Logarithmic truth－table reductions and minimum sizes of forcing conditions（preliminary draft）

Masahiro Kumabe ${ }^{1)}$ ，Toshio Suzuki ${ }^{2)}$ ，Takeshi Yamazaki ${ }^{3)}$
1）：University of the Air，
31－1，Ōoka，Minami－ku，Yokohama 232－0061，Japan
kumabe＠u－air．ac．jp
2），3）：Department of Mathematics and Information Sciences
Osaka Prefecture University，Sakai，Osaka 599－8531，Japan
toshios＠acm．org，yamazaki＠mi．s．osakafu－u．ac．jp

April 5， 2005

放送大学 獚部正博，大限府立大学 理学部 鈴木登志雄，山崎 武

Abstract

In our former works，for a given concept of reduction，we study the follow－ ing hypothesis：＂For a random oracle A ，with probability one，the degree of the one－query tautologies with respect to A is strictly higher than the degree of A．＂In our former works，the following three results are shown：（1）the hy－ pothesis for polynomial－time Turing reduction is equivalent to the assertion that the probabilistic complexity class R is not equal to NP ，（2）the hypoth－ esis for polynomial－time truth－table reduction implies that P is not NP，（3） （to appear in Arch．Math．Logic）the hypothesis holds for polynomial－time bounded－truth－table reduction．In this note，we show that the hypothesis holds for $(\log n)^{O(1)}$－question truth－table－reduction（without polynomial－time bound）．As applications of this result，we show a lower bound and an upper bound of forcing complexity（i．e．，the minimum size of forcing condition that forces a given formula）of the one－query tautologies with respect to a random oracle．We show that if A is a random oracle then with probability one，the forcing complexity of the one－query tautology with respect to A is greater than polynomial of $\log |F|$ ，and it is at most $O\left(|F|^{2}\right)$ ，where $|F|$ denotes the length of a formula．

[^0]
1 Preface

In our former works [Su98, Su99, Su00, Su01, Su02, Su05], by extending the work of Ambos-Spies [Am86] and related works, we consider the relationships with the canonical product measure of Cantor space and complexity of one-query tautologies. A formula F of the relativized propositional calculus is called a one-query forumla if F has exactly one occurrence of a query symbol. For example,

$$
\left(q_{0} \Leftrightarrow \xi^{3}\left(q_{1}, q_{2}, q_{3}\right)\right) \Rightarrow\left(q_{1} \Rightarrow q_{0}\right)
$$

is a one-query formula, where $q_{0}, q_{1}, q_{2}, q_{3}$ are usual propositional variables. We assume that each propositional variable takes the value 0 or 1 (0 denotes false and 1 denotes true). And, ξ^{3} in the above formula is a query symbol. For a given oracle A, a function A^{3} is defined as follows, where λ is the empty string, and the query symbol ξ^{3} is interpreted as the function A^{3}.

$$
\begin{array}{lcc}
A^{3}(000)=A(\lambda), & A^{3}(001)=A(0), & A^{3}(010)=A(1), \\
A^{3}(100)=A(01), & A^{3}(011)=A(00) \\
3 & (101)=A(10), & A^{3}(110)=A(11),
\end{array} A^{3}(111)=A(000) .
$$

Thus, more informally, the following holds for each $j=0,1, \cdots, 2^{3}-1$, where the order of strings is defined as the canonical length-lexicographic order.

$$
A^{3}(\text { the }(j+1) \text { st } 3 \text {-bit string })=A(\text { the }(j+1) \text { st string }) .
$$

For each n, an n-ary Boolean function A^{n} is defined in the same way, and an interpretation of the query symbol ξ^{n} is defined in the same way. For an oracle A, the concept of a tautology with respect to A is defined in a natural way. If a one-query formula F is a tautology with respect to A, then we say F is a one-query tautology with respect to A. The set of all one-query tautologies with respect to A is denoted by 1 TAUT ${ }^{A}$.

In [Su02], for a given concept \leq_{α} of reduction, we study the following hypothesis, where $1 \mathrm{TAUT}^{X}$ denotes the set of all one-query tautologies with respect to an oracle X.
One-query-jump hypothesis for \leq_{α} : The class $\left\{X: 1 \operatorname{TAUT}^{X} \leq_{\alpha} X\right\}$ has measure zero.

For a given reduction \leq_{α}, we denote the corresponding one-query-jump hypothesis by $\left[\leq_{\alpha}\right]$.

In [Su98], it is shown that the one query-jump hypothesis for p -T reduction is equivalent to " $\mathrm{R} \neq \mathrm{NP}$."

And, in [Su02], it is shown that the one query-jump hypothesis for p -tt reduction implies " $\mathrm{P} \neq \mathrm{NP}$."

In [Su05], we show that the one query-jump hypothesis for p -btt reduction holds, where p-btt denotes polynomial-time bounded-truth-table reduction. The
anonymous referee of [Su05] noticed that the one query-jump hypothesis holds for bounded-truth-table reduction without polynomial-time bound, and Kumabe independently noticed the same result. The referee's proof, which may be found in [Su05], uses some concepts of resource-bounded generic oracles in [AM97]. Kumabe's proof is more simple.

In $\S 3$ of this note, we introduce Kumabe's proof of the above result. In §4, we extend the result, and show that the one query-jump hypothesis holds for $(\log n)^{O(1)}$ _ question tt -reduction (without polynomial-time bound). In $\S 5$, as applications of the result in $\S 4$, we show a lower bound and an upper bound of forcing complexity (i.e., the minimum size of forcing condition that forces a given formula) of the one-query tautologies with respect to a random oracle. We show that if A is a random oracle then with probability one, the forcing complexity of the one-query tautologies with respect to A is greater than $(\log |F|)^{O(1)}$, and it is at most $O\left(|F|^{2}\right)$.

The three of authors had a meeting at July 22023,2004 , at the office of T.S. in Osaka Prefecture University. This note is a research memo on the meeting, and is an extension of [Su05].

2 Notation

Most of our notation is the same as that of [Su02] and [Su05], and almost all undefined notions may be found in these papers. An article by Kawanishi and Suzuki [KS05] in this volume of Sūrikaisekikenkyūsho Kökyūroku contains basic definitions on the relativized propositional calculus and Dowd-type generic oracles. The journal version of [Su02] may be purchased at Science Direct.

```
http://www.sciencedirect.com/science/journals
```

ω stands for $\{0,1,2,3 \cdots\}$, while \mathbb{N} stands for $\{1,2,3 \cdots\}$. In some textbooks, the complexity class R is denoted by $R P$. For the detail of the class R, see for example [BDG88].

The definition of polynomial-time truth-table reduction and its variant may be found in [LLS75].

3 Bounded truth table reduction

In this section, we show the following.
Proposition 1 The Lebesgue measure of the set

$$
\left\{X: 1 \operatorname{TAUT}^{X} \leq_{\text {btt }} X\right\}
$$

is zero. In other words, one-query jump hypothesis [Su02, Su05] for btt-reduction (without polynomial-time bound) holds.

Sketch of proof (due to Kumabe):
For each oracle X, let $L^{X}:=\bigcup_{n}\left\{(u, v, w) \in\{0,1\}^{n}:|u|=|v|=|w|=\right.$ n and $\left.X^{n}(u)=X^{n}(v)=X^{n}(w)\right\}$. It is easy to see that $L^{X} \leq_{\mathrm{m}}^{p} 1 \operatorname{TAUT}^{X}$.

Suppose that f is a recursive function such that for each string x, it holds that $f(x)$ is of the form $\left(\varphi_{x}, s_{x, 1}, s_{x, 2}\right)$, where φ_{x} is a function from $\{0,1\}^{2}$ to $\{0,1\}$, and $s_{x, 1}, s_{x, 2}$ are strings.

It is enough to show the following class has measure zero.

$$
\left\{X: L^{X} \text { is } 2 \text { tt-reducible to } X \text { via } f\right\}
$$

For each forcing condition S, there exists strings $x^{(1)}, x^{(2)}, x^{(3)}, x^{(4)}, x^{(5)}$ and a forcing condition T such that
(1) $\operatorname{dom} T=\operatorname{dom} S \cup\left\{x^{(1)}, x^{(2)}, x^{(3)}, x^{(4)}, x^{(5)}\right\}$, and
(2) for any oracle X extending T, it holds that L^{X} is not 2 tt -reducible to X via f.

Therefore, the class $\left\{X: L^{X}\right.$ is 2 tt-reducible to X via $\left.f\right\}$ has measure zero.

$4(\log n)^{O(1)}$-question tt-reduction

Theorem 2 The Lebesgue measure of the following set is zero.

$$
\left\{X: 1 \text { TAUT }^{X} \leq(\log n)^{(1)}-\mathbf{t t} X\right\}
$$

In other words, one-query jump hypothesis for $(\log n)^{O(1)}$-tt-reduction (without polynomial-time bound) holds.

5 Lower and upper bounds to forcing complexity

Theorem 3 Let $\mathcal{D}_{\log }$ be the class of all oracles D such that there exists a positive integer c (c may depend on D) of the following property. For any $F \in 1^{T A U T}{ }^{D}$, there exists a forcing condition $S \sqsubseteq D$ such that S forces F to be a tautology and

$$
|\operatorname{dom} S| \leq(\log |F|)^{c}
$$

Then $\mathcal{D}_{\log }$ has measure zero.
Question: Is $\mathcal{D}_{\log }$ empty ?
Theorem 4 Let $\mathcal{D}_{\text {quad }}$ be the class of all oracles D such that there exists a positive integer c (c may depend on D) of the following property. For any $F \in$ 1TAUT D, there exists a forcing condition $S \subseteq D$ such that S forces F to be a tautology and

$$
|\operatorname{dom} S| \leq c|F|^{2}+c
$$

where $|F|$ denotes the length of the binary code of F.
Then $\mathcal{D}_{\text {quad }}$ has measure one.

Question: Let $\mathcal{D}_{\text {linear }}$ be the class defined similarly to $\mathcal{D}_{\text {quad }}$ by using a linear formula $c|F|+c$ instead of a quadratic $c|F|^{2}+c$. Then, is $\mathcal{D}_{\text {linear }}$ empty? If nonempty, does it have positive measure?

References

[Am86] Ambos-Spies, K.: Randomness, relativizations, and polynomial reducibilities. In: Structure in Complexity Theory, Lect. Notes Comput. Sci. 223 (A. L. Selman, Eds.), pp.23-34, Springer, Berlin, 1986.
[AM97] Ambos-Spies, K., Mayordomo, E.: Resource-bounded measure and randomness. In: Complexity, logic, and recursion theory, Lecture Notes in Pure and Applied Mathematics 187 (A. Sorbi, Eds.), pp.1-47, Marcel Dekker, New York, 1997.
[BDG88] Balcázar, J. L., Díaz, J., Gabarró, J.: Structural complexity I. Springer, Berlin, 1988.
[BG81] Bennett, C. H., Gill, J.: Relative to a random oracle $A, \mathrm{P}^{A} \neq \mathrm{NP}^{A} \neq$ co-NP ${ }^{A}$ with probability 1. SIAM J. Comput., 10 (1981), pp. 96-113.
[Do92] Dowd, M.: Generic oracles, uniform machines, and codes. Information and Computation, 96 (1992), pp. 65-76.
[KS05] Kawanishi, A. and Suzuki, T.: Random extraction from hand-drawing curves and its semantics (in Japanese). Sūrikaisekikenkyūsho Kökyūroku, this volume.
[LLS75] Ladner, R. E., Lynch, N. A., Selman, A. L.: A comparison of polynomial time reducibilities. Theoret. Comput. Sci., 1 (1975), pp.103-123.
[Su98] Suzuki, T.: Recognizing tautology by a deterministic algorithm whose while-loop's execution time is bounded by forcing. Kobe Journal of Mathematics, 15 (1998), pp. 91-102.
[Su99] Suzuki, T.: Computational complexity of Boolean formulas with query symbols. Doctoral dissertation (1999), Institute of Mathematics, University of Tsukuba, Tsukuba-City, Japan.
[Su00] Suzuki, T.: Complexity of the r-query tautologies in the presence of a generic oracle. Notre Dame J. Formal Logic, 41 (2000), pp. 142-151.
[Su01] Suzuki, T.: Forcing complexity: minimum sizes of forcing conditions. Notre Dame J. Formal Logic, 42 (2001), pp. 117-120.
[Su02] Suzuki, T.: Degrees of Dowd-type generic oracles. Inform. and Comput., 176 (2002), pp. 66-87.
[Su05] Suzuki, T.: Bounded truth table does not reduce the one-query tautologies to a random oracle. Archive for Mathematical Logic, to appear.

[^0]: ＊The author was partially supported by Grant－in－Aid for Scientific Research（No．14740082）， Japan Society for the Promotion of Science．

