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A solution of the equation f'(z) = A2f(Az), A > 1.
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1. INTRODUCTION

The purpose of this paper is to give solutions for the functional-differential equa-
tion of advanced type '
1) {f’(a:) = X2f(Az), z€R=(—00,+00),

f(0) =0,

where A is a constant, A > 1. Our solutions are infinitely differentiable on R.
Moreover, if A > 2, then the solutions are bounded and have arbitrarily large zeros.
Our methods give numerical data readily.

Frederickson [1, 2] (1971) investigated functional-differential equations of ad-

vanced type

(1.2) f'(z) = af(Az) + Af (=),

here A > 1, and proved several properties of solutions. Later, Kato and McLeod [5]
(1971) and Kato [4] (1972) studied the asymptotic behaviour of solutions of (1.2).

Frederickson {1] provided a global existence theorem for equations

fle) =F(f(2z)), z€R,

where F' is an odd, continuous function with F'(s) > 0 for s > 0, by application
of the Schauder fixed point theorem. He showed that the absolute value of the
solution |f(z)| is periodic for z > 0. Frederickson [2] also provided a constructive

method for solutions for equations

f'(2) = af(Az) + bf(2),



where a, b € C and A > 1. He further gave solutions in the form of a Diriclet series

0(z,8) =Y _cad™™, R(B2) L0,

nez
where B is allowed to vary as a parameter. In the case of b = 0 and 8 = 1, the

solution is analytic in the upper half plane &2 > 0, continuous on $z > 0, and the
line &z = 0 is a natural boundary. From his result it follows that our solutions of
(1.1) cannot be real analytic.

Ivanov, Kitamura, Kusano and Shevelo [3] (1982) investigated the higher order

functional-differential equations of the form

(1.3) f™(z) = p(@)F(f(g(x))),

where p, F and g satisfy appropriate conditions. Kusano [6] (1984) also investigated

the functional differential equation

(1.4) f™(z) = p(x)f(g(x))

where 7 is even, p : [0,00) — R and g : [0, 00) — R are continuous, p(t) > 0, g(t)
is nondecreasing and lim;_, o, g(t) = o0. They [3, 6] gave sufficient conditions that
the solutions are oscillatory.

If f is a solution of (1.1), then f is also a solution of the equations

(1.5) f(z) = MAf(M\z), zeR,
and
(1.6) () = AN F(N32), zeR

However, (1.5) and (1.6) don’t satisfy the sufficient conditions in [3, 6].
Recently, the author [9] constructed solutions of (1.1) with A\ = 2 by using a little
different method from this paper.

We state the main theorem (Theorem 2.3) and application in next section. We can
easly apply the solution for the case A = 2 to Friedrichs’ molifier theorem and we can
rewrite defferential operator. For the proof of main theorem, see [10]. In the third

section, we give graphs of solutions for the case of A = 4, 3,2, 31/16,15/8,7/4, 2/3,5/4.



In the last section, we will give Mathematica programs.

2. MAIN RESULTS

First, we state two lemmas. Let

fey =7 / F(@)e € ds, FUSE) = / F ()6 d,

and
sincé — {in(wa/(w&), c#0

Lemma 2.1. The product

Hsmc( )\kﬁ) , £€eR

is converges pointwise and in L'(R).

Lemma 2.2. Let

(2.1) u=F"[U], U(§)=exp ( — 1)) Hsmc (2,\k )

Then u has the following properties:

u € C*(R),

u(z) >0 forz € (0, —)\i—l) , u(z) =0 forx ¢ (O,:\Tl_—l) 3
u(z) = u(l/(A - 1) - z),

/ u(z)dz =1,
R
and

1 1
! — )2
(2.2) u'(z) = Nu(Az) for z € [0 min (A )\()‘_1)>}.
Let we define the operator T : L' — L! as follows.

(2:3) Tf(@)=A(xpu* f) Az), felLl
Then the function u in Lemma 2.2 is given by the following equation.

(2.4) u = lim T*x10,1)-



Secondly, we define sequences {n;}$2; and {yx}32, as follows:

ny =0, ng=1,
(2.5) g1 =1, ngp =0, if mp=1 (k > 2),
Nog—1 = O, Nog = 1, if =0 (k > 2),

and
o]
(2.6) ye=) Ceh™h, k=123,
I=1
where Cy; € {0,1} (1 =1,2,3,---) are coefficients of the binary system such that

o
k—1=Y Cp2™, k=1,2,3,--.
=1

Then we have the following relations.

(_1)712&—1 —_ (—1)’%, _ s
(2.7) {(_1) S(=1)m = (—1)", k - 1,2,3,--+,

(2.8) S k=1,2,3,---,
yzk/)\=yk+1/)\,

and

(2.9) w2 N i k-1>9%, j=0,1,2,---.

Hence limgo0 Y5 = 00. If A > 2, then y; is strictly increasing. For example,
{m}ee: =40,1,1,0,1,0,0,1,1,0,0,1,0,1,1,0--- },
{ve}ie: =10,1,2,3,4,5,6,7,8,9,10,11,12,--- } for X = 2,

{w )2, = {0,1,4,5,16,17,20, 21, 64, 65, 68, 69,80, - -- } for A = 4,
359 13 15 19 27 35 39 47 45

00_: 01———.———-——.—.__._..__--c

{yk}k_l {:7232’4,474747818:838781

Our main result is the following:

} for A = 3/2.

Theorem 2.3. Let A > 1. Then a solution f of (1.1) can be found as

o

F@) =Y (~1)™u(z - ),

k=1
where u, {ne}2y and {ye}2, are as in (2.1), (2.5) and (2.6), respectively. The

solution f is in C°(R) and f(z) =0 forx < 0. If A > 2, then [ is bounded.



Let we define a function space L (R).

LY = {£ € Liyi |l < o0}
1 [
e =sup = [ 1f(@)lds

Theorem 2.4. The solution f of (1.1) is in C® N Lbl/ e,
Remark 2.1. The solution of (1.1) is tempered distribution.
Remark 2.2. A constant times f is also a solution.

Theorem 2.5. Let f be the solution in Theorem 2.3 for A =2 and

Ghe(@) = (2KE-DREN T (py ) (w/e).

Ifve C*R) orve LL(R) (k>0, 1 < p<oo), then
dfy
dt = Y * Ghe

uniformly on each compact subset in R or in LP(R), respectively.

Remark 2.3. G, is in C*°(R) with compact support. To prove the theorem we use

k k
Friedrichs’ molifier gx_z’: * Uy = U * %, where us = u(z/d)/d, § > 0, and u is the

function in Lemma 2.2 (A = 2).

3. EXAMPLES

In this section we give graphs for A = 4,3,2,31/16,15/8,7/4,3/2,5/4.

IfA=2,then { >0: f(z) =0} ={1,2,3,---}. If A> 2, then {z > 0: f(z) =
0} = UL, [yx + 1/(A — 1), yr41] and its measure is infinity, since 1/(A —1) < 1 <
Yk+1 — Yk, K =1,2,3,-+-.
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FIGURE 2. f'(z) = 4*f(4z)
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FIGURE 3. f'(z) = 32f(3z)

4. PROGRAM OF U(Xx)

Mathematica program (Part 1): The function u [ by using u_{n+1}=T(u_{n}) ]
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FIGURE 4. f'(z) = 2%f(2z)
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FIGURE 5. f'(z) = (31/16)?f(31z/16)
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FIGURE 6. f'(z) = (15/8)%f(15z/8)
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FIGURE 7. f'(z) = (7T/4)*f(Tz/4)
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* Setting lambda (1<lam<9)

In{1]: lam = 1.75;

* Calculation of the data ; u_{0}, ... , u_{50}
Inf[2]: udatal[0]=
Table[If[0 < i - 10000 =< 1000, lam - -1, 0], {i, 1, 20000}];
In[3]: Timing[ Doludatalk]= Table[If[1 =< j - 10000 =< 1000,
lam * Sum[udatalk = 1] [[i + 1000017,
{i,Round[lam * (j - 10000)]- Round[(lam -~ 1)* 1000]+ 1,



_z /\\/\/\ A /\ /\ /\/\ VL\\//\/ \@\/\\//\\/V/\ '

FiGUure 8. f'(z) = (3/2)*f(3z/2)

e \_;/2 14

FiGURE 9. f'(z) = (5/4)2f(5z/4)

Roundflam * (j - 10000)] }]1* 0.001/(lam - 1), 01,
{j, 1, 20000}, {k, 1, 50}]]
Out[3]: {121.14 Second, Null}

* Graph of u_{50}

In[4]: ulist[k_]:= Table[{(i - 10000)* 0.001/(lam - 1),

| Part [udatalk], i]}, {i, 10000, 11000}]

Inf5]: ListPlot[ulist[50], PlotJoined -> True,
PlotRange — {0, 1.1 * lam}]

* Save the data



In[6]: udata[50]1>> c:/mdata/udata7ov4-50
In[7]: ulist[501>> c:/mdata/ulist7ov4-50
In[8]: Export["c:/mdata/u7ové.eps”,
ListPlot[ulist[50], PlotJoined -> True,
PlotRange — {0, 1.1 * lam}]]

5. PROGRAM OF F(X)

Mathematica program (Part 2): The solution f on the interval [0,taul

* Setting lambda (1<lam<9) and tau
Infi}: lam = 1.75; tau = 30;

In[2]: kk = Round[Log[lam, tau]l+ 0.5]
Out[2]: 7

* Load the data
In(3]: udata = << c:/mdata/udata7ov4-50;
In[4];: ud = Table[Part[udata, i], {i, 10000, 11000}];

* Sequences m_{k} and y_{k}
In{5]: m[1]l= 0; m[2]= 1;
Do[m[k]l= If([Mod[k, 2]==0, Mod[m[k /2]+ 1, 2], m[(k + 1)/2]1,
{k, 3, 2"kk + 1}]
In[6]: Dolbfk, 11=k - 1; Dolcl[k, 1]l= Mod[bl[k, 11, 21;
blk, 1 + 1]= (blk, 11- clk, 11)/2, {1, 1, kk + 1}],
{k, 1, 27kk + 1}]
In[7]: Dolylkl=
Sumlclk, 1]* lam~(1 - 1), {1, 1, kk + 131, {k, 1, 27kk + 1}]

* Calculation of the solution

as the sum of (-1) {m_{k}rulx-y_{k}), k=1, 2, ... ,27kk.
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In[8]: Dolyy[kl= Round[y[kl* 1000 * (lam - 1), {k, 1, 27kk + 1}]
In[9]: zz[1]= Tablel0, {i, 1, yy[2"kk1}]; Dolz[kl= ’
Table[0, {i, 1, yy[k1}], {k, 2, 27kk}];
Dolzz[k]= Tablel[0, {i, 1, yy[2°kkl- yy[k]1}], {k, 2, 2"kk}];
In[10]: udy[1]l= Join[ud, 2z[11]; Doludy[k]l=
| Join[z[k], uwd* (-1)°mlk], zz[k]], {k, 2, 2°kk}]
In[11]: fd = Sum[udy[k], {k, 1, 2°kkl}];

* Save the graph of the solution

In[12]: ii=taux(lam~-1)*1000;

In{13]: flist = Table[{i * 0.001/(lam - 1),
Part[fd, i]}, {i, 1, ii}};

In[14]: Export[“c:/mdata/f7ov4.eps",

ListPlot[flist, PlotJoined -> True, AspectRatio — Automaticl];
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