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Kneser’s property in C'-norm
for ordinary differential equations

FALFE R PR E2HEE (Takashi Kaminogo)
Department of Mathematics, Tohoku Gakuin University

Let D be an open subset of R x R®. We consider an initial value problem
(1) x' = f(t>x)’ .’E(O) =&,
where the the prime denotes the differentiation with respect to t, (0,¢) € D and
f : D — R" is continuous. H. Kneser proved the following theorem (see Theorem
4.1, p.15 in [1}).
Theorem (Kneser). For every (0,¢) € D, a set
{z(r); z is a solution of (1)}

is compact and connected in R”™ when 7 > 0 is sufficiently small.

For simplicity, we assume that D = [0,1] x R™ and that f is bounded and con-
tinuous. Namely, we suppose that there exists a positive constant M satisying

(2) If(t,z)] <M  for (t,z) € [0,1] x R™,
where | - | denotes any norm in R™. In this case, the above theorem is reduced to
the following theorem.

Theorem 1. For every £ € R", a set
{z(1); z is a solution of (1)}

is compact and connected in R”.

For any a, b € R with a < b, let Cla, b] denote the Banach space of all R"-valued
continuous mappings on [a, b] with the norm || - || defined by ||z|] = sup,<i<s |z (t)]-
Similarly, we denote by C*[a, b] the Banach space of all R™-valued continuously dif-
ferentiable mappings on [a, b] with the norm ||-||; defined by ||z{|; = max{|z|], [|z'|}.

It is well known that Theorem 1 is extended to the following theorem.

Theorem 2. A set
(3) K = {z; z is a solution of (1)}

is compact and connected in C]0, 1] for every £ € R™.
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Since the set K given in (3) is included in C*[0, 1], it might be natural to discuss
the property of the set K in the topology of C'[0,1]. In this article, we shall
introduce the following theorem.

Theorem 3. The set K given in (3) is compact and connected in C'{0,1] for
every £ € R".

Proof. First we shall show that K is compact in C*[0,1]. Let {zz} be any
sequence in K. It follows from (2) that |z} (t)] < M for 0 < ¢ < 1, and hense {z4}
is equicontinuous and uniformly bounded on [0, 1] because z4(0) = £. Then we may
assume, by Ascoli-Arzeld’s theorem, that {zj} converges to some z in C[0,1] by
taking a subsequence if necessary. Since zj satisfies an equality

t

z(t) = €+ [ fls,7uls)) ds,
z satisfies that z(t) = & + [f f(s,z(s)) ds, which implies that z € K. Let L be a
compact subset of R" defined by

(4) L={zeR"; |z| < |{|+ M}.
Then zx(t) € L for 0 <t < 1. Since f is uniformly continuous on a compact set
[0,1] x L, it follows that

zi(t) = f(t.z(t)) = f(t,2(t)) =2'(t) as k— o0
uniformly for ¢ € [0, 1]. Therefore, {z;} converges to z in C'[0, 1}, which shows that
K is compact in C*[0, 1].

Now we shall show that K is connected. Suppose that K is not connected. Then
there exist two nonempty compact sets K; and K, such that K; UKy = K and that
KN K, =J. It is easy to find an open set G in C*[0, 1] satisfying K; C G and
G N K, =, where G denotes the closure of G. Therefore, we obtain that
(5) 0GNK =,
where 0G denotes the boundary of G. Let z and y be any fixed elements in K; and
K, respectively.

For any fixed small number & > 0 and a number T satisfying 0 < T < 1, define a
mapping ¢ : [0,1] — R" by

[ z(2) for 0<t<T
(6) o(t) = ¢ m(T)JF/;f(S,iE(T))dS for T<t<T+e
\90(T+€)+/;+£f(s,g0(s—-£))ds for T+e<t<1.

It is not difficult to observe that ¢ belongs to C[0,1]. We denote the mapping ¢
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by ¢r. Clearly, ¢r coincides with « when 7" = 1, while ¢ does not depend on z.

We shall show that the correspondence 7' — 7 is a continuous mapping from
[0,1] into C1[0,1]. Let T € [0,1] be fixed, and let {Z;} be any sequence in [0,1]
converging to T. For simplicity, we denote @7, and @7, respectively, by ¢ and ¢.
It will be verified that {¢y} converges to ¢ in C'[0,1] as & — oo in the following
two cases where T}, > T holds for k € N and T < T holds for £k € N. Sincee >0
and T — T as k — 00, we may assume that

(7) IT, —T| <e forevery k€ N.

(i) In the case where T} > T holds for £ € N. It follows from (6) that ¢y is
expressed as

[ z(t) for 0<t< Ty,
t
<
) et = { FTD+ [ ls,2(T)ds for T <t<Tote,
t
Wk(Tis'l'E)-*'fT Fls,on(s—e))ds  for Tr+e<t< 1.
\ rte

Since Ty > T, an equality @x(t) = ¢(t) = z(t) holds for ¢t € [0, T).
We shall observe that

(9) low(t) — o) < 2M(T} - T)

T+e
+ [ I 2T) - £ oI ds forte [T +¢]

and
(10) ok (t) = ¢'(B)] < S £t z(t)) — f(¢,=(T))|
+ sup |f(t,z(Tx) — f(t,2(T))| forte[T,T +¢
te[Ty,T+é]

hold, where M is the positive constant satisfying (2). Here, notice that an inequality
T < Ty < T + ¢ holds by assumption (7). For any t € [T, T}], we have

oult) = o) = o(T) + [ f(s,2(5)) ds = {o(T) + [ F(s,a(T)) ds]
=[5, S5, 2T} ds

and hence it follows from (2) that

(11) loe(t) — ()] < 2M (T = T) for ¢ € [T, T
Furthermore, we have, by (6) and (8), that

(12) PL(t) - (1) = f(t,2(t) — f(t,5(T)) for t€[T,Ti].
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On the other hand, for t € [T}, T + ¢}, it follows, respectively, from (6) and (8) that
A
ou(t) = o(T) + | f(s,2(T0)) ds
T
T t
= o(T) + /T f(s,3(s)) ds + /T J(5,2(T)) ds
and that
t
ol(t) = 3(1) + [ f(s,2(D)) ds

T t
= o(T)+ | " fls,2(1)) ds + /T fls,2(T))ds

and hence, we have

13) o) o) S2MEG-T)+ [ 1f(5,3(T8)) - 5,5 ds.
Furthermore, it is clear that the following equality holds.
(14) e(t) = ¢'(t) = f(t,2(Th)) — f(t,2(T)) for ¢ € [Ty, T +e].

It then follows from (11) and (13) that (9) holds. Inequality (10) is a direct conce-
quence of {(12) and (14). Thus, we obtain, by (9) and (10}, that

(15) op—+ @ in CHO,T+¢€] as k— o0,

Now we shall estimate |z (t) — ()] and [, (t) — ©'(t)| on the interval [T'+¢, 1].
For any t € [T +¢,T + 2¢], it will be verified that the following inequality holds.

(16) lok(t) — ()| < 4M(T} — T) + E e £ (s,2(Tk)) — f(s,2(T))|
+ 1%(T+6) o(T +¢)|

+ [ (s nls = 2) — Flopls ~ )l ds.
When t € [T +¢, T} + €], it follows from (6) and (8) that

ex(t) = 901 < [ 17(s,(5) — Fls,2(T)] ds
+ [ 15T - FsaT)]ds
4 [ 1868(T0) - £ (s = )ids
<M ~T)+ [ |f(s,2(T) = f5,2(T))] ds

Trte
* L’-{-s |f{s,2(Tk)) — f(s,0(s — €))| ds
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T+e
S 4M(Tk _T)+~/T lf(5,$(Tk)) —-f(.S,.’L'(T))IdS

(17) <AM(Ty-T)+e sup |f(s,2(T) — f(s,2(T)).
s€[T,\T+¢}

When t € [T + ¢, T + 2¢], ¢ and ¢ are expressed, respectively, as

0p(t) = pr(Tk + &) — (T + &) + (T + ) + /T;E f(s,01(s —€))ds
= T“Ef(s 2(Ty)) ds + @u(T + €) + t f(s,01(5 —€)) ds

T+e Tp+e
and '

o(t) = (T +¢) —f—/ f(s,0(s —¢€)) d8+/ f(s, (s —¢€))ds
Therefore, we have, for t € [T}, +¢,T + 2¢],
lo(t) — 9] < lea(T +¢) — (T + ¢}

Th+e
+ [T 15, 2(@)) - Fs (s — €l ds

T+e
+ /’;4—5 [f(SaSOk(S — 8)) - f(S,tp(s — E))lds

< lgw(T +€) — (T +&)| + 2M (T, - T)
[T (s, pn(s — ) = £(5,0(5 — £))] d.

T+e

1t then follows from this inequality and (17) that (16) holds for ¢ € [T +¢,T + 2¢.
Thus, we have |1 (t) — @(t)] = 0 as k — oo uniformly on [T +¢,T + 2¢] because of
(15) and the uniform continuity of f on [0,1] x L.

We have to confirm that |} (t) —¢'(t)] — 0 as k — oo uniformly on [T+, T +2¢].
For t € [T + ¢, T}, + €], it follows that

(18) @(t) = '(8) = F(t, 2(Tk)) — (¢, ot - €))-

Since (t — &) = z(T) + f&° f(s,2(T)) ds and T <t — ¢ < T} hold, we have

(19)  |2(Te) — @t — &)} < |z(Ty) —z(D)| + M(Ty = T) for t € [T +¢, T + g].
For t € [T} +¢&,T + 2¢}, we have evidently that

(20) O (1) — @' (1) = f(t, ou(t —€)) — f(t, 0(t —€))-

It follows from (18), (19) and (20) that |} (t) — ¢'(t)| — 0 as & — 0 uniformly for

t € [T +¢,T + 2€]. Therefore, we obtain that ¢ — ¢ in CH0,T + 2¢] as k — oo.
Repeating this procedure, we get that ¢z — ¢ in C0,1] as k — oo.
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(i) In the case where T} < T holds for ¥ € N. When ¢ € [0, Tk], we have that
or(t) = o(t) holds. For t € [T, T), it follows from (2}, (6) and (8) that

lee(t) — @(B)] < /Ti £ (s,2(Ty)) = f(s,2(s))| ds < 2M(T = T).

Therefore, {px} converges to ¢ uniformly on [0, 7]. Furthermore, for t € [Ty, T, we
have that

i (t) — ¢ () = ft, 5(Tx)) — f(2,2(t))
and that |2(T}) — z(8)] < M(t — Tx) < M(T - Ti;) — 0 as k — oo. Therefore, it
follows that {¢,} converges to ¢’ uniformly on [0, T], and hence we obtain that

(21) or =@ in CY0,T] as k — oo
Now we shall show that, for t € [T, T + ¢,
(22)  low(t) — ()| SAM(T = Tp)+¢ sup |f(s,2(Ti)) — f(5,2(D))]-
se[T,T+¢]

For t € [T, Ty + €], ¢r and @ are expressed, respectively, as

or(t)=2(T) + [ fls,5(T)ds+ [ fla,a(T) ds
and
olt) = a(T) + [ f F(s,2(5)) ds + /Tt £(5,2(T)) ds,
which imply that
for(t) ~ (8] < 2M( =) + [ 1106, 2(T0) — F(s,2(T)) | s

(23) S2M(I'-Ty) +e e |f(s,2(Tk)) — f(s,2(T))]-

For t € [T} +¢,T + €], ¢ and ¢ are expressed, respectively, as
T Th+e
ou(t) =2(T) + [ (0@ ds+ [ f(s,2(T)) ds
k

[ fepls—eas
and

o) =a(T)+ [ f(s,a()ds+ [ s, 2(T) ds

T

A
+ [ Fs,2(T)) ds,
Ty+e
which imply that

[on(8) = 9(0] < [ 11(6,(T) = £ o() s
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+ [ 15T = fls a1 ds

+ [ 15,05 =) = F(s,a(T))] ds
<IM(T - T;) + / (s, 2(Te)) = f(s,2(T))| ds

+ [ 1o nls €)= Flsa(T)] ds

<AM(T —T,) + [T T (s, 2(T0)) — £ (5, 2(T))| ds

<AM(T —-Ty)+¢e sup |f(s,2(Tk)) — f(s,2(T))|.
s€[T,T+e]

It follows from this inequality and (23) that (22) holds. Therefore, we have that
(24) ¢i(t) = @(t) uniformly for ¢ € [T,T +¢] ask — oc.

On the interval [T, T + €], we have
{f(t,a:(Tk)) — f(t,z(T)) for t € [T, T} + ¢,

flt, ot —€)) — f{t,z(T)) for te[Tx+e,T +el.

For t € [Ty +¢,T + €], notice that ¢x(t — €) is expressed as

t—g
orlt—e)=a(T) + [ f(s,2(TV)) ds,
Tk

and hence, we have

tg
oxlt &) = ()] < 2T ~ (D) + [ (s, 5T ds < 2M(T =T,

k

Therefore, we obtain that ¢ (t) — ¢'(t) = 0 as k — oo uniformly for t € [T,T +¢].
Which, together with (21) and (23), implies that

(25) o — ¢ in CYUO, T +¢] as k — o
For t € [T +¢,T + 2], @i and ¢ are, respectively, expressed as
T+e 3 J
o)) = Tk e) + [ flsonls—elds + [ f(sonls =) ds
and
T+e ™d t d
olt) = p(Te+e)+ [ floal)ds+ [ fls,0(s =) ds
and hence, it follows that
pr(t) — (O] < loe(Ti + ) — @(Tk + )]
T+e
+ [ f(sgnls =) = Fls 2Tl ds
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+ [7; [F(s,0u(5 —€)) — f(s,(s —€))| ds
< ]‘Pk(Tk -+ 8) —_ (P(Tk. -+ g)i + ZM(T —T})

+ /T+2E lf(sv Q‘ok(s - E)) - f(S, (P(S - 6))[ ds
T+e

(26) < |ou(Ti + ) — o(Tp + )|+ 2M(T — Tk)
+e  sup  |f(s,0r(s — &) — f(s,0(s —€))|.
s€[T+e,T+2e¢]

We note, by (25), that
op(s —€) = @(s —¢e) uniformly for s€ [T +¢,T+2¢] as k — oo,
which shows, by (26), that
lox(t) — @(t)] = 0 as k — oo uniformly for ¢ € [T +¢,T + 2¢].

Moreover, we also obtain that

o) = ') = f(t, ou(t —€)) — flt,o(t —€)) =0 as k— o0
uniformly for ¢ € [T + €, T -+ 2¢]. These facts, together with (25), imply that
or — ¢ in C0,T +2¢] as k — oo.
Repeating this procedure, we get that {(} converges to ¢ in C'[0,1]. Thus, we
proved the continuity of the mapping T' — ¢r.

Similarly to 7, we can define a mapping ¥ = %¢r : [0,1] — R" by using y
instead of z for the above € > 0 and T. We note that 7 coincides with y when
T = 1 while ¢r does not depend on y when 7' = (. Moreover, the mapping
[0,1] > T = r € C'0,1] is coutinuous. Here, notice that o coincides with ¢
when 7" = 0. Since z € G while y ¢ G, we can choose a T with 0 < T < 1 satisfying

pr € 0G or yYr € 0G.

We denote the above T by T'(g). For any fixed sequence {e;} of positive numbers
converging to 0, we denote T'(e;) by Tj. Moreover, the mappings @7, and ¥, will
be donoted, respectively, by ¢y and 1. We may assume, without loss of generality,
that the relation ¢ € G holds for every k € N. It follows from (6) that y; satisfies
the following three equalities;

(27) ‘ (pk(t) = QZ(t) for ¢ € [O,Tk],
(28) wi(t) = a(Ty) + /Ti f(s,2(T))ds for t € [Tk, Ty + &),
(29) or(t) = (T}, + &) + t fls,on(s —ex))ds for te [Ty +egll

Ty+ter



175

Therefore, we have that |¢} ()] < M for ¢t € [0,1] and that ©x(0) = £, and hence, by
Ascoli-Arzeld’s theorem, we may assume that {¢,} converges to some @ in C[0, 1] by
taking a subsequence if necessary. Furthermore, we may assume that {7}, } converges
to some Tp in [0, 1].

It is clear from (27) that @¢(t) = x(¢) holds for 0 < ¢ < T;. By letting & — oo
in (28), we have that ¢(Ty) = z(Tp). For any ¢ with Ty < ¢ < 1, an inequality
T, < Ty + € < t holdes for large k, it then follows from (29) that

(1) =1;(To)+[1:;f(s,gb(s))ds for To<t<1.

These facts show that @ is a solution of (1), namely, ¢ € K.
Now we shall show that {¢} converges to @ in C*[0,1]. For every k € N, let @;
be a mapping defined by

(t) for 0<t<T}
(Tk) for Tk <t<L Tk + &g

=
8
S
b
=
{l
1 6

Bt —ex) for Tp+ep <t <L
Then, it is clear that @ (t) — @(¢) uniformly for ¢ € [0,1] as k¥ — oco. Furthermore,
it follows from (27) through (29) that ¢} satisfies the following eqality

f(t ox(t)) for 0<t < Ty
(31) @(t) = & ee(Th)) for T <t < Tp+ex

f ot —ex)) for Tp+ep <t <1

Since @ is a solution of (1), we have an inequality

(32) |0, (t) — @' ()] < leh(t) = (& @u()] + £t @(8)) = F (8, 2())]-
It is clear that the second term of the right hand side in the above tends to 0 as
k — oo. By (30) and (31), we have

ftou(®)) — £(2, 2(1)) for 0<t<T,
e (t) — (&, @e(t)) = Ft0e(Tk)) — (&t &(Tk)) for Tp <t <Tp+ex
flt,on(t—er)) = ft,@(t —ex)) for Ty+ep <t <L

Since {1} converges to ¢ uniformly on [0,1], we can conclude from (32) and the
above equality that {@,} converges to @' uniformly on [0, 1], which assures that
{4} converges to @ in C'[0,1]. It then follows from the relation ¢y € 9G and
the closedness of &G that @ belongs to G, which contrdicts (5) and the fact that
@ € K. This completes the proof. a
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Corollary 1. A set
{(z(1), (1)) ; = is a solution of (1)}

is compact and connected in R*® for every £ € R".

Corollary 2. If E is a compact and connected subset of R", then a set
{x; r is a solution of (1) with £ € E}

is compact and connected in C*{0, 1].

Example. An initial value problem

(33) ' =2, «(0)=0
admits two solutions z1(£) = 0 and z,(t) = t%. It follows from Corollary 1 that a
compact and connected set

{{z(1),2'(1)); z is a solution of (33)}
contains two points (;(1), 2} (1)) = (0,0) and (z(1), z4(1)) = (1,2). Therefore (33)
admits a solution z satisfying

z(1)+2'(1) =2

because the straight line = + y = 2 separates two points (0, 0) and (1, 2).
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