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1Introduction

$(E_{\alpha})$

Over the past four decades a great deal of articles have been devoted to the study of oscillation
of solutions of half-linear differential equations. For example, those results can be found in
[1-6, 9-121. Especially, it is well-known that all nontrivial solutions of a half-linear differential
equation of the form

$(|x’|^{\alpha-1}x’)’+ \frac{\lambda}{t^{\alpha+1}}|x|^{\alpha-1}x=0$ , $t>t_{0}$ (1.1)

with $\alpha>0$ , A $>0$ and $t_{0}\geq 0$ , are oscillatory if

$\lambda>(\frac{\alpha}{\alpha+1})^{\alpha+1}$ ;

otherwise, they are nonoscillatory. This fact means that $(\alpha/(\alpha+1))^{\alpha+1}$ is the lower bound
for all nontrivial solutions of (1.1) to be oscillatory. Such a number is generally called the
oscillation constant (for example, see [7, $\mathrm{S}$, 13-15]).

Let us add a perturbation to equation (1.1) when A is the oscillation constant and consider
the perturbed half-linear differential equation

$(|x’|^{\alpha-1}x’)’+ \frac{1}{t^{\alpha+1}}\{(\frac{\alpha}{\alpha+1})^{\alpha+1}+(\frac{\alpha}{\alpha+1})^{\alpha}\delta(t)\}|x|^{\alpha-1}x=0$,

where $\delta(t)$ is positive and continuous on some half-line $(t_{0}, \infty)$ . Elbert and Schneider [6] have
investigated the asymptotic behaviour of solutions of $(E_{\alpha})$ . Using their results, we can present
the following statements.

Theorem A. Let $\alpha>1$ . If equation $(E_{\alpha})$ has a nontrivial oscillatory solution, then all non-
trivial solutions of $(E_{1})$ are oscillatory.

Theorem B. Let $0<\alpha<1\backslash If$ equation $(E_{1})$ has a nontrivial oscillatory solution, then all
nontrivial solutions of $(E_{\alpha})$ are oscillatory.
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It follows from the fact mentioned in the first paragraph and Sturm’s comparison theorem for
half-linear differential equations that if

$\lim\inf\delta larrow\infty(t)>0$ , (1.2)

then all nontrivial solutions of $(E_{\alpha})$ are oscillatory. As to Sturm’s separation and comparison
theorems, for example, see [5, 11, 12]. On the other hand, if condition (1.2) fails to hold, then
there is some possibility that equation $(E_{\alpha})$ has a nonoscillatory solution. One of the most
interesting case is that 5 $(t)=\lambda/(\log t)^{2}$ with A $>0$ . In this case, if A $>1/2$ , then all nontrivial
solutions of $(E_{\alpha})$ are oscillatory; otherwise, they are nonoscillatory (for details, see [6]).

We may regard Theorems A and $\mathrm{B}$ as comparison theorems between the linear differential
equation

$x’+ \frac{1}{t^{2}}\{\frac{1}{4}+\frac{1}{2}\delta(t)\}x=0$ $(E_{1})$

and half-linear differential equations of the form $(E_{\alpha})$ . Let $\alpha$ and $\beta$ be positive numbers sat-

isfying cz $<1<\beta$ . Then, combining Theorems A and $\mathrm{B}$ , we get the following conclusion;

if equation (Ep) has a nontrivial oscillatory solution, then all nontrivial solutions of $(E_{\alpha})$ are
oscillatory. A natural question now arises as to whether or not the converse proposition is also

true.
The first purpose of this paper is to extend Theorems A and $\mathrm{B}$ to a comparison theorem

between any two half-linear differential equations. The second purpose is to give an answer to

the above question. Our main results are stated as follows:

Theorem 1.1. Let $0<\alpha<\beta$ . If equation (Ep) has a nontrivial oscillatory solution, then all

nontrivial solutions of $(E_{\alpha})$ are oscillatory.

Remark 1.1. Theorem 1.1 is a generalization of Theorems A and B. To put it precisely, Theo-

rem 1.1 coincides with Theorem $\mathrm{A}$ (respectively, Theorem B) when $\alpha=1$ (respectively, $\beta=1$ ).

Theorem 1.2. Let $0<$ cz $<\beta$ . If equation $(E_{\alpha})$ has a nontrivial oscillatory solution, then all

nontrivial solutions of
$(|x’|^{\beta-1}x’)’+ \frac{1}{t^{\beta+1}}\{(\frac{\beta}{\beta+1})^{\beta+1}+l/\delta(t)\}|x|^{\beta-1}x=0$ (1.3)

are oscillatory, where $\nu$ $>(\beta/(\beta+1))^{\beta}$ .

Remark 1.2, It is essential that $\nu$ is greater than $(\beta/(\beta+1))^{\beta}$ in Theorem 1.2. Unfortunately,

even if equation $(E_{\alpha})$ has a nontrivial oscillatory solution, we cannot judge whether all nontriv-

ial solutions of $(E_{\beta})$ are oscillatory or not.

Remark 1.3. From Theorems 1.1 and 1.2, we see that the oscillation constant for equation
$(E_{\alpha})$ with $3(t)=\lambda/(\log t)^{2}$ is 1/2 for any $\alpha>0$ .
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2 Riccati technique

(2.1)

Consider the half-linear differential equation

$(|x’|^{p-1}x’)’+ \frac{1}{t^{p+1}}\{(\frac{p}{p+1})^{p+1}+h(t)\}|x|^{p-1}x=0$

with $p>0$ a fixed real number, where $h(t)$ is positive and continuous on $(0, \infty)$ . Using Riccati’s
transformation, we prepare some lemmas below. To this end, we denote

$H_{p}( \xi)=p\{\xi^{(p+1)/p}-\xi+\frac{p^{p}}{(p+1)^{p+1}}\}$

for $\xi>0$ and
$\gamma_{p}=(\frac{p}{p+1})^{p}$

Lemma 2.1. Let $\xi(s)$ be a positiveJunction on $[s_{0}, \infty)$ with $s_{0}>0$ satisfying

$\dot{\xi}(s)+H_{p}(\xi(s))\leq 0$ . (2.2)

then it is nonincreasing and tends to $\gamma_{p}$ as s $arrow\infty$ .

Proof. From

$H_{p}( \gamma_{p})=p\{(\frac{p}{p+1})^{p+1}-(\frac{p}{p+1})^{p}+\frac{p^{p}}{(p+1)^{p+1}}\}=0$

and
$\frac{d}{d\xi}H_{p}(\xi)=(p+1)\xi^{1/p}-p_{7}$

we see that $H_{p}(\xi)\geq 0$ for $\xi>0$ and $H_{p}(\xi)=0$ if and only if $\xi$
$=\gamma_{p}$ .

Since $\xi(s)$ is positive for $s\geq s_{0}$ , we have

$\dot{\xi}(s)\leq-H_{p}(\xi(s))\leq 0$

by (2.2), namely, $\xi(s)$ is nonincreasing. Hence, there exists a $\mu\geq 0$ such that $\xi(s)[searrow]\mu$ as
$sarrow\infty$ . Suppose that $\mu\neq\gamma_{p}$ . If $\mu>\gamma_{p}$ , then $\xi(s)>\mu>(\mu+\gamma_{p})/2>\gamma_{p}$ for $s\geq s_{0}$ . tf
$\mu<\gamma_{p}$ , then $\mu<\xi(s)<(\mu+\gamma_{p})/2<\gamma_{p}$ for $s$ sufficiently large. In either case,

$\dot{\xi}(s)\leq-H_{p}(\xi(s))\leq-H_{p}((\mu+\gamma_{p})/2)<0$

for $s$ sufficiently large, which yields that $\xi(s)$ tends to $-\infty$ as $sarrow\infty$ . This contradicts the
assumption that $\xi(s)$ is positive for $s\geq s_{0}$ . Thus, $\xi(s)$ tends to $\gamma_{p}$ as $sarrow\infty$ . The proof of
Lemma 2.1 is complete. $\square$

We next give a sufficient condition for all nontrivial solutions of (2.1) to be nonoscillatory
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Lemma 2.2. Let 4(s) be a positivefunction on $[s_{0}, \infty)$ with $s_{0}>0$ satisfying

$\dot{\xi}(s)+H_{p}(\xi(s))+h(e^{s})\leq 0$ , (23)

have $h$ is the junction defined in equation (2.1). Then all nontrivial solutions of (2.1) to be
nonoscillatory.

Proof. Define
$c(s)=-\dot{\xi}(s)-.H_{p}(\xi(s))$

for $s$ $\geq s_{l\mathrm{J}}$ . Then we have
$c(s)\geq h(e^{s})$ for $s\geq s_{0}$ . (2.4)

Let $u(s)$ be the positive function defined by

$u(s)= \exp(\int_{s_{0}}^{s}\xi(\sigma)^{1/p}d\sigma)$

for $s$ $\geq s_{0}$ . Then we get
$\dot{u}(s)=u(s)\xi(s)^{1/p}>0$

for $s\geq s_{0}$ , namely,

$\xi(s)=(\frac{\dot{u}(s)}{u(s)})^{p}$ for $s\geq s_{0}$ .

Differentiate $\xi(s)$ to obtain

$\dot{\xi}(s)=.\frac{(\dot{u}(s)^{p})u(s)^{p}-pu(s)^{p-1}\dot{u}(s)^{p+1}}{u(s)^{2p}}=\frac{(\dot{u}(s)^{p})}{u(s)^{p}}$

.
$-p( \frac{\dot{u}(s)}{u(s)})^{p+1}$

for $s\geq s_{0}$ . Hence, we have

$c(s)=- \frac{(\dot{u}(s)^{p})}{u(s)^{p}}$

.
$+p( \frac{\dot{u}(s)}{u(s)})^{p+1}-p\{(\frac{\dot{u}(s)}{u(s)})^{p+1}-(\frac{\dot{u}(s)}{u(s)})^{p}+\frac{p^{p}}{(p+1)^{p+1}}\}$

(2.5)

$=- \frac{(\dot{u}(s)^{p})}{u(s)^{p}}$

.
$+p( \frac{\dot{u}(s)}{u(s)})^{p}-(\frac{p}{p+1})^{p+1}$ ,

and therefore, we see that the positive function $u(s)$ is a nonoscillatory solution of the equation

$(| \dot{u}|^{p-1}\dot{u}).-p|\dot{u}|^{p-1}\dot{u}+\{(\frac{p}{p+1})^{p+1}+c(s)\}|u|^{p-1}u=$ Q.

(2.6)

Changing variable $t=e^{s}$ , we can transform equation (2.5) into the equation

$(|x’|^{p-1}x’)’+ \frac{1}{t^{p+1}}\{(\frac{p}{p+1})^{p+1}+c(\log t)\}|x|^{p-1}x=0$ .

Let $x(t)$ be the solution of (2.6) corresponding to $u(s)$ . Then $x(t)$ is positive for $t\geq e^{s\mathrm{o}}$ . From

(2.4) it follows that
$c(\log t)\geq h(t)$ for $t\geq e^{s\mathrm{o}}$ .

Hence, by Sturm’s comparison theorem for half-linear differential equations, all nontrivial so-
lutions of (2.1) are nonoscillatory. This completes the proof of Lemma 2.2. $\square$
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3 Proof of the main theorems

By means of Lemmas 2.1 and 2,2, we can prove our comparison theorems for half-linear dif-

ferential equations of the form $(E_{\alpha})$ .

Proof of Theorem 1.1. By way of contradiction, we suppose that equation (Ep) has an oscil-

Iatory solution and equation $(E_{\alpha})$ has a nonoscillatory solution $x(t)$ . We may assume that $x(t)$

is eventually positive, because the proof of the case that $x(t)$ is eventually negative is carried

out in the same way. Hence, there exists a $T>t_{0}$ such that $x(t)>0$ for $t\geq T$ , and therefore,

$(|x’(t)|^{\alpha-1}x’(t))’=- \frac{1}{t^{\alpha+1}}\{(\frac{\alpha}{\alpha+1})^{\alpha+1}+\gamma_{\alpha}\delta(t)\}|x(t)|^{\alpha-1}x(t)<0$ (3.1)

(3.2)

for $t\geq T$ . From this we see that $x’(t)$ is also positive for $t\geq T$ . In fact, if there exists a $t_{1}\geq T$

such that $x’(t_{1})\leq 0$ , then by (3.1) we have

$|x’(t)|^{\alpha-1}x’(t)<|x’(t_{1})|^{\alpha-1}x’(t_{1})\leq 0$

for $t>t_{1}$ . Hence, we can find a $t_{2}>t_{1}$ such that $x’(t_{2})<0$ . By (3.1) again, we obtain

$|x’(t)|^{\alpha-1}x’(t)\leq|x’(t_{2})|^{\alpha-1}x’(t_{2})<0$

for $t\geq t_{2}$ . We therefore conclude that $x’(t)\leq x’(t_{2})<0$ for $t\geq t_{2}$ , which implies that

$x(t)\leq x’(t_{2})(t-t_{2})+x(t_{2})arrow-\infty$

as $tarrow\infty$ . This is a contradiction to the assumption that $x(t)$ is eventually positive.
Making the change of variable $s=\log t$ , we can rewrite equation $(E_{\alpha})$ in the form

$(| \dot{u}|^{\alpha-1}\dot{u}).-\alpha|\dot{u}|^{\alpha-1}\dot{u}+\{(\frac{\alpha}{\alpha+1})^{\alpha+1}+\gamma_{\alpha}\delta(e^{s})\}|u|^{\alpha-1}u=0$ .

Let $u(s)$ be the solution of (3.2) which corresponds to $x(t)$ . Then $u(s)=x(t)>0$ and
$\dot{u}$ $(s)=tx’(t)>0$ for $s\geq\log T$ . Define

$\xi(s)=(\frac{\dot{u}(s)}{u(s)})^{\alpha}$

and differentiate $\xi(s)$ to obtain

$\dot{\xi}(s)=\frac{(\dot{u}(s)^{\alpha})}{u(s)^{\alpha}}$

.
-a $( \frac{\dot{u}(s)}{u(s)})^{\mathrm{c}\mathrm{x}11}$

Using (3.2), we have

$\dot{\xi}(s)=\alpha(\frac{\dot{u}(s)}{u(s)})^{\alpha}-(\frac{\alpha}{\alpha+1})^{\alpha+1}-\gamma_{\alpha}\delta(e^{s})-\alpha(\frac{\dot{u}(s)}{u(s)})^{\alpha+1}$ (3.3)

$=-\alpha$ $\{\xi(s)^{(\alpha+1)/\alpha}-\xi(s)+\frac{\alpha^{\alpha}}{(\alpha+1)^{\alpha+1}}\}-\gamma_{\alpha}\delta(e^{s})$

$=-H_{\alpha}(\xi(s))-\gamma_{\alpha}\delta(e^{s})$
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for $s\geq\log$ T.
We here show that there exists an $\epsilon_{0}>0$ such that

$\frac{\gamma_{\alpha}}{\gamma_{\beta}}H_{\beta}(\frac{\gamma_{\beta}}{\gamma_{\alpha}}\xi)\leq H_{\alpha}(\xi)$ (3.4)

for $\gamma_{\alpha}\leq\xi\leq\gamma_{\alpha}+\epsilon_{0}$ . For this purpose, we define

$F_{1}( \xi)=H_{\alpha}(\xi)-\frac{\gamma_{\alpha}}{\gamma_{\beta}}H_{\beta}(\frac{\gamma_{\beta}}{\gamma_{\alpha}}\xi)$ .

Then, differentiating $F_{1}(\xi)$ three times, we obtain

$\frac{d}{d\xi}F_{1}(\xi)=(\alpha+1)\xi^{1/\alpha}-\alpha-(\beta+1)(\frac{\gamma_{\beta}}{\gamma_{\alpha}})^{1/\beta}\xi^{1/\beta}+\beta$,

$\frac{d^{2}}{d\xi^{2}}F_{1}(\xi)=\frac{\alpha+1}{\alpha}\xi^{\langle 1-\alpha)/\alpha}-\frac{\beta+1}{\beta}(\frac{\gamma_{\beta}}{\gamma_{\alpha}})^{1/\beta}\xi^{(1-\beta)/\beta}$ ,

$\frac{d^{3}}{d\xi^{3}}F_{1}(\xi)=\frac{1-\alpha^{2}}{\alpha^{2}}\xi^{(1-2\alpha)/\alpha}-\frac{1-\beta^{2}}{\beta^{2}}(\frac{\gamma_{\beta}}{\gamma_{\alpha}})^{1/\beta}\xi_{7}^{\langle 1-2\beta)/\beta}$

so that
$F_{1}( \gamma_{\alpha})=\frac{d}{d\xi}F_{1}(\xi)|_{\xi=\gamma_{a}}=\frac{d^{2}}{d\xi^{2}}F_{1}(\xi)|_{\xi=\gamma_{\alpha}}=0$ (3.5)

and
$\frac{d^{3}}{d\xi^{3}}F_{1}(\xi)|_{\xi=\gamma_{a}}=\frac{\beta-\alpha}{\alpha\beta}(\frac{\alpha+1}{\alpha})^{2\alpha}>0$ . (3.6)

From (3.6) we can choose an $\epsilon_{0}>0$ such that

$\frac{d^{3}}{d\xi^{3}}F_{1}(\xi)>0$ for $\gamma_{\alpha}\leq\xi\leq\gamma_{\alpha}+\epsilon_{0}$ .

Hence, taking account of this estimation and (3.5), we see that $F_{1}(\xi)\geq 0$ for $\gamma_{\alpha}\leq\xi\leq\gamma_{\alpha}+\epsilon_{0}$ ,

as required.
Because of (3.3), Lemma 2.1 is available for $p=$ a and $s_{0}=\log T$ , and therefore, there

exists an $s_{1}>s_{0}$ such that
$\gamma_{\alpha}\leq\xi(s)\leq\gamma_{\alpha}+\epsilon_{0}$

for $s\geq s_{1}$ . Hence, together with (3.3) and (3.4), we get

$\dot{\xi}(s)+\frac{\gamma_{\alpha}}{\gamma_{\beta}}H_{\beta}(\frac{\gamma_{\beta}}{\gamma_{\alpha}}\xi(s))+\gamma_{\alpha}\delta(e^{s})\leq 0$

for $s\geq s_{1}$ . Let $\eta(s)=\gamma_{\beta}\xi(s)/\gamma_{\alpha}$ . Then we see that $\eta(s)$ satisfie$\mathrm{s}$

$\dot{\eta}(s)+H_{\beta}(\eta(s))+\gamma_{\beta}\delta(e^{s})\leq 0$
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for $s\geq s_{1}$ . Hence, from Lemma 2.2 with $p=\beta$ and $h(e^{s})=\gamma\beta\delta(e^{s})$ we conclude that $\mathrm{a}\mathbb{I}$

nontrivial solutions of (Ep) are nonoscillatory. This contradicts the assumption that equation
$(E\beta)$ has an oscillatory solution. Thus, we have completed the proof of Theorem 1.1. $\square$

Proof of Theorem 1.2. Suppose to the contrary that equation $(E_{\alpha})$ has an oscillatory solution

and equation (1.3) has a nonoscillatory solution $x(t)$ . $\mathfrak{M}\mathrm{e}\mathrm{n}$ , without loss of generality, we may
assume that $x(t)$ is eventually positive. Let $T>t_{0}$ be a number satisfying $x(t)>0$ for $t\geq T$ .
From the same manner as in the proof of Theorem 1.1, we see that $x’(t)$ is also positive for
$t\geq T$ .

By putting $t=e^{s}$ , equation (1.3) becomes

$(|\dot{u}|^{\beta-1}\dot{u})$ $.- \beta|\dot{u}|^{\beta-1}\dot{u}+\{(\frac{\beta}{\beta+1})^{\beta+1}+(\gamma_{\beta}+\epsilon)\delta(e^{s})\}|u|^{\beta-1}u=0$

for some $\epsilon$ $>0$ , where $u(s)=x(e^{s})=x(t)$ . Define

$\xi(s)=(\frac{\dot{u}(s)}{u(s)})^{\beta}$ ,

which is positive for $s\geq\log T$. A simple calculation shows that

$\dot{\xi}(s)=-H_{\beta}(\xi(s))-(\gamma_{\beta}+\epsilon)\delta(e^{s})$ (3.7)

for $s\geq\log T$ . Hence, it follows from Lemma 2.1 with $p=\beta$ and $s_{0}=\log T$ that

$\xi(s)[searrow]\gamma_{\beta}$ as $sarrow\infty$ . (3.S)

Let
$c= \frac{\gamma_{\beta}+\epsilon}{\gamma_{\alpha}}$ and $\eta(s)=\frac{\xi(s)+\epsilon}{c}$ .

Then, from (3.7) and (3.8) it turns out that

$\dot{\eta}(s)+\frac{1}{c}H_{\beta}(c\eta(s)-\epsilon)+\gamma_{\alpha}\delta(e^{s})=0$ (3.9)

for $s\geq s_{0}$ and
$\eta(s)[searrow]\gamma_{\alpha}$ as $sarrow\infty$ , (3.10)

respectively.
To show that there exists an $\epsilon_{0}>0$ such that

$H_{\alpha}( \eta)\leq\frac{1}{c}H_{\beta}(c\eta-\in)$ (3.11)

for $\gamma_{\alpha}\leq$ ny $\leq\gamma_{\alpha}+\epsilon_{0}$ , we Define

$F_{2}( \eta)=\frac{1}{c}H_{\beta}(c\eta-\epsilon)-H_{\alpha}(\eta)$.
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Differentiating $F_{2}(\eta)$ twice, we have

$\frac{d}{d\eta}F_{2}(\eta)=(\beta+1)$ (cep $-\epsilon\}^{1/\beta}-\beta-(\alpha+1)\eta^{1/\alpha}+\alpha$ ,

$\frac{d^{2}}{d\eta^{2}}F_{2}(\eta)=\frac{c(\beta+1)}{\beta}((\mathrm{o}\mathrm{o}\eta \mathrm{p}-\epsilon)^{(1-\beta)/\beta}-\frac{\alpha+1}{\alpha}\eta^{(1-\alpha)/\alpha}$ ,

so that
$F_{2}( \gamma_{\alpha})=\frac{d}{d\xi}F_{2}(\eta)|_{\eta=\gamma_{a}}=0$

and
$\frac{d^{2}}{d\xi^{2}}F_{2}(\eta)|_{\eta=\gamma_{a}}=\frac{\epsilon}{\gamma_{\alpha}\gamma_{\beta}}>0$.

Hence, we can select an $\epsilon_{0}>0$ such that

$\frac{d^{2}}{d\xi^{2}}F_{2}(\eta)>0$ for $\gamma_{\alpha}\leq\eta\leq\gamma_{\alpha}+\epsilon_{0}$ ,

and therefore, $F_{2}(\eta)\geq 0$ for $\gamma_{\alpha}\leq\eta\leq\gamma_{\alpha}+\mathrm{e}\mathrm{O}$. Thus, the inequality (3.11) is shown.

By $(3,10)$ , there exists an $s_{1}>s_{0}$ such that

$\gamma_{\alpha}\leq\eta(s)\leq\gamma_{\alpha}+\epsilon_{0}$

for $s\geq s_{1}$ . Hence, together with $(3,9)$ and (3.11), we have

$\dot{\eta}(s)+H_{\alpha}(\eta(s))+\gamma_{\alpha}\delta(e^{s})\leq 0$

for $s\geq s_{1}$ . Using Lemma 2.2 with $p=$ a and $h(e^{s})=\gamma_{\alpha}\delta(e^{s})$ , we see that all nontrivial
solutions of $(E_{\alpha})$ are nonoscillatory. This is a contradiction to the assumption that equation
$(E_{\alpha})$ has an oscillatory solution. We have thus proved Theorem 1.2. $\square$

4 Discussion and another comparison theorem

Let us now look at Theorem 1.2 from a different angle. To this end, we consider the more

general half-linear differential equation

$(|x’|^{\alpha-1}x’)’+a(t)|x|^{\alpha-1}x=0$, (4.1)

where $\alpha>0$ and $a(t)$ is positive and continuous on $(t_{0}, \infty)$ for some $t_{0}\geq 0$ . Then, we can

guarantee that all solutions of (4.1) are continuable in the future. Hence, it is worth while to

discuss whether solutions of (4.1) are oscillatory or not.

The Hille-Wintner comparison theorem has been widely studied by many authors. For ex-
ample, Kusano and Yoshida [9] presented the following comparison theorem of Hille-Wintner

type for half-linear differential equations (see also [10])
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Theorem C. Consider
$(|x’|^{\alpha-1}x’)’+b(t)|x|^{\alpha-1}x=0$ , (4.2)

where $b(t)$ is positive and continuous on $(t_{0}, \infty)$ . Suppose that

$\int_{t}^{\infty}a(s)ds\leq l^{\infty}b(s)ds$

for all sufficiently large $t$ . Ifall nontrivial solutions of (4.1) are oscillatory, then those of (4.2)

are also oscillatory.

We can regard the number a in equations (4.1) and (4.2) as a positive parameter. In Theorem
$\mathrm{C}$, needless to say, the parameter $\alpha$ is fixed and the integral of the coefficient $a(t)$ is compared

with that of the coefficient $b(t)$ . Let us fix the coefficient $a(t)$ and move the parameter a to the

contrary. Then we have another comparison theorem for half-linear differential equations.

Theorem 4.1. Consider
$(|x’|^{\beta-1}x’)’+a(t)|x|^{\beta-1}x=0$ , (4.3)

where $a(t)$ is the same as in equation (4.1). Suppose that $0<\alpha<\beta$ . Ifall nontrivial solutions

of (4.1) are oscillatory, then those of (4.3) are also oscillatory.

Proof. The proof is by contradiction. We suppose that all nontrivial solutions of (4.1) are os-
cillatory and equation (4.3) has a nonoscillatory solution $x(t)$ . Then, without loss of generality,
we may assume that $x(t)$ is eventually positive. As in the proof of Theorem 1.1, we see that
$x’(t)$ is also eventually positive.

Define the function $\xi(t)$ by

$\xi(t)=(\frac{x’(t)}{x(t)})^{\beta}$

Then there exists a $T>t_{0}$ such that $\xi(t)>0$ and

$\xi’(t)=-a(t)-\beta\xi(t)^{(\beta+1)/\beta}<0$ (4.4)

for $t\geq T$ , namely, $\xi(t)$ is decreasing and bounded from below. Hence, we can find a $\mu\geq 0$

such that
$\xi(t)[searrow]\mu$ as $tarrow\infty$ ,

and therefore, we have

$\xi’(t)=-a(t)-\beta\xi(t)^{\{\beta+1)/\beta}\leq-\beta\mu^{(\beta+1)/\beta}$

for $t\geq T$ . If $\mu>0$ , then $\xi(t)$ has to tend to $-\infty$ as $tarrow\infty$ . This contradicts the fact that $\xi(t)$

is eventually positive. Thus, $\xi(t)$ tends to zero as $tarrow\infty$ . From this property of $\xi(t)$ and the
assumption that $0<\alpha<\beta$, we see that there exists a $t_{1}>T$ such that

$\alpha\xi(t)^{(\alpha+1)/\alpha}\leq$ S6 $(t)^{(\beta+1)/\beta}$



1 I9

for $t\geq t_{1}$ . Hence, together with (4.4), we have

$\xi’(t)\leq-a(t)-$ Crc $(t)^{(\alpha+1)/\alpha}$ (4.5)

for $t\geq t_{1}$ .
It is easy to check that the function

$y(t)= \exp(\int_{l_{1}}^{t}\xi(\tau)^{1/\alpha}d\tau)$

is a nonoscillatory solution of

$(|x’|^{\alpha-1}x’)’+b(t)|x|^{\alpha-1}x=0$ ,

where $b(t)=-\xi’(t)-\alpha\xi(t)^{(\alpha+1)/\alpha}$ . From (4.5) it follows that $a(t)\leq b(t)$ for $t\geq t_{1}$ . Hence,

Sturm’s comparison theorem implies that (4.1) also has a nonoscillatory solution. This is a
contradiction, thereby completing the proof of Theorem 4.1. $\square$

In the case that
$t^{\alpha+1}a(t)>( \frac{\alpha}{\alpha+1})^{\alpha+1}$ (4.6)

for $t$ sufficiently large, we can rewrite equation (4.1) in the form $(E_{\alpha})$ with

6 $(t)=( \frac{\alpha+1}{\alpha})^{\alpha}t^{\alpha+1}a(t)-\frac{\alpha}{\alpha+1}>0$ .

Suppose that all nontrivial solutions of (4.1) are oscillatory. Then, from Theorem 1.2 we see
that all nontrivial solutions of

$(|x’|^{\beta-1}x’)’+c(t)|x|^{\beta-1}x=0$

with
$c(t)= \frac{1}{t^{\beta+1}}\{(\frac{\beta}{\beta+1})^{\beta+1}+($ $( \frac{\beta}{\beta+1})^{\beta}+\epsilon)\delta(t)\}$

are oscillatory. Since $0<\alpha$ $<\beta$ , we have

$c(t)= \frac{1}{t^{\beta+1}}\{(\frac{\beta}{\beta+1})^{\beta+1}+($ $( \frac{\beta}{\beta+1})^{\beta}+\in)\delta(t)\}$

$< \frac{1}{t^{\alpha+1}}\{(\frac{\alpha}{\alpha+1})^{\alpha+1}+(\frac{\alpha}{\alpha+1})^{\alpha}\delta(t)\}=a(t)$

for $t$ sufficiently large. Hence, from Theorem $\mathrm{C}$ we conclude that all nontrivial solutions of

(4.3) are also oscillatory. This means that Theorem 1.2 is sharper than Theorem 4.1 in the case
(4.6).
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