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Kneser’s property in $C^{1}$-norm
for ordinary differential equations

東北学院大学教養学部 上之郷高志 (Takashi Kaminogo)
Department of Mathematics, Tohoku Gakuin University

Let $D$ be an open subset of $\mathrm{R}\mathrm{x}$ Rn. We consider an initial value problem

(1) $x’=f(t, x)$ , $x(0)=\xi$ ,

where the the prime denotes the differentiation with respect to $\mathrm{t}$ , $(0, \xi)\in D$ and
$f$ : $Darrow \mathrm{R}^{n}$ is continuous. H. Kneser proved the following theorem (see Theorem
4.1, p.15 in [1] $)$ .

Theorem (Kneser). For every (0,$\xi)\in D$ , a set

{ $x(\tau)$ ; $x$ is a solution of (1)}

is compact and connected in $\mathrm{R}^{n}$ when $\tau>0$ is sufficiently small.

For simplicity, we assume that $D=[0,1]\mathrm{x}$ $\mathrm{R}^{n}$ and that $f$ is bounded and con-
tinuous. Namely, we suppose that there exists a positive constant $M$ satisying

(2) $|f(t, x)|\leq M$ for $(t, x)$ $\in[0, 1]\mathrm{x}\mathrm{R}"$ ,

where $|\cdot$ $|$ denotes any norm in Rn. In this case, the above theorem is reduced to

the following theorem.

Theorem 1. For every $\xi\in \mathrm{R}^{n}$ , a set

{$x(1)$ ; $x$ is a solution of (1)}

is compact and connected in $\mathrm{R}^{n}$ .

For any $a$ , $b\in \mathrm{R}$ with $a<b$ , let $C[a, b]$ denote the Banach space of all $\mathrm{R}^{n}$ value

continuous mappings on $[a, b]$ with the norm $||$ . $||$ defined by $||x||= \sup_{a\leq t\leq b}|x(t)|$ .
Similarly, we denote by $C^{1}[a, b]$ the Banach space of all $\mathrm{R}^{n}$-valued continuously dif-

ferentiable mappings on $[a, b]$ with the norm $||\cdot||_{1}$ defined by $||x||_{1}= \max\{||x||, ||x’||\}$ .

It is well known that Theorem 1 is extended to the following theorem.

Theorem 2. A set
(3) $K:=$ { $x$ ; $x$ is a solution of (1)}

is compact and connected in $C[0,1]$ for every $\xi\in \mathrm{R}^{n}$ .
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Since the set $K$ given in (3) is included in $C^{1}[0, 1]$ , it might be natural to discuss

the property of the set $K$ in the topology of $C^{1}[0,1]$ . In this article, we shall

introduce the following theorem.

Theorem 3. The set $K$ given in (3) is compact and connected in $C^{1}[0, 1]$ for

every $\xi\in \mathrm{R}^{n}$ .

Proof. First we shall show that $K$ is compact in $C^{1}[0, 1]$ . Let $\{x_{k}\}$ be any
sequence in $K$ . It follows from (2) that $|x_{k}’(t)|\leq M$ for $0\leq t\leq 1$ , and hense $\{x_{k}\}$

is equicontinuous and uniformly bounded on $[0, 1]$ because $x_{k}(0)=\xi$ . Then we may

assume, by Ascoli-Arzel\‘a’s theorem, that $\{x_{k}\}$ converges to some $x$ in $C[0, 1]$ by

taking a subsequence if necessary. Since $x_{k}$ satisfies an equality

$x_{k}(t)= \xi+\int_{0}^{t}f(s, x_{k}(s))ds$ ,

$x$ satisfies that $x(t)=\xi+f_{0}^{t}f(s, x(s))ds$ , which implies that $x\in K$ . Let $L$ be a
compact subset of $\mathrm{R}^{n}$ defined by

(4) $L=\{x\in \mathrm{R}^{n} ; |x|\leq|\xi|+M\}$ .

Then $x_{k}(t)\in L$ for $0\leq t\leq 1$ . Since $f$ is uniformly continuous on a compact set
$[0, 1]$ $\cross L$ , it follows that

$x_{k}’(t)=f(t, x_{k}(t))arrow f(t, x(t))=x’(t)$ as $karrow\infty$

uniformly for $t\in[0, 1]$ . Therefore, $\{x_{k}\}$ converges to $x$ in $C^{1}[0, 1]$ , which shows that
$K$ is compact in $C^{1}[0,1]$ .

Now we shall show that $K$ is connected. Suppose that $K$ is not connected. Then
there exist two nonempty compact sets $K_{1}$ and $K_{2}$ such that $K_{1}\cup K_{2}=K$ and that
$K_{1}\cap K_{2}=\emptyset$ . It is easy to find an open set $G$ in $C^{1}[0,1]$ satisfying $K_{1}\subset G$ and
$\overline{G}\cap K_{2}=(;!)$ , where $\overline{G}$ denotes the closure of $G$ . Therefore, we obtain that

(5) $\partial G\cap K=\emptyset$ ,

where $\partial G$ denotes the boundary of $G$ . Let $x$ and $y$ be any fixed elements in $K_{1}$ and
$K_{2}$ , respectively.

For any fixed small number $\epsilon>0$ and a number $T$ satisfying $0\leq T\leq 1$ , define a
mapping $\varphi$ : $[0, 1]arrow \mathrm{R}^{n}$ by

(6) $\varphi(t)=\{$

$x(t)$ for $0\leq t\leq T$

$x(T)+ \int_{T}^{t}f(s, x(T))ds$ for $T\leq t\leq T+\epsilon$

$\varphi(T+\epsilon)+\int_{T+\epsilon}^{t}f(s, \varphi(s-\epsilon))ds$ for $T+\epsilon\leq t\leq 1$ .

It is not difficult to observe that $\varphi$ belongs to We denote the mapping $\varphi$
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by $\varphi_{T}$ . Clearly, $\varphi\tau$ coincides with $x$ when $T=1$ , while $\varphi\tau$ does not depend on $x$ .
We shall show that the correspondence $T\vdash+\varphi\tau$ is a continuous mapping from

$[0, 1]$ into $C^{1}[0,1]$ . Let $T\in[0, 1]$ be fixed, and let $\{T_{k}\}$ be any sequence in $[0, 1]$

converging to $T$ . For simplicity, we denote $\varphi\tau_{K}$ and $\varphi\tau$ , respectively, by $\varphi_{k}$ and $\varphi$ .
It will be verified that $\{\varphi_{k}\}$ converges to $\varphi$ in $C^{1}[0,1]$ as $karrow\infty$ in the following
two cases where $T_{k}>T$ holds for $k\in \mathrm{N}$ and $T_{k}<T$ holds for $k\in$ N. Since $\epsilon$ $>0$

and $T_{k}arrow T$ as $karrow\infty$ , we may assume that

(7) $|T_{k}-T|<\epsilon$ for every $k$ $\in$ N.

(i) In the case where $T_{k}>T$ holds for $k\in$ N. It follows from (6) that $\varphi_{k}$ is
expressed as

(S) $\varphi_{k}(t)=\{$

$x(t)$ for $0\leq t\leq T_{k}$ ,

$x(T_{k})+ \int_{T_{k}}^{t}f(s, x(T_{k}))ds$ for $T_{k}\leq t\leq T_{k}+\epsilon$ ,

$\varphi_{k}(T_{k}+\epsilon)+\int_{T_{k\backslash }+\epsilon}^{t}f(s, \varphi_{k}(s-\in))ds$ for $T_{k}+\in$ $\leq t\leq 1$ .

Since $T_{k}>T$ , an equality $\varphi_{k}(t)=\varphi(t)=x(t)$ holds for $t\in[0, T]$ .
We shall observe that

(9) $|\varphi_{k}(t)-\varphi(t)|\leq 2M(T_{k}-T)$

$+I_{T}^{T+\epsilon}|f(t, x(T_{k}))-f(t, x(T))|ds$ for $t$ $\in[T, T+\epsilon]$

and

(10) $| \varphi_{k}’(t)-\varphi’(t)|\leq\sup_{t\in[T,T_{k}]}|f(t, x(t))-f(t, x(T))|$

$+ \sup_{T_{k}l\in[,T+\epsilon]}|f(t, x(T_{k}))$
$-f(t, x(T))$ $|$ for $t\in[T, T+\epsilon]$

hold, where $M$ is the positive constant satisfying (2). Here, notice that an inequality
$T<T_{k}<T+\epsilon$ holds by assumption (7). For any $t\in[T, T_{k}]$ , we have

$\varphi_{k}(t)-\varphi(t)=x(T)+\int_{T}^{t}f(s, x(s))ds-\{x(T)+\int_{T}^{t}f(s, x(T))ds\}$

$= \int_{T}^{t}\{f(s, x(s))-f(s, x(T\})\}ds$

and hence it follows from (2) that

(11) $|\varphi_{k}(t)-\varphi(t)|\leq 2M(T_{k}-T)$ for $t\in[T, T_{k}]$ .

Furthermore, we have, by (6) and (8), that

(12) $\varphi_{k}’(t)-\varphi’(t)=f(t, x(t))-f(t, x(T))$ for $t\in[T, T_{k}]$ .
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On the other hand, for $t\in[T_{k}, T+\epsilon]$ , it follows, respectively, from (6) and (8) that

$\varphi_{k}(t)=x(T_{k})+\int_{T_{k}}^{t}f(s, x(T_{k}))ds$

$=x(T)+ \int_{T}^{T_{k}}f(s, x(s))ds+\int_{T_{k}}^{t}f(s, x(T_{k}))ds$

and that
$\varphi(t)=x(T)+\int_{T}^{t}f(s, x(T))ds$

$=x(T)+ \int_{T}^{T_{k}}f(s, x(T))ds+\int_{T_{k}}^{t}f(s, x(T))ds$ ,

and hence we have

(13) $| \varphi_{k}(t)-\varphi(t)|\leq 2M(T_{k}-T)+\int_{T}^{T+\epsilon}|f(s, x(T_{k}))-f(s, x(T))|ds$.
Furthermore, it is clear that the following equality holds.

(14) $\varphi_{k}’(t)-\varphi’(t)=f(t, x(T_{k}))-f(t, x(T))$ for $t\in[T_{k}, T+\epsilon]$ .

It then follows from (11) and (13) that (9) holds. Inequality (10) is a direct conce-
quence of (12) and (14). Thus, we obtain, by (9) and (10), that

(15) $\varphi_{k}arrow\varphi$ in $C^{1}[0, T+\epsilon]$ as $karrow\infty$ .

Now we shall estimate $|\varphi_{k}(t)-\varphi(t)|$ and $|\varphi_{k}’(t)-\varphi’(t)|$ on the interval $[T+\epsilon, 1]$ .
For any $t\in[T+\epsilon, T+2\epsilon]$ , it will be verified that the following inequality holds.

(16) $|\varphi_{k}(t)-\varphi(t)|\leq 4M(T_{k}-T)+\epsilon$ $\sup$ $|f(s,x(T_{k}))-f(s,x(T))|$
$s\in[T,T+\epsilon]$

$+|\varphi_{k}(T+\epsilon)-\varphi(T+\epsilon)|$

$+ \int_{T+\epsilon}^{T2\epsilon}+|f(s, \varphi_{k}(s-\epsilon))-f(s, \varphi(s-\epsilon))|ds$ .

When $t\in[T+\epsilon, T_{k}+\epsilon]$ , it follows from (6) and (8) that

$|\varphi_{k}(t)-\varphi(t)|\leq I_{T}^{T_{k}}|f(s, x(s))-f(s, x(T))|ds$

$+ \int_{T_{k}}^{T+\epsilon}|f(s, x(T_{k}))-f(s, x(T))|ds$

$+ \int_{T+\epsilon}^{t}|f(s, x(T_{k}))-f(s, \varphi(s-\epsilon))|ds$

$\leq 2M(T_{k}-T)+I_{T}^{T+\epsilon}|f(s, x(T_{k}))-f(s, x(T))|ds$

$+ \oint_{T+\epsilon}^{T_{k}+\epsilon}|f(s, x(T_{k}))-f(s, \varphi(s-\epsilon))|ds$
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$\leq 4M(T_{k}-T)+I_{T}^{T+\epsilon}|f(s, x(T_{k}))-f(s_{;}x(T))|ds$

(17) $\leq 4M(T_{k}-T)+\epsilon_{S\in[}\sup_{T,T+\epsilon 3}|f(s, x(T_{k}))-f(s, x(T))|$ .

When $t\in[T_{k}+\epsilon, T+2\epsilon]$ , $\varphi_{k}$ and $\varphi$ are expressed, respectively, as

$\varphi_{k}(t)=\varphi_{k}(T_{k}+\epsilon)-\varphi_{k}(T+\epsilon)+\varphi_{k}(T+\epsilon)+\oint_{T_{k}+\epsilon}^{t}f(s, \varphi_{k}(s-\epsilon))ds$

$= \int_{T+\epsilon}^{T_{h}+\epsilon}f(s, x(T_{k}))ds+\varphi_{k}(T+\epsilon)+\int_{T_{k}+\epsilon}^{t}f(s, \varphi_{k}(s-\epsilon))ds$

and

$\varphi(t)=\varphi(T+\epsilon)+\int_{T+\epsilon}^{T_{k}+\epsilon}f(s, \varphi(s-\epsilon))ds+\oint_{T_{k}+\epsilon}^{t}f(s, \varphi(s-\epsilon))ds$.

Therefore, we have, for $t\in[T_{k}+\epsilon, T+2\epsilon]$ ,

$|\varphi_{k}(t)-\varphi(t)|\leq|\varphi_{k}(T+\epsilon)-\varphi(T+\epsilon)|$

$+ \oint_{T+\epsilon}^{T_{\mathrm{h}}+\epsilon}|f(s, x(T_{k}))-f(s, \varphi(s-\epsilon))|ds$

$+ \int_{T_{k}+\epsilon}^{t}|f(s, \varphi_{k}(s-\epsilon))-f(s, \varphi(s-\epsilon))|ds$

$\leq|\varphi_{k}(T+\epsilon)-\varphi(T+\epsilon)|+2M(T_{k}-T)$

$+ \int_{T+\epsilon}^{T+2\epsilon}|f(s, \varphi_{k}(s-\epsilon))-f(s, \varphi(s-\epsilon))|ds$ .

It then follows from this inequality and (17) that (16) holds for $t\in[T+\epsilon, T+2\epsilon]$ .
Thus, we have $|\varphi_{k}(t)-\varphi(t)|arrow 0$ as $karrow$ oo uniformly on $[T+\epsilon, T+2\mathrm{e}]$ because of

(15) and the uniform continuity of $f$ on $[0, 1]$ $\mathrm{x}L$ .
We have to confirm that $|\varphi_{k}’(t)-\varphi’(t)|arrow 0$ as $karrow$ oo uniformly on $[T+\epsilon, T+2\epsilon]$ .

For $t\in[T+\epsilon,T_{k}+\epsilon]$ , it follows that

(18) $\varphi_{k}^{t}(t)-\varphi’(t)=f(t,x(T_{k}))-f(t, \varphi(t-\epsilon))$ .

Since $\varphi(t-\epsilon)=x(T)+f_{T}^{t-}’ f(s, x(T))$ is and $T\leq t-\epsilon$ $\leq T_{k}$ hold, we have

(19) $|x(T_{k})-\varphi(t-\epsilon)|\leq|x(T_{k})-x(T)|+M(T_{k}-T)$ for $t\in[T+\epsilon, T_{k}+\epsilon]$ .

For $t\in[T_{k}+\epsilon, T+2\epsilon]$ , we have evidently that

(20) $\varphi_{k}’(t)-\varphi’(t)=f(t, \varphi_{k}(t-\epsilon))-f(t, \varphi(t-\epsilon))$ .

It follows from (18), (19) and (20) that $|\varphi_{k}’(t)-\varphi’(t)|arrow 0$ as $karrow \mathrm{O}$ uniformly for

$t\in[T+\epsilon, T+2\epsilon]$ . Therefore, we obtain that $\varphi_{k}arrow\varphi$ in $C^{1}[0, T+2\epsilon]$ as $karrow\infty$ .
Repeating this procedure, we get that $\varphi_{k}arrow\varphi$ in $C^{1}[0,1]$ as $karrow\infty$ .
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(ii) In the case where $T_{k}<T$ holds for $k\in$ N. When $t\in[0, T_{k}]$ , we have that
$\varphi_{k}(t)=\varphi(t)$ holds. For $t\in[T_{k}, T]$ , it follows from (2), (6) and (8) that

$| \varphi_{k}(t)-\varphi(t)|\leq\oint_{T_{k}}^{t}|f(s, x(T_{k}))-f(s, x(s))|ds\leq 2M(T-T_{k})$.

Therefore, $\{\varphi_{k}\}$ converges to $\varphi$ uniformly on $[0, T]$ . Furthermore, for $t\in[T_{k}, T]$ , we

have that
$\varphi_{k}’(t)-\varphi’(t)=f(t, x(T_{k}))-f(t, x(t))$

and that $|x(T_{k})-x(t)|\leq M(t-T_{k})\leq M(T-T_{k})arrow 0$ as $karrow\infty$ . Therefore, it

follows that $\{\varphi_{k}’\}$ converges to $\varphi’$ uniformly on $[0, T]$ , and hence we obtain that

(21) $\varphi_{k}arrow\varphi$ in $C^{1}[0, T]$ as $karrow\infty$ .

Now we shall show that, for $t\in[T, T+\epsilon]$ ,

(22) $| \varphi_{k}(t)-\varphi(t)|\leq 4M(T-T_{k})+\in\sup_{Ts\in[,T+\epsilon]}|f(s, x(T_{k}))-f(s, x(T))|$
.

For $t\in[T, T_{k}+\epsilon]$ , $\varphi_{k}$ and $\varphi$ are expressed, respectively, as

$\varphi_{k}(t)=x(T_{k})+\int_{T_{k}}^{T}f(s, x(T_{k}))ds+\oint_{T}^{t}f(s, x(T_{k}))ds$

and

$\varphi(t)=x(T_{k})+\int_{T_{k}}^{T}f(s, x(s))ds+\int_{T}^{t}f(s, x(T))ds$ ,

which imply that

$| \varphi_{k}(t)-\varphi(t)|\leq 2M(T-T_{k})+\int_{T}^{t}|f(s, x(T_{k}))-f(s, x(T))|ds$

(23) $\leq 2M(T-T_{k})+\epsilon$ $\sup$ $|f(s, x(T_{k}))-f(s, x(T))|$ .
$s\in[T,T+\epsilon]$

For $t\in[T_{k}+\epsilon, T+\epsilon]$ , $\varphi_{k}$ and $\varphi$ are expressed, respectively, as

$\varphi_{k}(t)=x(T_{k})+\int_{T_{k}}^{T}f(s, x(T_{k}))$ $ds+ \int_{T}^{T_{k}+\epsilon}f(s, x(T_{k}))ds$

$+ \oint_{T_{k}+\epsilon}^{t}f(s, \varphi_{k}(s-\epsilon))ds$

and

$\varphi(t)=x(T_{k})+\int_{T_{k}}^{T}f(s, x(s))ds+\int_{T}^{T_{k}+\epsilon}f(S_{\}}X(T))ds$

$+ \int_{T_{h}+\epsilon}^{t}f(s, x(T))ds$ ,

which imply that

$| \varphi_{k}(t)-\varphi(t)|\leq\int_{T_{k}}^{T}|f(s, x(T_{k}))-f(s, x(s))|ds$
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$+ \int_{T}^{T_{k}+\epsilon}|f(s, x(T_{k}))-f(s, x(T))|ds$

$+ \int_{T_{k}+\epsilon}^{t}|f(s, \varphi_{k}(s-\epsilon))-f(s, x(T))|ds$

$\leq 2M(T-T_{k})+I_{T}^{T_{k}+\epsilon}|f(s, x(T_{k}))-f(s, x(T))|ds$

$+ \oint_{T_{k}+\epsilon}^{T+\epsilon}|f(s, \varphi_{k}(s-\epsilon))-f(s, x(T))|ds$

$\leq 4\mathrm{M}(\mathrm{T}-T_{k})+I_{T}^{T+\epsilon}|f(s, x(T_{k}))-f(s, x(T))|ds$

$\leq 4M(T-T_{k})+\epsilon_{S\in[}\sup_{T,T+\epsilon]}|f(s, x(T_{k}))-f(s, x(T))|$ .

It follows from this inequality and (23) that (22) holds. Therefore, we have that

(24) $\varphi_{k}(t)arrow\varphi(t)$ uniformly for $t\in[T, T+\epsilon]$ as $karrow\infty$ .

On the interval $[T, T+\epsilon]$ , we have

$\varphi_{k}’(t)-\varphi’(t)=\{$

$f(t, x(T_{k}))-f(t, x(T))$ for $t\in[T, T_{k}+\epsilon]$ ,

$f(t, \varphi_{k}(t-\epsilon))-f(t, x(T))$ for $t\in[T_{k}+\epsilon, T+\epsilon]$ .
For $t\in[T_{k}+\epsilon, T+\epsilon]$ , notice that $\varphi_{k}(t-\epsilon)$ is expressed as

$\varphi_{k}(t-\epsilon)=x(T_{k})+\int_{T_{k}}^{t-\epsilon}f(s, x(T_{k}))ds$,

and hence, we have

$| \varphi_{k}(t-\epsilon)-x(T)|\leq|x(T_{k})-x(T)|+\int_{T_{k\backslash }}^{t-\epsilon}|f(s, x(T_{k}))$, $|ds\leq 2M(T-T_{k})$ .

Therefore, we obtain that $\varphi_{k}’(t)$ – $\varphi’(t)arrow 0$ as $karrow$ oo uniformly for $t\in[T, T+\epsilon]$ .
Which, together with (21) and (23), implies that

(23) $\varphi_{k}arrow\varphi$ in $C^{1}[0, T+\epsilon]$ as $karrow\infty$ .

For $t\in[T+\epsilon, T+2\epsilon]$ , $\varphi_{k}$ and $\varphi$ are, respectively, expressed as

$\varphi_{k}(t)=\varphi_{k}(T_{k}+\epsilon)+\int_{T_{k}+\epsilon}^{T+\epsilon}f(s, \varphi_{k}(s-\epsilon))ds+\int_{T+\epsilon}^{t}f(s, \varphi_{k}(s-\epsilon))$ds

and
$\varphi(t)=\varphi(T_{k}+\epsilon)+\int_{T_{k}+\epsilon}^{T+\epsilon}f(s, x(T))ds+\int_{T+\epsilon}^{t}f(s, \varphi(s-\epsilon))ds$,

and hence, it follows that

$|\varphi_{k}(t)-\varphi(t)|\leq|\varphi_{k}(T_{k}+\epsilon)-\varphi(T_{k}+\epsilon)|$

$+ \int_{T_{k}+\epsilon}^{T+\epsilon}|f(s, \varphi_{k}(s-\epsilon))-f(s, x(T))|ds$



174

$+ \int_{T+\epsilon}^{t}|f(s, \varphi_{k}(s-\epsilon))-f(s, \varphi(s-\epsilon))|ds$

$\leq|\varphi_{k}(T_{k}+\epsilon)-\varphi(T_{k}+\epsilon)|+2M(T-T_{k})$

$+ \oint_{T+\epsilon}^{T+2\epsilon}|f(s, \varphi_{k}(s-\epsilon))-f(s, \varphi(s-\epsilon))|ds$

(26) $\leq|\varphi_{k}(T_{k}+\epsilon)-\varphi(T_{k}+\epsilon)|+2M(T-T_{k})$

$+\epsilon$ $\sup$ $|f(s, \varphi_{k}(s-\epsilon))-f(s, \varphi(s-\epsilon))|$ .
$s\in[T+\epsilon,T+2\epsilon]$

We note, by (25), that
$\varphi_{k}(s-\epsilon)arrow\varphi(s-\epsilon)$ uniformly for $s\in[T+\epsilon, T+2\epsilon]$ as $karrow\infty$ ,

which shows, by (26), that

$|\varphi_{k}(t)-\varphi(t)|arrow \mathrm{O}$ as $karrow\infty$ uniformly for $t\in[T+\epsilon, T+2\epsilon]$ .
Moreover we also obtain that

$\varphi_{k}’(t)-\varphi’(t)=f(t, \varphi_{k}(t-\epsilon))-f(t, \varphi(t-\epsilon))arrow 0$ as $karrow\infty$

uniformly for $t\in[T+\epsilon, T+2\epsilon]$ . These facts, together with (25), imply that

$\varphi_{k}arrow\varphi$ in $C^{1}[0, T+2\epsilon]$ as $karrow\infty$ .

Repeating this procedure, we get that $\{\varphi_{k}\}$ converges to $\varphi$ in $C^{1}[0,1]$ . Thus, we
proved the continuity of the mapping $T\vdasharrow\varphi\tau$ .

Similarly to $\varphi_{T}$ , we can define a mapping $\psi$ $=\psi_{T}$ : $[0, 1]arrow \mathrm{R}^{n}$ by using $y$

instead of $x$ for the above $\epsilon>0$ and $T$ . We note that $\psi_{T}$ coincides with $y$ when
$T=1$ while $\psi_{T}$ does not depend on $y$ when $T=0$. Moreover, the mapping
$[0, 1]\ni T\vdasharrow\psi_{T}\in C^{1}[0, 1]$ is coutinuous. Here, notice that $\varphi_{T}$ coincides with $\psi_{T}$

when $T=$ $0$ . Since $x\in G$ while $y\not\in G$ , we can choose a $T$ with $0\leq T<1$ satisfying
$\varphi\tau\in\partial G$ or $\psi_{T}\in\partial G$ .

We denote the above $T$ by $T(\epsilon)$ . For any fixed sequence $\{\epsilon_{k}\}$ of positive numbers
converging to 0, we denote $T(\epsilon_{k})$ by $T_{k}$ . Moreover, the mappings $\varphi\tau_{k}$ and $\psi\tau_{k}$ will
be donoted, respectively, by $\varphi_{k}$ and $\psi_{k}$ . We may assume, without loss of generality,
that the relation $\varphi_{k}\in\partial G$ holds for every $k\in$ N. It follows from (6) that $\varphi_{k}$ satisfies
the following three equalities;

(27) $\varphi_{k}(t)=x(t)$ for $t\in[0, T_{k}]$ ,

(28) $\varphi_{k}(t)=x(T_{k})+\int_{T_{k}}^{t}f(s, x(T_{k}))ds$ for $t\in[T_{k}, T_{k}+\epsilon_{k}]$ ,

(29) $\varphi_{k}(t)=x(T_{k}+\epsilon_{k})+\int_{T_{k}+\epsilon_{k}}^{t}f(s, \varphi_{k}(s-\epsilon_{k}))ds$ for $t\in[T_{k}+\epsilon_{k}, 1]$ .
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Therefore, we have that $|\varphi_{k}’(t)|\leq M$ for $t\in[0, 1]$ and that $\varphi_{k}(0)=\xi$ , and hence, by
Ascoli-Arzela’s theorem, we may assume that $\{\varphi_{k}\}$ converges to some $\overline{\varphi}$ in $C[0,1]$ by
taking a subsequence if necessary. Furthermore, we may assume that $\{T_{k}\}$ converges
to some $T_{0}$ in $[0, 1]$ .

It is clear from (27) that $\overline{\varphi}(t)=x(t)$ holds for $0\leq t<T_{0}$ . By letting $karrow\infty$

in (28), we have that $\overline{\varphi}(T_{0})=x(T_{0})$ . For any $t$ with $T_{0}<t\leq 1$ , an inequality
$T_{k}<T_{k}+\epsilon_{k}<t$ holdes for large $k$ , it then follows from (29) that

$\overline{\varphi}(t)=x(T_{0})+\oint_{T_{0}}^{t}f(s,\overline{\varphi}(s))ds$ for $T_{0}<t\leq 1$ .

These facts show that $\overline{\varphi}$ is a solution of (1), namely, $\overline{\varphi}\in K$ .
Now we shall show that $\{\varphi_{k}\}$ converges to $\overline{\varphi}$ in $C^{1}[0,1]$ . For every $k\in \mathrm{N}$ , let $\overline{\varphi}_{k}$

be a mapping defined by

(30) $\overline{\varphi}_{k}(t)=\{$

$\overline{\varphi}(t)$ for $0\leq t$ $\leq T_{k}$

$\overline{\varphi}(T_{k})$ for $T_{k}\leq t\leq T_{k}+\epsilon_{k}$

$\overline{\varphi}(t-\epsilon_{k})$ for $T_{k}+\epsilon_{k}\leq t\leq 1$ .

Then, it is clear that $\overline{\varphi}_{k}(t)arrow\overline{\varphi}(t)$ uniformly for $t\in[0,1]$ as $karrow\infty$ . Furthermore,

it follows from (27) through (29) that $\varphi_{k}’$ satisfies the following eqality

(31) $\varphi_{k}’(t)=\{$

$f(t, \varphi_{k}(t))$ for $0\leq t\leq T_{k}$

$f(t, \varphi_{k}(T_{k}))$ for $T_{k}\leq t\leq T_{k}+\epsilon_{k}$

$f(t, \varphi_{k}(t-\epsilon_{k}))$ for $T_{k}+\epsilon_{k}\leq t\leq 1$ .

Since $\overline{\varphi}$ is a solution of (1), we have an inequality

(32) $|\varphi_{k}’(t)-\overline{\varphi}’(t)|\leq|\varphi_{k}’(t)-f(t,\overline{\varphi}_{k}(t))|+|f(t,\overline{\varphi}_{k}(t))-f(t,\overline{\varphi}(t))|$ .

It is clear that the second term of the right hand side in the above tends to 0 as
$karrow\infty$ . By (30) and (31), we have

$\varphi_{k}’(t)-f(t,\overline{\varphi}_{k}(t))=\{$

$f(t, \varphi_{k}(t))-f(t,\overline{\varphi}(t))$ for $0\leq t\leq T_{k}$

$f(t, \varphi_{k}(T_{k}))-f(t,\overline{\varphi}(T_{k}))$ for $T_{k}\leq t\leq T_{k}+\epsilon_{k}$

$f\{t,$ $\varphi_{k}(t-\epsilon_{k}))-f(t,\overline{\varphi}(t-\epsilon_{k}))$ for T4-1 $\epsilon_{k}\leq t\leq 1$ .

Since $\{\overline{\varphi}_{k}\}$ converges to $\overline{\varphi}$ uniformly on $[0, 1]$ , we can conclude from (32) and the

above equality that $\{\overline{\varphi}_{k}’\}$ converges to $\overline{\varphi}’$ uniformly on $[0, 1]$ , which assures that
$\{\varphi_{k}\}$ converges to $\overline{\varphi}$ in $C^{1}[0,1]$ . It then follows from the relation $\varphi_{k}\in\partial G$ and

the closedness of $\partial G$ that $\overline{\varphi}$ belongs to $\partial G$ , which contrdicts (5) and the fact that
$\overline{\varphi}\in K$ . This completes the proof. $\square$
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Corollary 1. A set
{ ($x(1)$ , $x’(1)$ ) $;x$ is a solution of (1)}

is compact and connected in $\mathrm{R}^{2n}$ for every $\xi\in \mathrm{R}^{n}$ .

Corollary 2. If $E$ is a compact and connected subset of $\mathrm{R}^{n}$ , then a set

{$x;x$ is a solution of (1) with $\xi\in E$ }
is compact and connected in $C^{1}[0,1]$ .

Example. An initial value problem

(33) $x’=2\sqrt{|x|}$, $x(0)=0$

admits two solutions $x_{1}(t)\equiv 0$ and $x_{2}(t)=t^{2}$ . It follows from Corollary 1 that a
compact and connected set

{ ($x(1)$ , $x’(1)$ ) $;x$ is a solution of (33)}

contains two points $(x_{1}(1), x_{1}’(1))=(0,0)$ and $( 2$(1)$, x_{2}’(1))=(1,2)$ . Therefore (33)

admits a solution $x$ satisfying
$x(1)+x’(1)=2$

because the straight line $x+y=2$ separates two points $(0, 0)$ and $(1, 2)$ .
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