Logarithmic truth-table reductions and minimum sizes of forcing conditions (preliminary draft)

Masahiro Kumabe¹⁾, Toshio Suzuki²⁾, Takeshi Yamazaki³⁾ 1): University of the Air,

31-1, Ōoka, Minami-ku, Yokohama 232-0061, Japan kumabe@u-air.ac.jp

2),3): Department of Mathematics and Information Sciences Osaka Prefecture University, Sakai, Osaka 599-8531, Japan toshios@acm.org, yamazaki@mi.s.osakafu-u.ac.jp

April 5, 2005

放送大学 隈部正博, 大阪府立大学 理学部 鈴木登志雄, 山崎 武

Abstract

In our former works, for a given concept of reduction, we study the following hypothesis: "For a random oracle A, with probability one, the degree of the one-query tautologies with respect to A is strictly higher than the degree of A." In our former works, the following three results are shown: (1) the hypothesis for polynomial-time Turing reduction is equivalent to the assertion that the probabilistic complexity class R is not equal to NP, (2) the hypothesis for polynomial-time truth-table reduction implies that P is not NP, (3) (to appear in Arch. Math. Logic) the hypothesis holds for polynomial-time bounded-truth-table reduction. In this note, we show that the hypothesis holds for $(\log n)^{O(1)}$ -question truth-table-reduction (without polynomial-time bound). As applications of this result, we show a lower bound and an upper bound of forcing complexity (i.e., the minimum size of forcing condition that forces a given formula) of the one-query tautologies with respect to a random oracle. We show that if A is a random oracle then with probability one, the forcing complexity of the one-query tautology with respect to A is greater than polynomial of log |F|, and it is at most $O(|F|^2)$, where |F| denotes the length of a formula.

^{*}The author was partially supported by Grant-in-Aid for Scientific Research (No. 14740082), Japan Society for the Promotion of Science.

1 Preface

In our former works [Su98, Su99, Su00, Su01, Su02, Su05], by extending the work of Ambos-Spies [Am86] and related works, we consider the relationships with the canonical product measure of Cantor space and complexity of one-query tautologies. A formula F of the relativized propositional calculus is called a one-query forumla if F has exactly one occurrence of a query symbol. For example,

 $(q_0 \Leftrightarrow \xi^3(q_1, q_2, q_3)) \Rightarrow (q_1 \Rightarrow q_0)$

is a one-query formula, where q_0, q_1, q_2, q_3 are usual propositional variables. We assume that each propositional variable takes the value 0 or 1 (0 denotes false and 1 denotes true). And, ξ^3 in the above formula is a query symbol. For a given oracle A, a function A^3 is defined as follows, where λ is the empty string, and the query symbol ξ^3 is interpreted as the function A^3 .

$$\begin{array}{ll} A^{3}(000) = A(\lambda), & A^{3}(001) = A(0), & A^{3}(010) = A(1), & A^{3}(011) = A(00), \\ A^{3}(100) = A(01), & A^{3}(101) = A(10), & A^{3}(110) = A(11), & A^{3}(111) = A(000) \end{array}$$

Thus, more informally, the following holds for each $j = 0, 1, \dots, 2^3 - 1$, where the order of strings is defined as the canonical length-lexicographic order.

$$A^{3}$$
(the $(j+1)$ st 3-bit string) = A(the $(j+1)$ st string).

For each n, an n-ary Boolean function A^n is defined in the same way, and an interpretation of the query symbol ξ^n is defined in the same way. For an oracle A, the concept of a *tautology with respect to* A is defined in a natural way. If a one-query formula F is a tautology with respect to A, then we say F is a *one-query tautology* with respect to A. The set of all one-query tautologies with respect to A is denoted by 1TAUT^A.

In [Su02], for a given concept \leq_{α} of reduction, we study the following hypothesis, where 1TAUT^X denotes the set of all one-query tautologies with respect to an oracle X.

One-query-jump hypothesis for \leq_{α} : The class $\{X : 1 \text{TAUT}^X \leq_{\alpha} X\}$ has measure zero.

For a given reduction \leq_{α} , we denote the corresponding one-query-jump hypothesis by \leq_{α} .

In [Su98], it is shown that the one query-jump hypothesis for p-T reduction is equivalent to " $R \neq NP$."

And, in [Su02], it is shown that the one query-jump hypothesis for p-tt reduction implies " $P \neq NP$."

In [Su05], we show that the one query-jump hypothesis for p-btt reduction holds, where p-btt denotes polynomial-time bounded-truth-table reduction. The

anonymous referee of [Su05] noticed that the one query-jump hypothesis holds for bounded-truth-table reduction without polynomial-time bound, and Kumabe independently noticed the same result. The referee's proof, which may be found in [Su05], uses some concepts of resource-bounded generic oracles in [AM97]. Kumabe's proof is more simple.

In §3 of this note, we introduce Kumabe's proof of the above result. In §4, we extend the result, and show that the one query-jump hypothesis holds for $(\log n)^{O(1)}$ -question tt-reduction (without polynomial-time bound). In §5, as applications of the result in §4, we show a lower bound and an upper bound of forcing complexity (i.e., the minimum size of forcing condition that forces a given formula) of the one-query tautologies with respect to a random oracle. We show that if A is a random oracle then with probability one, the forcing complexity of the one-query tautologies with respect to A is greater than $(\log |F|)^{O(1)}$, and it is at most $O(|F|^2)$.

The three of authors had a meeting at July 22 23, 2004, at the office of T.S. in Osaka Prefecture University. This note is a research memo on the meeting, and is an extension of [Su05].

2 Notation

Most of our notation is the same as that of [Su02] and [Su05], and almost all undefined notions may be found in these papers. An article by Kawanishi and Suzuki [KS05] in this volume of $S\bar{u}rikaisekikenky\bar{u}sho$ $K\bar{o}ky\bar{u}roku$ contains basic definitions on the relativized propositional calculus and Dowd-type generic oracles. The journal version of [Su02] may be purchased at Science Direct.

```
http://www.sciencedirect.com/science/journals
```

 ω stands for $\{0, 1, 2, 3 \cdots\}$, while N stands for $\{1, 2, 3 \cdots\}$. In some textbooks, the complexity class R is denoted by RP. For the detail of the class R, see for example [BDG88].

The definition of polynomial-time truth-table reduction and its variant may be found in [LLS75].

3 Bounded truth table reduction

In this section, we show the following.

Proposition 1 The Lebesgue measure of the set

 $\{X : 1 \text{TAUT}^X \leq_{\text{btt}} X\}$

is zero. In other words, one-query jump hypothesis [Su02, Su05] for btt-reduction (without polynomial-time bound) holds.

Sketch of proof (due to Kumabe):

For each oracle X, let $L^X := \bigcup_n \{(u, v, w) \in \{0, 1\}^n : |u| = |v| = |w| = n$ and $X^n(u) = X^n(v) = X^n(w)\}$. It is easy to see that $L^X \leq_m^p 1\text{TAUT}^X$.

Suppose that f is a recursive function such that for each string x, it holds that f(x) is of the form $(\varphi_x, s_{x,1}, s_{x,2})$, where φ_x is a function from $\{0, 1\}^2$ to $\{0, 1\}$, and $s_{x,1}, s_{x,2}$ are strings.

It is enough to show the following class has measure zero.

 $\{X: L^X \text{ is 2tt-reducible to } X \text{ via } f \}$

For each forcing condition S, there exists strings $x^{(1)}, x^{(2)}, x^{(3)}, x^{(4)}, x^{(5)}$ and a forcing condition T such that

(1) dom $T = \operatorname{dom} S \cup \{x^{(1)}, x^{(2)}, x^{(3)}, x^{(4)}, x^{(5)}\},$ and

(2) for any oracle X extending T, it holds that L^X is not 2tt-reducible to X via f.

Therefore, the class $\{X : L^X \text{ is } 2tt\text{-reducible to } X \text{ via } f \}$ has measure zero. \Box

4 $(\log n)^{O(1)}$ -question tt-reduction

Theorem 2 The Lebesgue measure of the following set is zero.

 $\{X: 1 \text{TAUT}^X \leq_{(\log n)^{\mathcal{O}(1)} - \text{tt}} X\}$

In other words, one-query jump hypothesis for $(\log n)^{O(1)}$ -tt-reduction (without polynomial-time bound) holds.

5 Lower and upper bounds to forcing complexity

Theorem 3 Let \mathcal{D}_{\log} be the class of all oracles D such that there exists a positive integer c (c may depend on D) of the following property. For any $F \in 1\text{TAUT}^D$, there exists a forcing condition $S \sqsubseteq D$ such that S forces F to be a tautology and

 $|\operatorname{dom} S| \le (\log |F|)^c.$

Then \mathcal{D}_{\log} has measure zero.

Question: Is \mathcal{D}_{\log} empty ?

Theorem 4 Let \mathcal{D}_{quad} be the class of all oracles D such that there exists a positive integer c (c may depend on D) of the following property. For any $F \in 1\text{TAUT}^D$, there exists a forcing condition $S \sqsubseteq D$ such that S forces F to be a tautology and

$$|\operatorname{dom} S| \le c|F|^2 + c,$$

where |F| denotes the length of the binary code of F. Then \mathcal{D}_{quad} has measure one. Question: Let $\mathcal{D}_{\text{linear}}$ be the class defined similarly to $\mathcal{D}_{\text{quad}}$ by using a linear formula c|F| + c instead of a quadratic $c|F|^2 + c$. Then, is $\mathcal{D}_{\text{linear}}$ empty? If non-empty, does it have positive measure?

References

- [Am86] Ambos-Spies, K.: Randomness, relativizations, and polynomial reducibilities. In: Structure in Complexity Theory, Lect. Notes Comput. Sci. 223 (A. L. Selman, Eds.), pp.23-34, Springer, Berlin, 1986.
- [AM97] Ambos-Spies, K., Mayordomo, E.: Resource-bounded measure and randomness. In: Complexity, logic, and recursion theory, Lecture Notes in Pure and Applied Mathematics 187 (A. Sorbi, Eds.), pp.1-47, Marcel Dekker, New York, 1997.
- [BDG88] Balcázar, J. L., Diaz, J., Gabarró, J.: Structural complexity I. Springer, Berlin, 1988.
- [BG81] Bennett, C. H., Gill, J.: Relative to a random oracle A, $P^A \neq NP^A \neq$ co-NP^A with probability 1. SIAM J. Comput., 10 (1981), pp. 96-113.
- [Do92] Dowd, M.: Generic oracles, uniform machines, and codes. Information and Computation, 96 (1992), pp. 65-76.
- [KS05] Kawanishi, A. and Suzuki, T.: Random extraction from hand-drawing curves and its semantics (in Japanese). Sūrikaisekikenkyūsho Kōkyūroku, this volume.
- [LLS75] Ladner, R. E., Lynch, N. A., Selman, A. L.: A comparison of polynomial time reducibilities. *Theoret. Comput. Sci.*, 1 (1975), pp.103-123.
- [Su98] Suzuki, T.: Recognizing tautology by a deterministic algorithm whose while-loop's execution time is bounded by forcing. Kobe Journal of Mathematics, 15 (1998), pp. 91-102.
- [Su99] Suzuki, T.: Computational complexity of Boolean formulas with query symbols. Doctoral dissertation (1999), Institute of Mathematics, University of Tsukuba, Tsukuba-City, Japan.
- [Su00] Suzuki, T.: Complexity of the *r*-query tautologies in the presence of a generic oracle. Notre Dame J. Formal Logic, 41 (2000), pp. 142-151.
- [Su01] Suzuki, T.: Forcing complexity: minimum sizes of forcing conditions. Notre Dame J. Formal Logic, 42 (2001), pp. 117-120.

- [Su02] Suzuki, T.: Degrees of Dowd-type generic oracles. Inform. and Comput., 176 (2002), pp. 66-87.
- [Su05] Suzuki, T.: Bounded truth table does not reduce the one-query tautologies to a random oracle. Archive for Mathematical Logic, to appear.