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ON THE VERIFICATION THEOREM OF CONTINUOUS-TIME
OPTIMAL PORTFOLIO PROBLEMS WITH STOCHASTIC

MARKET PRICE OF RISK

TOSHIKI HONDA(本多 俊毅) AND SHOJI KAMIMURA(上村 昌司)

ABSTRACT. In this paper, we study a continuous-tim $\mathrm{e}$ portfolio optimization
problem when the market price of risk is driven by linear Gaussian pro-
cesses. We show sufficient conditions to verify that a solution derived from
the Hamilton-Jacobi-Bellman equation is in fact an optimal solution to the
portfolio selection problem.

1. INTRODUCTION

In this paper, we study a continuous-time portfolio optimization problem in Kim
and Omberg [7]. We show sufficient conditions to verify that a solution derived from
the Hamilton-Jacobi-Bellman (HJB) equation is in fact an optim al solution to the
portfolio selection problem.

Since Merton’s seminal work (Merton [10], [11], [12]), many studies have been
done on continuous-time portfolio optimization problems. In particular, there has
been increasing interest in finding an optimal portfolio strategy when investment
opportunities are stochastic, because many empirical works conclude that invest-
ment opportunities are time varying. In this paper, we study a continuous-time
power-utility maximization problem when the market price of risk is driven by lin-
ear Gaussian processes. Such a problem has been studied by many authors. See,
for example, Kim and Omberg [7], Liu [9], Wachter [14], Bielecki and Pliska [2],
Bielecki et al. [3], and Nagai [13]. In this paper, we concentrate on the Kim-Omberg
model [7], where the market price of risk is driven by an Ornstein-Uhlenbeck pro-
cess.

There are two main approaches to solving the continuous-time portfolio opti-
mization problem. One is the stochastic control approach and the other is the
martingale approach. Since the market is incomplete in our model, the martin-
gale approach is not applied directly. In this paper, we thus employ the former
approach. For an example of the latter approach, see Karatzas and Schreve [6]. In
the stochastic control approach, an optimal solution is conjectured by guessing a
solution to the HJB equation. It is necessary to verify that the conjectured solution
is in fact a solution to the original problem. The solution conjectured from the HJB
equation could be an incorrect solution to the original problem. However, as Korn
and Kraft [8] pointed out, the verification is often skipped since it is mathemat-
ically demanding. For example, Kim and Omberg [7] examined the finiteness of
the conjectured value function very carefully, but they did not provide verification
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conditions. Therefore, in this paper, we will give sufficient conditions to verify that
the conjectured solution is in fact the solution to the original problem.

2. FORMULATION OF THE PROBLEM

We fix a complete probability space $(\Omega, F, P)$ on which a two-dimensional stan-
dard Brownian motion $B=(B^{1}, B^{2})^{\mathrm{T}}$ is defined, and we also fix a time interval
$[0, T]$ . Let $\mathrm{T}\{\mathrm{t}$) be the augmentation of the filtration $\mathcal{F}^{B}(t):=\sigma(B(s);0<s<t)$ ,

$0<t<T$ .
Let $X$ be an Ornstein-Uhlenbeck process:

(1) $dX(t)=\lambda(\overline{X}-X(t))dt+\sigma_{X}(\rho dB^{1}(t)+\sqrt{1-\rho^{2}}dB^{2}(t))$

$X(0)=x_{0}\in$ R.

$\rho\in[-1,1]$ , A $>0$ , $\sigma_{X}>0$ , and $\overline{X}\in$ R. We call $X$ a state process, because it
determines an investment opportunity set in our portfolio problem.

There is one riskless asset and one risky asset. Suppose the price $S_{0}$ of the
riskless asset satisfies

$dS_{0}(t)=rSo(t)dt$ , $S_{0}(0)=1$ ,

where $r\geq 0$ is constant. The risky asset price $S$ satisfies the stochastic differential
equation

(2) $dS(t)=S(t)\mu(X(t))dt$ $+S(t)\sigma dB^{1}(t)$ , $S(\mathrm{O})=s>0$ ,

where $\mu:\mathbb{R}arrow \mathbb{R}$ satisfies ($\mu(x)$ - $r$} $/\sigma=x$ for $x\in$ R. Then (2) can be written by

$dS(t)=S(t)(r+\sigma X(t))dt+S(t)\sigma dB^{1}(t)$ .

We consider an investor who can divide his wealth between the riskless asset and
the risky assets. Let $\mathcal{L}^{2}(t_{0}, t_{1})$ be a set of $F(t)$ -progressively measurable processes
$\phi:\Omega\rangle\zeta[t_{0}, t_{1}]arrow \mathbb{R}$ such that

(3) $P( \int_{t_{\mathit{0}}}^{t_{1}}\phi(t)^{2}dt<\infty)=1$ .

We call an element of $\mathcal{L}^{2}(t_{0},t_{1})$ a portfolio strategy. We regard $\phi_{i}(t)$ as a fraction
of the wealth invested in the risky asset at time $t$ . The investor’s wealth process
$W^{\phi}$ corresponding to $\phi\in \mathcal{L}^{2}(0, T)$ is given by $W^{\phi}(0)=w_{0}>0$ and

$dW(t)=W(t)[\phi(t)(\mu(X(t))-r)+r]dt$ $+W(t)\phi(t)\sigma dB^{1}(t)$

(4)
$=W(t)[\phi(t)\sigma X(t)+r]dt+W(t)\phi(t)\sigma dB^{1}(t)$ .

The market is incomplete in the sense that there are some random processes that
are not replicated by the self-financing portfolio strategy $\phi$ .

The investor maximizes the expected utility of his wealth at terminal date $T$. We
assume that the investor has a power utility function with a relative risk aversion
coefficient $\gamma$ :

(5) $\phi\in A_{\gamma}(0,T)\max$

$E[ \frac{W^{\phi}(T)^{1-\gamma}}{1-\gamma}]$ .

Here $A_{\gamma}$ denotes the set of admissible portfolio strategies defined as follows. A
stochastic process $\phi$ is said to be an admissible portfolio strategy on $[t_{0}, t_{1}]$ if

(i) $\phi\in \mathcal{L}^{2}(t_{0}, t_{1})$ , when $0<\gamma$ $<1$
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(ii) for some function $\tilde{\phi}$ : $[0, T]$ $\mathrm{x}\mathbb{R}arrow \mathbb{R}$ satisfying the linear growth conditionl,
$\mathrm{W}(\mathrm{t})=\overline{\phi}(t_{\}}\mathrm{X}(\mathrm{t})$ on $[t_{0}, t_{1}]$ , when $\gamma>1$ .

The set of all admissible strategies on $[t_{0}, t_{1}]$ is denoted by $A_{\gamma}(t_{0}, t_{1})$ . The choice
of our set of portfolio strategies seems to be restrictive. The reason why such a
restrictive definition is needed will be explained in the end of Section 4.

Since the market is incomplete, there is no unique equivalent martingale measure,
and we cannot apply the so-called martingale approach directly. It is thus common
to apply the dynamic programming approach using the HJB equation. Let

$J(t, w, x; \phi)=E^{t,w,x}[\frac{W^{\phi}(T)^{1-\gamma}}{1-\gamma}]$ ,

Here and in the sequel, we use the notation $E^{t,w,x}[\cdot]=E[\cdot|W(t)=w, X(t)=x]$ .
Let

$Q=[\mathrm{O}, T)\mathrm{x}$ $(0, \infty)\mathrm{x}$ $\mathbb{R}$ .

We then define $V:Qarrow \mathbb{R}$ by

$V(t, w_{7}x)= \sup_{\gamma(t\tau)},J(t, w,x;\phi)\emptyset\in A^{\cdot}$

The function $V$ is called a value function. The HJB equation related to the prob-
lem ( $5^{\backslash }$, is

(6) $\sup D^{\phi}G(t, w, x)=0$

$\phi\in 1\mathrm{R}$

with the boundary condition

(7) $G(T, w, x)= \frac{w^{1-\gamma}}{1-\gamma}$ ,

where
$D^{\phi}G(t, w, x)=G_{t}+w(\phi\sigma x+r)G_{w}+\lambda(\overline{X}-x)G_{x}$

$+ \frac{1}{2}w^{2}\phi^{2}\sigma^{2}G_{ww}+\frac{1}{2}\sigma_{X}^{2}G_{xx}+\sigma_{X}w\phi\sigma\rho G_{wx}$ .

It is well-known from Kim and Omberg [7], Liu [9], and others that the function
$G$ is separable and has the following form:

(8) $G(t, w,x)= \frac{w^{1-\gamma}}{1-\gamma}f(t,x)$ ,

where
$f(t, x)= \exp\{a(t)+b(t)x+\frac{1}{2}c(t)x^{2}\}$

with the boundary conditions $a(T)=b(T)=c(T)$ $=0$ .
It follows from the first order condition for (6) that the candidate optimal port-

folio strategy is given by

(9) $\phi^{*}(t)=\frac{1}{\gamma}\frac{X(t)}{\sigma}+\frac{1}{\gamma}\frac{\rho\sigma_{X}}{\sigma}(b(t)+c(t)X(t))$.

1A function $h:[0, T]\mathrm{x}$ $\mathrm{R}^{K}arrow \mathbb{R}^{L}$ i $\mathrm{s}$ said to satisfy the linear growth condition if $|h(t, x)|\leq$

$k(1+|x|)$ for some $k>0$ , where $|\cdot|$ is the Euclidean norm
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Substituting this conjectured solution into the HJB equation, we obtain the differ-
ential equation for $a(\cdot)$ , $b(\cdot)$ , and $c(\cdot)$ as follows:

(10) $\dot{c}(t)=-\sigma_{X}^{2}(\frac{1-\gamma}{\gamma}\rho^{2}+1)c(t)^{2}-2(\frac{1-\gamma}{\gamma}\sigma x\rho-\lambda)c(t)-\frac{1-\gamma}{\gamma}$

(11) $\dot{b}(t)=-\sigma_{X}^{2}(\frac{1-\gamma}{\gamma}\rho^{2}+1)b(t)c(t)-(\frac{1-\gamma}{\gamma}\sigma_{X}\rho-\lambda)b(t)-\lambda\overline{X}c(t)$

(12) $\dot{a}(t)=-\frac{1}{2}\sigma_{X}^{2}(\frac{1-\gamma}{\gamma}\rho^{2}+1)b(t)^{2}-\frac{1}{2}\sigma_{X}^{2}c(t)-\lambda\overline{X}b(t)-(1-\gamma)r$.

The first term of (9) is the usual mean-variance portfolio in a continuous-time
model. The second term is a so-called hedging portfolio, which is held by investors
in order to hedge against an unfavorable shift in the state variables. Both terms
turned out to be linear with respect to state variable $X$ . In general, it is difficult to

solve optimal portfolio problems when the market is incomplete. Portfolio (9) is an
interesting exception that solves the HJB equation when the market is incomplete.

In order to complete the whole story, we need to verify that $G=V$ and that
the candidate optimal portfolio strategy $\phi^{*}$ is indeed a solution to (5). In the next
section, we will prove a verification theorem.

3. VERIFICATION THEOREM

Verification theorems, such as those in Fleming and Rishel [4] and Fleming and
Soner [5], ensure that the solution to the HJB equation coincides with the value

function and the candidate portfolio is indeed the optimal portfolio strategy. $\mathrm{H}\mathrm{o}\mathrm{w}arrow$

ever, since the wealth process (4) and the conjectured value function (8) do not
satisfy the usual assum ptions, such as the Lipschitz condition and the polynomial
growth condition, we cannot apply standard verification theorems directly to our
model. We therefore use the method employed in Nagai [13] and the references
therein.

Theorem 1 (Verification Theorem). Assume that the solution to (10) exists on
$[0_{2}T]$ . Then, the function $G$ defined by (8) satisfies $G=V$ . Further. $\phi^{*}(t, X(t))$ ,

defined by (9), is an optimal portfolio strategy.

The following lemma is crucial to the proof of the verification theorem. This

result is proven essentially in Bensoussan [1, Lemma 4.1.1]. For a stochastic process
$g$ , define

$\xi(t,g)$ $:= \exp\{\oint_{0}^{t}g(u)^{\mathrm{T}}dB(u)-\frac{1}{2}\int_{0}^{t}|g(u)|^{2}du\}$ and $\xi_{s}(t,g)$ $:= \frac{\xi(t,g)}{\xi(s,g)}$ .

Lemma 2. Let $g(t):=\tilde{g}(t, X(t))$ , where $\tilde{g}:[0, T]$
$\mathrm{x}\mathbb{R}arrow \mathbb{R}^{2}$ satisfies the linear

growth condition. Then
$E[\xi(T, g)]=1$ .

Using this lemma, we can show the theorem.

Proof of Theorem 1. Using It6’s formula, we obtain

(13) $dG(t, W^{\phi}(t),$ $X(t))$

$=D^{\phi}G(t, W^{\phi}(t),X(t))dt+G(t, W^{\phi}(t),X(t))g^{\phi}(t)^{\mathrm{T}}dB(t)$
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where

$g^{\phi}(t):=(1-\gamma)\phi(t)(\sigma,0)^{\mathrm{T}}+\mathrm{c}\mathrm{r}\mathrm{x}(\mathrm{b}(\mathrm{t})+c(t)X(t))$ $(\rho,$ $\sqrt{1-\rho^{2}})^{\mathrm{T}}$

for all $t\in[0, T]$ and $\phi\in A_{\gamma}(t, T)$ . Let $(t, w, x)$ $\in[0, T)\mathrm{x}[0, \infty)\mathrm{x}$ $\mathbb{R}$ be fixed. Since
$G$ is the solution to the HJB equation (6) and $\phi^{*}$ is the maximizer in (6), it follows
that

(14) $G(T, W^{\phi^{*}}(T)$
: $X(T))$ $=G(t,w, x)\xi_{t}(T,g^{\phi^{*}})$

Using (9), we have

$g^{\phi^{*}}(t)=b(t)(( \frac{1-\gamma}{\gamma}+1)\rho\sigma_{X},$ $\sqrt{1-\rho^{2}}\sigma_{X})^{\mathrm{T}}$

$+c(t)X(t)( \frac{1-\gamma}{\gamma}+(\frac{1-\gamma}{\gamma}+1)\rho\sigma_{X},$ $\sqrt{1-\rho^{2}}\sigma_{X})^{\mathrm{T}}$

Then, it follows from Lemma 2 that the process $\xi(t, g^{\phi^{*}})$ is a martingale. Hence,
from (14), we have

(15) $E^{t,w,x}[ \frac{W^{\phi^{*}}(T)^{1-\gamma}}{1-\gamma}]=E^{t,w,x}[G(T, W^{\phi^{*}}(T),$ $X(T))]=G(t,w,x)$ .

On the other hand, it follows from Lemma 2 and the definition of admissible
portfolio strategies that the process

$H_{t}(u):=G(t,w,x)\xi_{t}(u,g^{\phi})$, $t\leq u\leq T$

is a supermartingale for all $\phi\in A_{\gamma}(t, T)$ . Then, using (6) and (13), we obtain

(16)
$E^{t,w,x}[ \frac{W^{\phi}(T)^{1-\gamma}}{1-\gamma}]=E^{t,w,x}[G(T, W^{\phi}(T), X(T))]\leq E^{t,w,x}[H_{t}(T)]$

$\leq G(t, w,x)$

for all $\phi\in A_{\gamma}(t, T)$ .
Combining (15) and (16), we see that $G=V$ and $\phi^{*}(t, X(t))$ is an optimal

portfolio strategy. $\square$

Prom Theorem 1, we see that if a solution to the Riccati equation (10) exist,
then the conjectured function (8) is in fact the value function. In the following, we
can concentrate on if a solutions to the Riccati equation (10) exists, We however
emphasize that the choice of portfolio trading strategies set plays an important role
here. A key property is if $\{H_{t}(u)\}$ is a martingale for $\phi^{*}$ and a supermartingale
for all $\phi\in A_{\gamma}(t,T)$ . When $\gamma>1$ , $\{\xi_{t}(u,g^{\phi})\}$ is a martingale for all $\phi\in A_{\gamma}(t,T)$

because of Lemma 2. Thus $\{H_{t}(u)\}$ is a (super)martingale for all $\phi\in$ Ay $(t,T)$ .
However, for a broader set of portfolio strategies, say $\phi\in \mathcal{L}^{2}$ , $\{H_{t}(u)\}$ may not be
a supermartingale even if $\{\xi_{t}(u,g^{\phi})\}$ is supermartingale, since $G(t, w, x)$ is negative
when $\gamma>1$ . This is why we restrict the set of admissible portfolio strategies when
$\gamma>1$ . Further, it is easy to see that another possible definition of admissible
portfolio strategies for $\gamma>1$ is that $\phi\in \mathcal{L}^{2}$ and $\{\xi(t,g^{\phi})\}$ is a martingale.
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4. THE RICCATI EQUATION

It follows from Theorem 1 that the solution to the Riccati equation (10), if it
exists, give us the solution to the original problem. In this section, we discuss a
sufficient condition for the existence of the solution to the Riccati equation (10),
The method for solving (10) is standard. See Kim and Omberg [7] for details.

Let

$C_{0}= \frac{1-\gamma}{\gamma}$ , $C_{1}=2( \frac{1-\gamma}{\gamma}\sigma_{X}\rho-\lambda)$ , $C_{2}= \sigma_{X}^{2}(\frac{1-\gamma}{\gamma}\rho^{2}+1)$ ,

(17) $q=C_{1}^{2}-4C_{0}C_{2}=4 \lambda^{2}\{1-\frac{1-\gamma}{\gamma}(\frac{\sigma_{X}^{2}}{\lambda^{2}}+\frac{2\rho\sigma_{X}}{\lambda})\}$ ,

and

$\eta=\{$
$\sqrt{q}$ , $q\geq 0$

$\sqrt{-q}$ , $q<0$ .
Then, the solution to (10) is given by

(18) $c(t)=\{$

$\frac{2C_{0}(1-e^{-\eta(T-t)})}{2\eta-(C_{1}+\eta)(1-e^{-\eta(T-t)})}$ $(q>0)$

$- \frac{1}{C_{2}(T-t-\frac{2}{c_{1}})}-\frac{C_{1}}{2C_{2}}$
$(q=0_{7}C_{1}\neq 0)$

$\frac{1-\gamma}{\gamma}(T-t)$ $(q=0, C_{1}=0)$

$\frac{\eta}{2C_{2}}\tan(\frac{\eta}{2}(T-t)+\tan^{-1}(\frac{C_{1}}{\eta}))-\frac{C_{1}}{2C_{2}}$ $(q<0)$ .

Note that, by (11) and (12), $\sup_{t\in[0,T]}|c(t)|<\infty$ implies that $\sup_{\mathrm{t}\in[0,T]}|b(t)|<\infty$

and $\sup_{t\in \mathrm{I}0,T]}|a(t)|<\infty$ .
We can easily show that if $\gamma>1$ , then the solution to (10) always exists on $[0, T]$

since $\gamma>1$ implies $q>0$ . Then we can obtain the following result.

Proposition 3. If $\gamma>1$ , then the solution to (5) exists.

If $0<\gamma<1$ , the solution to (10) may not exist. If $q<0$ and

(19) $0< \frac{2}{\eta}(\frac{\pi}{2}+\tan^{-1}(\frac{C_{1}}{\eta}))<T$ ,

then (18) takes infinite value at some point on $[0, T)$ . Therefore, there is no solution
to (10) on $[0, T]$ in this case. However, we can obtain the following result.

Proposition 4. If $0<\gamma<1$ and q $>0$ , then the solution to (5) exists.

5. CONCLUSION

In this paper, we have derived sufficient conditions that confirm the conjectured
solution in Kim and Omberg [7] to be in fact a solution to the original problem.
We have shown that if the Riccati equation related to the HJB equation has a
solution, then the conjectured solution is in fact a solution to the original problem.
If $0<\gamma<1$ , th en the related Riccati equation does not always have a solution. On
the other hand, if $\gamma>1$ , then the related Riccati equation always have a solution.
However, portfolio strategies are chosen from a rather restrictive set of stochastic
processes
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