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1 Introduction

Over the past four decades a great deal of articles have been devoted to the study of oscillation
of solutions of half-linear differential equations. For example, those results can be found in
[1-6,9-12]. Especially, it is well-known that all nontrivial solutions of a half-linear differential
equation of the form

(J2'1* ) + 2z =0, = t>t (1.1

il

with & > 0, A > 0 and ¢ > 0, are oscillatory if

a+l
A> _* ;
a+1

otherwise, they are nonoscillatory. This fact means that (a/(a + 1))*** is the lower bound
for all nontrivial solutions of (1.1) to be oscillatory. Such a number is generally called the
oscillation constant (for example, see [7, 8, 13—-15]).

Let us add a perturbation to equation (1.1) when A is the oscillation constant and consider
the perturbed half-linear differential equation

, 1 a+l Q
(le'*7"2') + o1 { (ai 1) i (ai 1) 5(t)}lxia_lm =% e

where 6(t) is positive and continuous on some half-line (¢, co). Elbert and Schneider [6] have
investigated the asymptotic behaviour of solutions of (£, ). Using their results, we can present

the following statements.

Theorem A. Let o > 1. If equation (E,) has a nontrivial oscillatory solution, then all non-
trivial solutions of (E,) are oscillatory.

Theorem B. Let 0 < a < 1. If equation (E1) has a nontrivial oscillatory solution, then all
nontrivial solutions of (E,) are oscillatory.
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It follows from the fact mentioned in the first paragraph and Sturm’s comparison theorem for
half-linear differential equations that if

lim inf 6(¢) > 0, (12)

o0

then all nontrivial solutions of (E,) are oscillatory. As to Sturm’s separation and comparison
theorems, for example, see [5, 11, 12]. On the other hand, if condition (1.2) fails to hold, then
there is some possibility that equation (¥,) has a nonoscillatory solution. One of the most
interesting case is that 6(¢t) = A\/(log t)? with A > 0. In this case, if A > 1/2, then all nontrivial
solutions of ( E,) are oscillatory; otherwise, they are nonoscillatory (for details, see [6]).

We may regard Theorems A and B as comparison theorems between the linear differential
equation

D11 1
T +t—2{z+§5(t)}:v:0 (E1)

and half-linear differential equations of the form (E,). Let o and 3 be positive numbers sat-
isfying @ < 1 < B. Then, combining Theorems A and B, we get the following conclusion:
if equation (Fj) has a nontrivial oscillatory solution, then all nontrivial solutions of (£,) are
oscillatory. A natural question now arises as to whether or not the converse proposition is also
true.

The first purpose of this paper is to extend Theorems A and B to a comparison theorem
between any two half-linear differential equaﬁons. The second purpose is to give an answer to
the above question. Our main results are stated as follows:

Theorem 1.1. Let 0 < a < f. If equation (Eg) has a nontrivial oscillatory solution, then all
nontrivial solutions of (E,) are oscillatory.

Remark 1.1. Theorem 1.1 is a generalization of Theorems A and B. To put it precisely, Theo-
rem 1.1 coincides with Theorem A (respectively, Theorem B) when o = 1 (respectively, 8 =1).

Theorem 1.2. Let 0 < « < 3. If equation (E,) has a nontrivial oscillatory solution, then all
nontrivial solutions of

B+1
(2P7) + gi{ (52) +wt0 flat e =0 13

are oscillatory, where v > (8/(8 + 1))°.
Remark 1.2, It is essential that v is greater than (8/(8 + 1))? in Theorem 1.2. Unfortunately,

even if equation (E,) has a nontrivial oscillatory solution, we cannot judge whether all nontriv-
ial solutions of (Fg) are oscillatory or not.

Remark 1.3. From Theorems 1.1 and 1.2, we see that the oscillation constant for equation
(E,) with 6(t) = X/(logt)? is 1/2 for any o > 0.
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2 Riccati technique

Consider the half-linear differential equation

(lz')P~2a') + i_{ ( P )p+l+ h(t)}ja:["‘lm =0 (2.1)

¢p+1 P+ 1

with p > 0 a fixed real number, where h(t) is positive and continuous on (0, co). Using Riccati’s
transformation, we prepare some lemmas below. To this end, we denote

() =p{ee -

= —~p ’
A/p p+1 '

Lemma 2.1. Let £(s) be a positive function on [sy, 00) with so > 0 satisfying

for £ > 0 and

£(s) + Hy(&(s)) < 0. (2.2)

Then it is nonincreasing and tends 1o y, as s — 0.

(AR R S

SH(E) = b+ DEP - p,

we see that H,(£) > 0 for £ > 0 and H,(§) = 0 if and only if £ = .
Since £(s) is positive for s > sg, we have

Proof. From

and

£(s) < ~Hy(€(s)) < 0

by (2.2), namely, £(s) is nonincreasing. Hence, there exists a g > 0 such that {(s) \, u as
s — oo. Suppose that y # 7, If p > v, then &(s) > p > (L +%)/2 > v, for s > sp. If
p< Yy, then g < £(s) < (p+v,)/2 < 7, for s sufficiently large. In either case,

£(s) < —Hp(&(s)) < —Hyp((1n +7)/2) <0

for s sufficiently large, which yields that £(s) tends to —oo as s — oo. This contradicts the
assumption that £(s) is positive for s > sp. Thus, £(s) tends to 7y, as s — oo. The proof of
Lemma 2.1 is complete. ‘ l

We next give a sufficient condition for all nontrivial solutions of (2.1) to be nonoscillatory.
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Lemma 2.2. Let £(s) be a positive function on [sq, 00) with sg > 0 satisfying
E(s) + Hy(€(s)) + hle*) < 0, 2.3)

where h is the function defined in equation (2.1). Then all nontrivial solutions of (2.1) to be
nonoscillatory.

Proof, Define ,
ofs) = —€(s) — Hy(€(s)) .
for s > s¢. Then we have
e(s) > h(e®) for s> so. (2.4)

Let u(s) be the positive function defined by

) =ex ( [ :s(cr)l/pda)

u(s) = u(s)€(s)? > 0

&(s) = (Z—Eg)p for s > sq.

for s > so. Then we get

for s > sy, namely,

Differentiate £(s) to obtain

asP) el — pulsP Y @) (i) )
o) = (o) =S i)

for s > so. Hence, we have | u(s)
e C
ol - Gh)

and therefore, we see that the positive function u(s) is a nonoscillatory solution of the equation

p+l
(JafP1a) - plal ' + { (p—f‘-’ﬁ) + c(s)}|u|f’_lu —0. @.5)
Changing variable t = e°, we can transform equation (2.5) into the equation
-1 1 p Pt 1
/ / — —
(|2'|P~ ) + tﬁf{ (m) + c(logt)}]m\p z=0. (2.6)

Let x(t) be the solution of (2.6) corresponding to u(s). Then z(¢) is positive for ¢ > e*. From
(2.4) it follows that ‘

c(logt) > h(t) for ¢ > e*.
Hence, by Sturm’s comparison theorem for half-linear differential equations, all nontrivial so-
lutions of (2.1) are nonoscillatory. This completes the proof of Lemma 2.2. O



114

3 Proof of the main theorems

By means of Lemmas 2.1 and 2.2, we can prove our comparison theorems for half-linear dif-

ferential equations of the form (E,).

Proof of Theorem 1.1. By way of contradiction, we suppose that equation (Eg) has an oscil-
latory solution and equation (E,) has a nonoscillatory solution (). We may assume that z(t)
is eventually positive, because the proof of the case that z(t) is eventually negative is carried
out in the same way. Hence, there exists a 7' > o such that z{t) > 0 for ¢t > T, and therefore,

(&' @) (1) = —tail { ( - )a+1+ 7Q5(t)}1x(t)|“—1x(t) <0 G.1)

a—+1

for ¢ > T'. From this we see that z’(t) is also positive for ¢ > T'. In fact, if there existsat; > T
such that z'(¢;) < 0, then by (3.1) we have

|’ (1)1 (1) < o' (82) 72 (1) < 0

for t > t;. Hence, we can find a t, > ¢, such that z'(t;) < 0. By (3.1) again, we obtain
|/ ()] *72' (1) < |2/ (82)]* 7' (£2) < O

for t > t,. We therefore conclude that z'(t) < z'(t2) < 0 for ¢ > t5, which implies that
z{t) < 2'(t2)(t — t2) + x(t2) = —00

as t — oo. This is a contradiction to the assumption that z(t) is eventually positive.
Making the change of variable s = log ¢, we can rewrite equation (E,) in the form

(Ja]*'a) — odu|* e + { (a-ij‘_—i)a+l+ 7a5(63)}{u}“—1u =0. (32)

Let u(s) be the solution of (3.2) which corresponds to z(¢). Then u(s) = z(t) > 0 and
u(s) = tz'(t) > 0 for s > log T". Define

and differentiate £(s) to obtain

Using (3.2), we have

- {g(s)(aﬂ)/a —{e+ g +a1)a“+1 } ~ ad(e%)

= —Ha(£(s)) = 7a0(¢’)




for s > logT. ‘
We here show that there exists an g3 > 0 such that

Jo 8
" ﬂ(%f) < Ho(8)

for v, < &€ < 74 + &g. For this purpose, we define

R = Ha(©) - 21y (gﬁg)

Then, differentiating F1(£) three times, we obtain

L ) ) )
& gy =2t] <1—a>/a_§ii(7ﬂ Y
deFl(f)- e EL(2) oo,
__n2 1/8
d_ggpl(f) g(l 2a>/a_1__52ﬁ_<%) £1-20)/8.
so that
R = R0 = 4a RO =0
and

ds _B-afa+l 2a
ggﬂ(g)k%_ 3 ( . ) > 0.

From (3.6) we can choose an g7 > 0 such that

d3

d—§3F1(£) >0 for Yo < f < Yo + Eg-
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(3.4)

(3.5)

(3.6)

Hence, taking account of this estimation and (3.5), we see that F; (&) > 0for v, <& < o teos

as required.

Because of (3.3), Lemma 2.1 is available for p = « and s = log T, and therefore, there

exists an s; > sg such that
Yo < €(8) <Y+ €0

for s > s;. Hence, together with (3.3) and (3.4), we get

. Yo B s
é(s) + 2 ﬂ(7—5<s>) T ad(e) <0

B o
for s > s1. Let (s) = v5£(8)/7a- Then we see that n(s) satisfies

7)(s) + Hp(n(s)) +1p8(°) < 0
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for s > s;. Hence, from Lemma 2.2 with p = 3 and h(e®) = y3é(e*) we conclude that all
nontrivial solutions of (Ej) are nonoscillatory. This contradicts the assumption that equation
(Ej) has an oscillatory solution. Thus, we have completed the proof of Theorem 1.1. tl

Proof of Theorem 1.2. Suppose to the contrary that equation (E,) has an oscillatory solution
and equation (1.3) has a nonoscillatory solution z(t). Then, without loss of generality, we may
assume that z(t) is eventually positive. Let T > #, be a number satisfying z(¢) > 0 for¢ > T
From the same manner as in the proof of Theorem 1.1, we see that z'(¢) is also positive for
t>T.

By putting ¢ = €°, equation (1.3) becomes

(#-13) - lal? -+ { (B%)ﬁ+l+ (13-+ 956) Hult =0

for some € > 0, where u(s) = z(e®) = z(t). Define

e \B
_ [#s)
0= (355)
which is positive for s > logT. A simple calculation shows that

£(s) = ~Hg(£(s)) — (vp +£)d(e°) (3.7)

for s > log T'. Hence, it follows from Lemma 2.1 with p = 3 and sy = log T that

£(s) \«ys as s — 0. (3.8)
Let
Lo dete g n(s):€(8)+€
Ve c
Then, from (3.7) and (3.8) it turns out that
) 1
i(5) + Hy(en(s) — ) + 7ab(¢%) = 0 (39
for s > sy and
n(s) \(Va a8 500, (3.10)

respectively.
To show that there exists an £y > 0 such that

Hy(n) < %Hﬁ(cn —€) (3.11)

for vo <1 < 7, + €g, we define

Fy{n) = - Hylen — ) = Ha(n)
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Differentiating F(n) twice, we have

d
a2 = (B+en — el — B~ (a+1)n/* +q,
d? c(8+1) a+1
el = T NA-B)/8 (1~a)/o
= Fy(n) 5 (cn —¢) —1 ,
so that p
By, = —=F =0
2(%) = ehalm|
and 2
3
—F = > 0.
dg? 2(7]) =% Ya'V8
Hence, we can select an g9 > 0 such that
dZ
d—ngz(U) >0 for %<n< % +?O,

and therefore, Fy(n) > 0 for 7, < 1 < 7o + £o. Thus, the inequality (3.11) is shown.
By (3.10), there exists an s; > sq such that

Ya < 1(s) < Ya+ &0

for s > s;. Hence, together with (3.9) and (3.11), we have
1(s) + Ha(n(s)) + 71a0(e’) <0

for s > s;. Using Lemma 2.2 with p = o and h(e®) = 7v,9(e°), we see that all nontrivial
solutions of (E,) are nonoscillatory. This is a contradiction to the assumption that equation
(E,) has an oscillatory solution. We have thus proved Theorem 1.2. O

4 Discussion and another comparison theorem

Let us now look at Theorem 1.2 from a different angle. To this end, we consider the more
general half-linear differential equation

(17172 + a()|z]° 'z = 0, @.1)

where & > 0 and a(t) is positive and continuous on (tp, co) for some o > 0. Then, we can
guarantee that all solutions of (4.1) are continuable in the future. Hence, it is worth while to
discuss whether solutions of (4.1) are oscillatory or not.

The Hille-Wintner comparison theorem has been widely studied by many authors. For ex-
ample, Kusano and Yoshida [9] presented the following comparison theorem of Hille-Wintner
type for half-linear differential equations (see also [10]).
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Theorem C. Consider
(121 1') + b(t) 2"z = 0, “2)

where b(t) is positive and continuous on (tg, o0). Suppose that

/tooa(s)ds < ftoob(s)ds

for all sufficiently large t. If all nontrivial solutions of (4.1) are oscillatory, then those of (4.2)
are also oscillatory.

We can regard the number « in equations (4.1) and (4.2) as a positive parameter. In Theorem
C, needless to say, the parameter « is fixed and the integral of the coefficient a(t) is compared
with that of the coefficient b(t). Let us fix the coefficient a(t) and move the parameter o to the
contrary. Then we have another comparison theorem for half-linear differential equations.

Theorem 4.1. Consider
(1z'1P2') + a(t)|zP 'z = 0, 4.3)

where a(t) is the same as in equation (4.1). Suppose that 0 < o < 3. If all nontrivial solutions
of (4.1) are oscillatory, then those of (4.3) are also oscillatory.

Proof. The proof is by contradiction. We suppose that all nontrivial solutions of (4.1) are os-
cillatory and equation (4.3) has a nonoscillatory solution z(t). Then, without loss of generality,
we may assume that z(t) is eventually positive. As in the proof of Theorem 1.1, we see that

Then there exists a 7' > to such that £(¢) > 0 and

z'(t) is also eventually positive.
Define the function £(f) by

£t) = —a(t) — BER)FHI/E <0 (4.4)

for ¢ > T, namely, £(t) is decreasing and bounded from below. Hence, we can finda o > 0
such that

)N\ i as t— oo,
and therefore, we have
£(t) = ~a(t) — 55(t)(ﬁ+1)/ﬁ < _5#(ﬂ+1)/ﬂ

fort > T. If i > 0, then £(¢) has to tend to —oo as £ — oco. This contradicts the fact that £(2)
is eventually positive. Thus, £(t) tends to zero as ¢ — co. From this property of £(¢) and the
assumption that 0 < a < 3, we see that there exists a t; > 7" such that

ag(t)(oﬁrl)/a < ﬁg(t)(ﬂﬂ)/ﬁ



118

for ¢ > t,. Hence, together with (4.4), we have
g(t) < —a(t) - af(t)>V/e (4.5)

fort 2 ti. »
It is easy to check that the function

) = e ( [ jsm”“dr)

(J2']° 2" + b(t)|z}* 'z = 0,

is a nonoscillatory solution of

where b(t) = —£'(t) — a&(t)@+1)/, From (4.5) it follows that a(t) < b(t) for t > ¢;. Hence,
Sturm’s comparison theorem implies that (4.1) also has a nonoscillatory solution. This is a

contradiction, thereby completing the proof of Theorem 4.1. .
In the case that -
o a+1
t*ta(t) > 4.6
alt) , (a + 1) (4.6)

for t sufficiently large, we can rewrite equation (4.1) in the form (E,) with

a+1Y o
5(t) = (T) t**la(t) — p] > 0.

Suppose that all nontrivial solutions of (4.1) are oscillatory. Then, from Theorem 1.2 we see
that all nontrivial solutions of

(Iz')P12") + e(®) |z 'z =0

el (i) () - ol

are oscillatory. Since 0 < o < 3, we have ,
o= de{ (i) () - o
() ) e

for ¢ sufficiently large. Hence, from Theorem C we conclude that all nontrivial solutions of
(4.3) are also oscillatory. This means that Theorem 1.2 is sharper than Theorem 4.1 in the case
(4.6).

with
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