$$
\begin{equation*}
\theta_{1} \leq \frac{k-a_{1}-c_{2}}{c_{2}-1} \tag{1.1}
\end{equation*}
$$

Equality is attained above if and only if Γ is Q-polynomial with classical parameters with respect to θ_{1}.

Every regular near polygon contains a strongly closed subset Y such that the induced subgraph on Y is strongly regular, i.e., distance-regular of diameter 2 . We noticed that the inequality in (1.1) and its equality condition are closely related to the existence of tight vectors that we defined in [4]. In this exposition, we shall explain the relation, apply the theory to parallelogram-free distance-regular graphs, and give a generalization of the results of Terwilliger and Weng above.

2 Terwilliger Algebra and Tight Vectors

Let $\Gamma=(X, R)$ be a distance-regular graph of diameter D. For $i \in\{0,1, \ldots, D\}$ let A_{i} denote the i-th adjacency matrix in $\operatorname{Mat}_{X}(\boldsymbol{C})$ whose (x, y)-entry is defined by

$$
\left(A_{i}\right)_{x, y}= \begin{cases}1 & \text { if } \partial(x, y)=i, \\ 0 & \text { otherwise }\end{cases}
$$

Let $E_{0}, E_{1}, \ldots, E_{D}$ be primitive idempotents corresponding to the eigenvalues $\theta_{0}>\theta_{1}>\cdots>\theta_{D}$ of A.

Let Y be a nonempty subset of $X . E_{i}^{*}=E_{i}^{*}(Y) \in \operatorname{Mat}_{X}(C)(i=$ $0,1, \ldots, D)$ is defined by

$$
\left(E_{i}^{*}\right)_{x, y}= \begin{cases}1 & \text { if } x=y \text { and } \partial(x, Y)=i, \\ 0 & \text { otherwise },\end{cases}
$$

and $E^{*}=E_{0}^{*}$. Then the Terwilliger algebra with respect to Y is a semisimple subalgebra of $\operatorname{Mat}_{X}(\boldsymbol{C})$ defined by:

$$
\mathcal{T}=\mathcal{T}(Y)=\left\langle A, E_{0}^{*}, E_{1}^{*}, \ldots, E_{D}^{*}\right\rangle
$$

Let $V=C^{X}$, and $W=E^{*} V$. For $x \in X$, let \hat{x} denote the element of V with a 1 in the x-coordinate and 0 in all other coordinates. Then W is the vector subspace of V spanned by the set $\{\hat{y} \mid y \in Y\}$.

Let $w(Y)=\max \left\{\partial\left(y, y^{\prime}\right) \mid y, y^{\prime} \in Y\right\}$ denote the width of Y. Then we have the following.

Proposition $1([4$, Proposition 9.2]) For $0 \neq v \in W$,

$$
\begin{equation*}
\left|\left\{i \mid i \in\{0,1, \ldots, D\}, E_{i} v=0\right\}\right| \leq w(Y) . \tag{2.2}
\end{equation*}
$$

Now a nonzero vector $v \in W$ is said to be tight (with respect to Y), if equality is attained in (2.2), i.e.,

$$
\left|\left\{i \mid i \in\{0,1, \ldots, D\}, E_{i} v=0\right\}\right|=w(Y) .
$$

3 Strongly Closed, Strongly Regular Case

In this section, we review a result to guarantee the existence of strongly closed strongly regular subgraph Y, and inequalities related to the existence of tight vectors with respect to Y.

Proposition 2 ([10, Theorem 1], [3, Theorem 1.1]) Let $\Gamma=(X, R)$ be a distance-regular graph of diameter $D \geq 3$. Suppose $b_{1}>b_{2}$ and $a_{2} \neq 0$. Then the following are equivalent.
(i) For every pair of vertices x and y with $\partial(x, y)=2$, there is a strongly closed subgraph containing x and y of diameter 2 .
(ii) There is no parallelogram of length 2 or 3.

Moreover, if the conditions are satisfied, then strongly closed subgraphs guaranteed to exist are strongly regular.

Let Y be a strongly closed subset of X. Suppose the induced subgraph on Y is strongly regular, i.e., $w(Y)=2$.

Set $\widetilde{A}=E^{*} A E^{*}$. Then there are three distinct eigenvalues $\eta_{0}, \eta_{1}, \eta_{2}$ of \widetilde{A} on W, and they satisfy

$$
\eta_{0}=c_{2}+a_{2}>\eta_{1}>-1>\eta_{2} .
$$

Let 1_{Y} denote the characteristic vector of Y defined by

$$
\mathbf{1}_{Y}=\sum_{y \in Y} \hat{y} \in W .
$$

Let W_{0}, W_{1} and W_{2} be the eigenspaces of \widetilde{A} in W corresponding to eigenvalues η_{0}, η_{1} and η_{2}, respectively.

Then $W_{0}=\left\langle 1_{Y}\right\rangle$, and

$$
W=W_{0} \oplus W_{1} \oplus W_{2}
$$

Note that if $\boldsymbol{v} \in W_{1} \oplus W_{2}$, then $E_{0} \boldsymbol{v}=\mathbf{0}$. Hence an eigenvector \boldsymbol{v} of \widetilde{A} in $W_{1} \oplus W_{2}$ is tight if $E_{i} v=0$ for some $i>0$ as $w(Y)=2$.

Proposition 3 ([4, Proposition 11.7]) Let $\boldsymbol{v} \in W_{j}(j=1$ or 2$)$ be an eigenvector of \widetilde{A},
(1) For $i \in\{0,1, \ldots, D\}$,

$$
\frac{\left\|E_{i} v\right\|^{2}}{\|\boldsymbol{v}\|^{2}}=\frac{m_{i}\left(k-\theta_{i}\right)\left(\left(1+\eta_{j}\right)\left(1+\theta_{i}\right)+b_{1}\right)}{k b_{1}|X|} \geq 0 .
$$

(2) The following hold.

$$
\theta_{1} \leq-1-\frac{b_{1}}{1+\eta_{2}}, \text { and } \theta_{D} \geq-1-\frac{b_{1}}{1+\eta_{1}}
$$

(3) The following are equivalent.
(a) v is tight.
(b) One of the following holds.
(i) $\theta_{1}=-1-\frac{b_{1}}{1+\eta_{2}}$, or
(ii) $\theta_{D}=-1-\frac{b_{1}}{1+\eta_{1}}$.

Proof. The inequality in Proposition 3 (1) can be obtained by simple computation, and both (2) and (3) follow from (1) as $\theta_{1} \geq \eta_{1}>-1$ and $\theta_{D} \leq \eta_{2}<-1$.

Suppose $\Gamma=(X, R)$ is a regular near polygon of diameter $D \geq 3$. Then it is known that Γ does not contain parallelograms of any length. In addition, assume that $a_{1}>0$ and $c_{2}>1$. Then by Proposition 2 there is a strongly
closed subset Y such that the induced subgraph on Y is strongly regular. It is called a quad, and it has the following intersection array.

$$
\left\{\begin{array}{l}
c_{i} \\
a_{i} \\
b_{i}
\end{array}\right\}=\left\{\begin{array}{ccc}
* & 1 & c_{2} \\
0 & a_{1} & c_{2} a_{1} \\
c_{2}\left(a_{1}+1\right) & \left(c_{2}-1\right)\left(a_{1}+1\right) & *
\end{array}\right\} .
$$

Hence in this case the eigenvalues can be expressed in a very simple form.

$$
\eta_{0}=c_{2}\left(a_{1}+1\right)>\eta_{1}=a_{1}>\eta_{2}=-c_{2} .
$$

Now the inequalities of Proposition 3 (2) yield

$$
\theta_{1} \leq-1-\frac{b_{1}}{1-c_{2}}, \text { and } \theta_{D} \geq-1-\frac{b_{1}}{1+a_{1}} .
$$

The first inequality can also be expressed as

$$
\begin{equation*}
\theta_{1} \leq-1-\frac{b_{1}}{1-c_{2}}=\frac{k-a_{1}-c_{2}}{c_{2}-1} \tag{3.3}
\end{equation*}
$$

4 A Theorem of Terwilliger and Weng

Theorem 4 (Terwilliger--Weng [7]) Let Γ denote a regular near polygon with diameter $D \geq 3$, valency k and intersection numbers $a_{1}>0, c_{2}>1$. Let θ_{1} denote the second largest eigenvalue of Γ. Then

$$
\begin{equation*}
\theta_{1} \leq \frac{k-a_{1}-c_{2}}{c_{2}-1} \tag{4.4}
\end{equation*}
$$

Moreover, the following (i) - (iii) are equivalent.
(i) Equality is attained in (4.4).
(ii) Γ is Q-polynomial with respect to θ_{1}.
(iii) Γ is a dual polar graph or a Hamming graph.

The inequality in (4.4) is nothing but the one in (3.3). Terwilliger and Weng obtained it using a so-called balanced condition and showed that Γ satisfies the Q-polynomial property if equality is attained.

In view of Proposition 3, the theorem above asserts under the same assumption that the following are equivalent.
(i) There is a tight vector in W_{2}.
(ii) Γ is Q-polynomial with respect to θ_{1}.

The following theorem identifies typical tight vectors in W_{1} and W_{2}.
Theorem 5 Let $\Gamma=(X, R)$ be a distance-regular graph with diameter $D \geq$ 3, and an intersection number $a_{2}>0$. Let Y be a strongly closed subset of X of width 2 . Then the induced subgraph on Y is strongly regular with eigenvalues $\eta_{0}=c_{2}+a_{2}>\eta_{1}>-1>\eta_{2}$, and the following are equivalent.
(i) There is a nonzero vector $v \in E^{*} V$ such that $E_{0} v=E_{i} v=0$ for some $i \in\{1,2, \ldots, D\}$.
(ii) Either one of the following holds.
(a) For every $x, y \in Y$ with $\partial(x, y)=2, E_{1} \boldsymbol{u}=0$ and $\theta_{1}=-1-$ $b_{1} /\left(1+\eta_{2}\right)$, where

$$
u=\sum_{z \in A(y, x)} \hat{z}-\sum_{w \in A(x, y)} \hat{w}-\eta_{2}(\hat{x}-\hat{y}), \text { or }
$$

(b) For every $x, y \in Y$ with $\partial(x, y)=2, E_{D} \boldsymbol{u}=0$ and $\theta_{D}=-1-$ $b_{1} /\left(1+\eta_{1}\right)$, where

$$
u=\sum_{z \in A(y, x)} \hat{z}-\sum_{w \in A(x, y)} \hat{w}-\eta_{1}(\hat{x}-\hat{y}) .
$$

The conditions in (ii) are related to a balanced condition in the following theorem.

Theorem 6 (Terwilliger [5]) Let $\Gamma=(V, R)$ be a distance-regular graph of diameter $D \geq 3$. Let

$$
E_{i}=\frac{1}{|X|} \sum_{j=0}^{D} q_{i}(j) A_{j}
$$

be a primitive idempotent such that $q_{i}(j) \neq q_{i}(0)$ for every $j=1, \ldots, D$. Then the following are equivalent.
(i) Γ is Q-polynomial with respect to E_{i}.
(ii) The following two 'balanced' conditions are satisfied.
(a) For all $x, y \in X$ with $\partial(x, y)=2$,

$$
\sum_{z \in A(y, x)} E_{i} \hat{z}-\sum_{w \in A(x, y)} E_{i} \hat{w} \in\left\langle E_{i}(\hat{x}-\hat{y})\right\rangle .
$$

(b) For all $x, y \in X$ with $\partial(x, y)=3$,

$$
\sum_{z \in C(y, x)} E_{i} \hat{z}-\sum_{w \in C(x, y)} E_{i} \hat{w} \in\left\langle E_{i}(\hat{x}-\hat{y})\right\rangle .
$$

In view of Theorem 6, there is a tight vector in W_{2} if and only if Γ satisfies (ii)(a), the first half of the condition for Γ to be Q-polynomial.

5 Parallelogram Free DRGs

Recall that every regular near polygon is parallelogram-free. If we assume that Γ is of parallelogram free, we can prove a bit more. Before we state our result, we review the definition of a distance-regular graph with classical parameters. Such graph is always Q-polynomial. See [1].

Definition 1 Let Γ denote a distance-regular graph with diameter $D \geq$ 3. We say Γ has classical parameters (D, q, α, β) whenever the intersection numbers are given by

$$
\begin{aligned}
& c_{i}=\left[\begin{array}{l}
i \\
1
\end{array}\right]\left(1+\alpha\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]\right) \quad(0 \leq i \leq D) \\
& b_{i}=\left(\left[\begin{array}{l}
D \\
1
\end{array}\right]-\left[\begin{array}{l}
i \\
1
\end{array}\right]\right)\left(\beta-\alpha\left[\begin{array}{l}
i \\
1
\end{array}\right]\right) \quad(0 \leq i \leq D)
\end{aligned}
$$

where

$$
\left[\begin{array}{l}
j \\
1
\end{array}\right]:=1+q+q^{2}+\cdots+q^{j-1} .
$$

Now we assume the following.
Hypothesis 1 Let $\Gamma=(X, R)$ be a parallelogram-free distance-regular graph with diameter $D \geq 3$. Suppose $a_{2}>0$ and $b_{1}>b_{2}$.

Then by Proposition 2, Γ contains a strongly closed subset Y such that the induced subgraph on Y is strongly regular. Let

$$
\eta_{0}=c_{2}+a_{2}>\eta_{1}>\eta_{2}
$$

be its distinct eigenvalues.
Theorem 7 Under Hypothesis 1, the following hold.
(i) $\theta_{1} \leq-1-\frac{b_{1}}{1+\eta_{2}}$, and $\theta_{D} \geq-1-\frac{b_{1}}{1+\eta_{1}}$.
(ii) Suppose $\theta \in\left\{\theta_{1}, \theta_{D}\right\}$ attains one of the bounds above. Let $q=b_{1} /(\theta+$ 1). Then the following hold.
(a) The intersection numbers of Γ are such that

$$
q c_{i}-b_{i}-q\left(q c_{i-1}-b_{i-1}\right)
$$

is independent of $i(1 \leq i \leq D)$.
(b) $c_{3} \geq\left(c_{2}-q\right)\left(q^{2}+q+1\right)$.
(c) If $\theta=\theta_{1}$, then $q+1 \geq c_{2}$ and $q^{2}+q+1 \geq c_{3}$, and if $\theta=\theta_{D}$, then $q+1 \leq-a_{1}$.
(d) The equality holds in (b) if and only if Γ is Q-polynomial with classical parameters (D, q, α, β) with suitable choices of real numbers α and β.

If Γ is a regular near polygon, then $\eta_{2}=-c_{2}$ and $q=c_{2}-1$. Hence by (b), $c_{3} \geq q^{2}+q+1$ and by (c), $q^{2}+q+1 \geq c_{3}$. Therefore Γ is Q-polynomial with classical parameters by (d).

As a by-product, we obtained the following result as well.
Proposition 8 Let $\Gamma=(X, R)$ be a parallelogram-free distance-regular graph with diameter $D \geq 3$ and intersection numbers $a_{2}=s-1>0, b_{1}=b_{2}$. Suppose for all $x, y \in X$ with $\partial(x, y)=2$,

$$
\sum_{z \in A(y, x)} E_{i} \hat{z}-\sum_{w \in A(x, y)} E_{i} \hat{w} \in\left\langle E_{i}(\hat{x}-\hat{y})\right\rangle
$$

Then Γ is a regular near $2 D$-gon and $c_{3} \geq 1-q^{3}$, where $q=-s=-\left(a_{1}+1\right)$. If equality holds, then Γ is a classical distance-regular graph with parameters

$$
(D, q, \alpha, \beta)=\left(D,-s, \frac{s}{1-s}, \frac{k(1+s)}{1-(-s)^{D}}\right) .
$$

If $D=3$, then Γ is a generalized hexagon. No examples are known if $D>3$.

6 Examples

1. If Γ contains a strongly closed subgraph isomorphic to (the collinearity graph of) a generalized quadrangle, θ_{D} attains the bound if and only if $\theta_{D}=-k /\left(a_{1}+1\right)$.
2. Dual polar graphs and Hamming graphs are the only Q-polynomial regular near polygons of diameter $D \geq 4$ with intersection numbers $c_{2}>1$ and $a_{1}>0$ and these are distance-regular graphs having classical parameters with $\alpha=0$ and $a_{1} \neq 0$. These graphs are Q-polynomial with respect to θ_{1} and attain both of the bounds.
3. Let Γ be a parallelogram-free Q-polynomial distance-regular graph of diameter $D \geq 4$ with $a_{2}>0$. Then Γ has classical parameters (D, q, α, β) and Γ is either a regular near polygon or $q<-1$. Distance-regular graphs having classical parameters (D, q, α, β) with $q<-1$ are said to be of negative type. These graphs satisfy the bound for θ_{D}.

Finally we include a table of the list of known parallelogram-free Q polynomial distance-regular graphs taken from [1]. There is a series of excellent articles on parallelogram-free distance-regular graphs by C. Weng and others. See $[2,6,8,9,10,11]$. We hope that our observations may shed light on the classification of this class of distance-regular graphs.

Known Parallelogram-Free Q-DRGs

Name	Diam.	b	$\alpha+1$	$\beta+1$
$H(D, q)$	D	1	1	q
$D P(D, q, e)$	D	q	1	$q^{e}+1$
$U(2 D, r)$	D	$-r$	$\frac{1+r^{2}}{1-r}$	$\frac{1-(-r)^{D+1}}{1-r}$
$\operatorname{Her}_{D}(r)$	D	$-r$	$-r$	$-(-r)^{D}$
$G H\left(q, q^{3}\right)$	3	$-q$	$\frac{1}{1-q}$	$q^{2}+q+1$
M_{24}	3	-2	-3	11
M_{23}	3	-2	-1	6
ExtTGolay	3	-2	-2	9

References

[1] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, Springer Verlag, Berlin, Heidelberg, 1989.
[2] Y-J. Liang, and C-W. Weng, Parallelogram-free distance-regular graphs. J. Combin. Theory Ser. B 71 (1997), 231-243.
[3] H. Suzuki, Strongly closed subgraphs of a distance-regular graph with geometric girth five, Kyushu Journal of Mathematics, 50 (1996), 371384.
[4] H. Suzuki, The Terwilliger algebra associated with a set of vertices in a distance-regular graph, to appear in Journal of Algebraic Combinatorics.
[5] P. Terwilliger, A new inequality for distance-regular graphs, Discrete Math. 137 (1995), 319-332.
[6] P. Terwilliger, Kite-free distance-regular graphs, Europ. J. Combin. 16 (1995), 405-414.
[7] P. Terwilliger and Chih-wen Weng, An inequality for regular near polygons, to appear in Europ. J. Combin.
[8] C-W. Weng, Kite-free P - and Q-polynomial schemes. Graphs Combin. 11 (1995), 201-207.
[9] C-W. Weng, D-bounded distance-regular graphs. European J. Combin. 18 (1997), 211-229.
[10] C-W. Weng, Weak-geodetically closed subgraphs in distance-regular graphs. Graphs Combin. 14 (1998), 275-304.
[11] C-W. Weng, Classical distance-regular graphs of negative type. J. Combin. Theory Ser. B 76 (1999), 93-116.

The content of this exposition is included in the following.
[12] H. Suzuki, On strongly closed subgraphs with diameter two and Qpolynomial property, preprint.

