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Abstract

The aim of this paper is to investigate the logical strength of the determinacy

of infinite games whose complexity lies in the finite difference hierarchy over $\Sigma_{2}^{0}$ .

This is a continuation of Tanaka’s papers [12] and [13], and will be succeeded by

our further studies on $\triangle_{3}^{0}$ games.

1 Introduction
For $A\subset\omega^{\omega}$ , we associate a two-person game $G_{A}$ (or simply denote $A$ ) described as

follows: player I and player II alternately choose natural numbers (starting with I)

to form an infinite sequence $f\in\omega^{\omega}$ and I (resp. $\mathrm{I}\mathrm{I}$ ) wins iff $f\in A$ (resp. $f\not\in A$).

We say that $A$ is determinate if one of the players has a winning strategy, namely,

a map $\sigma$ : $\omega^{<\omega}arrow\omega$ such that the player is guaranteed to win each play $f$ in which

he makes a move $f(n)=\sigma((f(0), \ldots, f(n-1)))$ at each stage $n$ of his turn.

Much work has been done regarding determinacy in set theory. Gale and Stewart

[4] proved that open sets are determined. Their result were soon extended by Wolfe

[14] to the $F_{\sigma}$ -sets, then by Davis [2] to $F_{\sigma\delta}$-sets. The next major advance was made

by Martin [7] who showed that all Borel sets are determinate. It has also shown

that one must assume some strong large cardinal axioms to prove the determinacy

of games beyond the class of Borel sets. See [6] for more information.

The determinacy of games with various logical complexities can be formally

stated within second order arithmetic. Then, we are interested in the following

question motivated by Reverse Mathematics (cf. Simpson [10]): what set existence

axioms are needed to prove the determinacy of some classes of formulas in second

order arithmetic. While Friedman [3] proved that $\Sigma_{5}^{0}$ determinacy is not proved le
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in the full system of second order arithmetic, Steel [11] (cf. Tanaka [12] and Simp-

son [10] $)$ proved that ATRO is necessary and sufficient for $\Sigma_{1}^{0}$-determinacy. Later,

Tanaka [13] proved that the axiom of $\Sigma_{1}^{1}$ -monotone inductive definitions is equiv-

alant to $\Sigma_{2}^{0}$-determinacy over ATRO

Meanwhile, Burgess [1] has obtained a charecterization of insets by applying

the game quantifier to the difference hierarchy over $G_{\mathit{5}}$-sets. Hinman [4] defined an

effective counterpart of the finite level of $R$-hierarchy and showed that this hierarchy

can be defined by finite iteration of Kolmogorov’s operator 72. These provide us with

useful indication to extend Tanaka’s characterization of $\Sigma_{2}^{0}$ -determinacy, though it

does not seem to be easy to transform them directly into our setting.

The paper is structured as follows. Section 2 contains some preliminaries. Sec-

tion 3 represents the main part in this paper, we introduce the inductive definition

of a combination of finately many $\Sigma_{1}^{1}$-operators, then show that it is equivalent to

the determinacy of a Boolean combination of $\Sigma_{2}^{0}$-sets.

The proofs here are only sketched. A full treatment will appear elsewhere.

2 Preliminaries

In this section, we introduce some subsystems of second order arithmetic.

Definition 2.1 The language of second order arithmetic consists of the following

symbols:. number variables $x$ , $y$ , $z\ldots$ intended to range over $\omega$ ,. set variables $X_{\gamma}Y$, $Z$, $\ldots$ intended to range over the subsets of $\omega_{l}$. constant symbols 0, 1,. function symbols $+$ , $\cdot$ ,

$\bullet$ relation symbols $=,$ $<_{1}\in$ .

Number terms are build from number variables and constant symbols 01 by

using -t-, $\cdot$ . Atomic formulas are of the form $t_{1}=t_{2}$ , $t_{1}<t_{2},t_{1}\in X$ , where $t_{1}$ , $t_{2}$

are number terms. Formulas are built up from atomic formulas by means of propo-

sitional connectives, number quantifiers $\forall x$ , $\exists x$ , and set quantifiers $\mathrm{V}\mathrm{X}$ , $\exists X$ . The

formulas can be classified as follows:

$\bullet$

$\varphi$ is bounded $(\Pi_{0}^{0})$ if it is built up from atomic formulas by using propositional
connectives and bounded number quantifiers (Vx $<t$), $(\exists x<t)$ ,
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$\bullet$
$\varphi$ is $\Pi_{0}^{1}$ if it does not contain any set quantifier. $\Pi_{0}^{1}$ formulas are called with-

metical formulas,

$\bullet$

$\varphi$ is $\Sigma_{n}^{i}$ if $\varphi\equiv\neg\psi$ where $\psi$ is a $\Pi_{n}^{i}$ -formula $(i\in\{01\}\}’ n\in\omega)$ ,. $\varphi$ is $\Pi_{n+1}^{0}$ if $\varphi\equiv\forall x_{1}\cdots$ $\forall x_{k}\psi$ where $\psi$ is a $\Sigma_{n}^{0}$-formula $(n\in\omega)\}$

. $\varphi$ is $\Pi_{n+1}^{1}$ if $\varphi$
$\equiv\forall X_{1}\cdots\forall X_{k}\psi$ where $\psi$ is a $\Sigma_{n}^{1}$-formula $(n\in\omega)$ .

The $\Pi_{n}^{i}$ comprehension axiom, denoted $(\Pi_{n^{-}}^{t}\mathrm{C}\mathrm{A})$ , is defined to be $\exists X\forall x(x\in X++$

$\mathrm{F}(\mathrm{X})\}$ , where $\varphi$ is $\Pi_{n}^{i}$ .

Definition 2.2 The system $\mathrm{A}\mathrm{C}\mathrm{A}_{0}$ consists of the discretely ordered semi-ring

axioms for $(\mathrm{N}, +, \cdot, 0,1, <)$ together with $(\Pi_{0^{-}}^{1}CA)$ and the following induction ax-
$\mathrm{i}om$ :

$\forall X$ (($0\in X$ AVz $(x\in Xarrow(x+1)\in X))arrow \mathrm{V}x(x\in X)$ ).

ACAq is a conservative extension of Peano-arithm etic. It is also a nice base

theory when we deal with classical analysis.

Finally, we define the subsystem $\mathrm{A}\mathrm{T}\mathrm{R}_{0}$ . We start by defining the axiom ( $\Pi_{n}^{i}$ -

$TR)$ .

Definition 2.3 The axiom $(\Pi_{n}^{i}-TR)$ is defined as follows: for any set $X\subset\omega$

and for any well-ordering $\prec$ , there exists a set $H\subset\omega$ such that

1. if $b$ is the $\prec$-least element, then $(H)_{b}=X$ ,

2. if $b$ is the immediate successor of $a$ w.r.t. $\prec$ , then Vn $(n\in(H)_{b}\Leftrightarrow\psi(n, (H)_{a}))$ ,

3. if $b$ is a limit, then $\forall a\forall n((n, a)\in(H)_{b}\mapsto$ ( $a\prec b$ A $n\in(H)_{a}$ ) $)$ ,

where $\psi$ is a $\Pi_{n}^{i}$-formula, $(H)_{a}=\{n : (n, a)\in H\}$ and, $(n, a)=((n+a)(n+a+$

$1)/2)+n$ .

The sybsystem $\mathrm{A}\mathrm{T}\mathrm{R}_{0}$ consists of $\mathrm{A}\mathrm{C}\mathrm{A}_{0}+(\Pi_{0}^{1}-TR)$ . Obviously, ATRO is

stronger than ACAo-

3 $(\Sigma_{2}^{0})_{k}$-determinacy and $[\Sigma_{1}^{1}]^{k}-\mathrm{I}\mathrm{D}$

An operator $\Gamma$ : $P(\omega)arrow F(\omega)$ is said to be monotone iff $\Gamma(X)$ $\subset\Gamma(Y)$ whenever

$X\subset Y$ . $\Gamma$ is a $\Sigma_{1}^{1}$ -operator iff its graph $\{(x, X) : x\in\Gamma(X)\}$ is $\Sigma_{1}^{1}$ . We will use

mon $\Sigma_{1}^{1}$ to denote the class of $\Sigma_{1}^{1}$ monotone operators. A relation $R$ is a pre-ordering

iff it is reflexive, connected and transitive. $R$ is a pre-weilordering iff it is pre-ordering

and well-founded. The field of $R$ is the set $\{x : \exists y(x, y)\in R\vee(y, x)\in R\}$ .
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We characterize the determinacy of a Boolean combination of $\Sigma_{2}^{0}$ -formulas in

term of inductive definition of a finite combination of $\Sigma_{1}^{1}$-operators. First, let us look

how to iterate a pair of operators $\Gamma_{1}$ , $\Gamma_{2}$ . We assume $\Gamma_{1}$ has a distinct parameter $X$ ,

and so it is also denoted by $\Gamma_{1}^{X}$ . We start with the empty set, and iterate aPPlying
$\Gamma_{1}^{\emptyset}$ until we get a fixed point Fo, $\mathrm{i}.\mathrm{e}$ , $\Gamma_{1}^{\emptyset}(F_{0})\subset F_{0}$ . Then $\mathrm{r}\mathrm{e}$-start iterating $\Gamma_{1}^{\Gamma_{2}(F_{0})}$ ,

get a fixed point $F_{1}$ . Again, iterate $\Gamma_{1}^{\Gamma_{2}(F_{0})\cup\Gamma_{2}(F_{1})}$ and so on. The procedure stops

when we get a fixed point $F$ such that if $F’$ is the least fixed point of $\Gamma_{1}^{F}$ then

$\Gamma_{2}(F’)\subset F$ . This procedure can be viewed as an inductive definition by a single

operator $[\Gamma_{1}^{X}, \Gamma_{2}]$ .
Generally, the iteration of Fx, $\cdots$ , $\mathrm{p}_{k-1}$ , $\Gamma_{k}$ can be described as follows. We

iterate $[\Gamma_{1}, \cdots, \Gamma_{k-1}]^{\emptyset}$ until we get at fixed point, say $F0$ . Then restart iterating
$[\mathrm{F}\mathrm{i}, \cdots, \Gamma_{k-1}]^{\Gamma_{k-}(F_{0_{J}^{\backslash }}}$ , get another fixed point $F_{1}$ , again iterate $[\Gamma_{1}, \cdots, \Gamma_{k-1}]^{\Gamma_{k}(F_{0})\cup\Gamma_{k}\{\Gamma_{1}^{r})}$

.

and so on. Eventually, we stop when we get a fixed point $F$ of $[\Gamma_{1}, \cdots , \Gamma_{k-1}, \mathrm{r}_{k}]$ .
Now, let Si, $\cdots$ , $S_{k}$ be collections of operators. By [$S_{1},$ $S_{2,7}\ldots$ SJ-ID, we denote

the axiom which guarantees the existence of a fixed point of $[\Gamma_{1}, \cdots, \Gamma_{k}]$ for any
$\Gamma_{1}\in S_{1}$ , $\cdots$ , $\Gamma_{k}\in S_{k}$ . We here give a formal definition for $k$ $=2$ as follows.

Definition 3.1 $[S_{1}, S_{2}]- \mathrm{I}\mathrm{D}$ asserts that for any $\Gamma_{1}\in S_{1}$ , $\Gamma_{2}\in S_{2}$ , there exist

pre-wellorderings $W$, $V’$ on their fields $F$, $F’$ respectively such that

$\Gamma_{2}(F’)\subset F\Lambda\Gamma_{1}^{F}(F’)\subset F’$ ,

and also a pre-wellordering $V^{m}$ on its field $F^{m}$ for each $m\in F$ such that. $\forall y$ $\in$ $F^{m}1$ , $V_{y}^{m}=\Gamma_{1}^{W_{<m}}(V_{<y}^{m})\cup V_{<y}^{m}$. $W_{m}=\Gamma_{2}(F^{m})\llcorner^{1}W_{<m}$. $\Gamma_{1}^{W_{<m}}(F^{m})\subset F^{m}$ .

For convenience, we introduce some abbreviations. By $[S_{1}^{k_{1}}, S_{2}^{k_{2}}, \cdots, S_{i}^{k_{i}}]- \mathrm{I}\mathrm{D}$ , we

mean
$k_{1}$ times $k_{2}$ times $k_{i}$ times

$[S_{1},\infty\ldots, S_{1},S_{2},\infty\ldots , S_{2}, \cdots,\infty S_{i}, \ldots, S_{i}]-\mathrm{I}\mathrm{D}$ .

We also write $[S]^{k}- \mathrm{I}\mathrm{D}$ for $[S^{k}]- \mathrm{I}\mathrm{D}$ .

We here remark that our defition of combinations of inductive operators is dif-

ferent from one studied in Richter and Aczel [8].

Next, we define the class $(\Sigma_{2}^{0})_{k}$ of formulas as follows. For $k=1$ , $(\Sigma_{2}^{0})_{1}=\Sigma_{2}^{0}$ . For

$k>1,$ $\psi\in(\Sigma_{2}^{0})_{k}$ iff it can be written as $\psi_{1}$ A $\psi_{27}$ where $\neg\psi_{1}\in(\Sigma_{2}^{0})_{k-1}$ and $\psi_{2}\in\Sigma_{2}^{0}$ .
The goal of this section is to prove the equivalence between $(\Sigma_{2}^{0})_{k}$ determinacy and
$[\Sigma_{1}^{1}]^{k}- \mathrm{I}\mathrm{D}$. We start by the following theorem



11)

Theorem 3.1 ATRO $\vdash[mon\Sigma_{1}^{1}, (\Sigma_{1}^{0})^{k-1}]- \mathrm{I}\mathrm{D}arrow(\Sigma^{0}2)_{k}- \mathrm{D}\mathrm{e}\mathrm{t}$

Proof. We only show the case $k=2$ since the case $k>2$ can be treated by simple

meta-induction. Let $A(f)$ be a $(\Sigma_{2}^{0})_{2}$-formula. There are a $\Sigma_{2}^{0}$-formula $\varphi_{0}$ and a

$\Pi_{2}^{0}$-formula $\varphi_{1}$ such that for all $f\in\omega^{a)}$ , $A(f)\equiv\varphi_{0}(f)$ A $\varphi_{1}(f)$ . Since $\varphi_{0}$ is a $\Sigma_{2}^{0}$ ,

there is a n3 relation $R$ such that for all $f\in\omega^{\mu\prime}$ , $\varphi \mathrm{o}(f)\equiv\exists x\forall yR(x, f[y])$ , where

$f[y]$ is acode for $\langle f$(0) $, f(1), \cdots, f(y-1)\rangle$ .
By $[mon\Sigma_{1}^{1}, \Sigma_{1}^{0}]- \mathrm{I}\mathrm{D}$ , we define a transfinite sequence $\langle W_{\alpha}, ce\in Y\rangle$ of sure winning

positions for player I as follows: for any ordinal $\alpha\in Y$ ,

$u\in W_{\alpha}\mapsto\exists x$ (I
$\check{(1)}\ovalbox{\tt\small REJECT}$

hasa winning
$\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{y}(2)$

for $A_{u,\alpha,x}$ ),

where $A_{u,\alpha,x}=$ { $f\in\omega^{\omega}$ :Vy(R ( $x$ , $(u*f)[y])\vee(u*f)[y]\in W_{<\alpha}$ ) $\Lambda\varphi_{1}^{u}(f)$ }. Here, $u*f$

denotes the concatenation of $u$ and $f$ , $\varphi_{1}^{u}(f)$ $\mapsto\varphi 1(u*f)$ and $W_{<\alpha}=\cup\{W\beta : \beta<\alpha\}$ .

We put $W_{\varpi}= \bigcup_{\alpha\in Y}W_{\alpha}$ .
Now let us look at the above definition of $W_{\alpha}$ . Clearly, part (i) of the right hand

side of the definition is $\Sigma_{1}^{0}$ -operator. Part(2) can be viewed as the complement of

a fixed point of $\Sigma_{1}^{1}$-monotone operator, since $A_{u_{\mathrm{I}}\alpha_{1}x}$ is a $\Pi_{2}^{0}$ game (see [4]). Thus,

$W_{\alpha}$ is defined by a combination of $\Sigma_{1}^{0}$-operator and $\Sigma_{1}^{1}$ -monotone operator. We

talked about a set of ordinals $Y$ , but there is no harm of this at all, because we can

simply identify the set $Y$ with the pre-wellordering constructed by $[mon\Sigma_{1}^{1}, \Sigma_{1}^{0}]- \mathrm{I}\mathrm{D}$ .

Moreover it is not difficult to show that for any $u\in\omega^{<\omega}$ , we have

1. $u\in W_{\infty}arrow$ player I has a winning strategy for $A^{u}$ ,

2. $u\not\in W_{\infty}arrow$ player II has a winning strategy for Au.

Here, $A^{u}$ is defined by $f\in A^{u}++u*f\in A$ .

From this claim, one of the players has a winning strategy for Au. Thus $A=A^{\emptyset}$

is determinate. This completes the proof of the main theorem. $\square$

Next, we prove the converse.

Theorem 3.2 $\mathrm{A}\mathrm{C}\mathrm{A}0\vdash(\Sigma_{2}^{0})_{k^{-}}\mathrm{D}\mathrm{e}\mathrm{t}arrow[\Sigma^{1}1]^{k}- \mathrm{I}\mathrm{D}$ .

Proof. As in the previous theorem, we only sketch the prove for the case $k=2$ .

Let $\Gamma_{1}$ , $\Gamma_{2}$ be $\Sigma_{1}^{1}$-operator.

First, we construct a $(\Sigma_{2}^{0})_{2}$ game $G$ as follows:. Player I starts by playing $y^{*}$ asking whether $y^{*}$ is in the field of the structure

inductively defined by $[\Gamma_{1}, \Gamma_{2}]$ , then II has to answer either yes (in this case,

he will be called Pro) or no (in this case, I will be called Pro)
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$\bullet$ Pro is requested to construct a pre-ordering $W$ , and $\langle$ $V^{m}$ , $m\in f$ ield $(W)\rangle$ such

that every $V^{m}$ is pre-wellorderings, with $y\in$ fieId(W) or $y\in f\mathrm{i}eld(V^{m,y})$ for

some $m$ .. We give Con (the opponent of Pro) a chance to win if he points out a mistake

in the $(\leq y)$-segment.. We show that I has no winning strategy and then by the $(\Sigma_{2}^{0})_{2}$ determinacy,

we deduce that player II has a winning strategy.

$\bullet$ Using II’s winning strategy, we build $\tilde{W}$ , $\langle$

$V\sim m$ , $m$ % fieId(W)$)\rangle$ such that for

any $y$ accepted by $\mathrm{I}\mathrm{I},\tilde{W}_{<y}=W_{<y}$ and $\tilde{V}^{m}=V^{m}$ for any $m\in\tilde{W}_{<y}$ .. Using the fact that I can never win, we show that $\tilde{W}$ , $\langle$

$V\sim m$ , $m\in$ fieId (W) $)$

satisfy the condition of Definition 3. $\mathrm{L}.\square$

Finally, we have the following corollary:

Corollary 3.1 For any k $>0$ , we have

ATRo $\vdash(\Sigma_{2}^{0})_{k}- \mathrm{D}\mathrm{e}\mathrm{t}\mapsto[mon\Sigma_{1}^{1}, (\Sigma_{1}^{0})^{k-1}]- \mathrm{I}\mathrm{D}\mapsto[\Sigma_{1}^{1}]^{k}- \mathrm{I}\mathrm{D}$ .
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