Kneser's property in C^1 -norm for ordinary differential equations

東北学院大学教養学部 上之郷高志 (Takashi Kaminogo) Department of Mathematics, Tohoku Gakuin University

Let D be an open subset of $\mathbf{R} \times \mathbf{R}^n$. We consider an initial value problem (1) $x' = f(t, x), \quad x(0) = \xi,$

where the prime denotes the differentiation with respect to t, $(0,\xi) \in D$ and $f: D \to \mathbb{R}^n$ is continuous. H. Kneser proved the following theorem (see Theorem 4.1, p.15 in [1]).

Theorem (Kneser). For every $(0,\xi) \in D$, a set

 $\{x(\tau); x \text{ is a solution of } (1)\}$

is compact and connected in \mathbf{R}^n when $\tau > 0$ is sufficiently small.

For simplicity, we assume that $D = [0, 1] \times \mathbb{R}^n$ and that f is bounded and continuous. Namely, we suppose that there exists a positive constant M satisfying

(2) $|f(t,x)| \le M \quad \text{for } (t,x) \in [0,1] \times \mathbf{R}^n,$

where $|\cdot|$ denotes any norm in \mathbb{R}^n . In this case, the above theorem is reduced to the following theorem.

Theorem 1. For every $\xi \in \mathbf{R}^n$, a set

 $\{x(1); x \text{ is a solution of } (1)\}$

is compact and connected in \mathbb{R}^n .

For any $a, b \in \mathbf{R}$ with a < b, let C[a, b] denote the Banach space of all \mathbf{R}^n -valued continuous mappings on [a, b] with the norm $\|\cdot\|$ defined by $\|x\| = \sup_{a \le t \le b} |x(t)|$. Similarly, we denote by $C^1[a, b]$ the Banach space of all \mathbf{R}^n -valued continuously differentiable mappings on [a, b] with the norm $\|\cdot\|_1$ defined by $\|x\|_1 = \max\{\|x\|, \|x'\|\}$.

It is well known that Theorem 1 is extended to the following theorem.

Theorem 2. A set (3) $K := \{x ; x \text{ is a solution of } (1)\}$ is compact and connected in C[0, 1] for every $\xi \in \mathbb{R}^n$. Since the set K given in (3) is included in $C^{1}[0, 1]$, it might be natural to discuss the property of the set K in the topology of $C^{1}[0, 1]$. In this article, we shall introduce the following theorem.

Theorem 3. The set K given in (3) is compact and connected in $C^{1}[0,1]$ for every $\xi \in \mathbf{R}^{n}$.

Proof. First we shall show that K is compact in $C^1[0,1]$. Let $\{x_k\}$ be any sequence in K. It follows from (2) that $|x'_k(t)| \leq M$ for $0 \leq t \leq 1$, and hense $\{x_k\}$ is equicontinuous and uniformly bounded on [0,1] because $x_k(0) = \xi$. Then we may assume, by Ascoli-Arzelà's theorem, that $\{x_k\}$ converges to some x in C[0,1] by taking a subsequence if necessary. Since x_k satisfies an equality

$$x_k(t) = \xi + \int_0^t f(s, x_k(s)) \, ds,$$

x satisfies that $x(t) = \xi + \int_0^t f(s, x(s)) ds$, which implies that $x \in K$. Let L be a compact subset of \mathbf{R}^n defined by

(4)
$$L = \{x \in \mathbf{R}^n ; |x| \le |\xi| + M\}.$$

Then $x_k(t) \in L$ for $0 \leq t \leq 1$. Since f is uniformly continuous on a compact set $[0,1] \times L$, it follows that

$$x'_k(t) = f(t, x_k(t)) \rightarrow f(t, x(t)) = x'(t) \quad \text{as} \quad k \to \infty$$

uniformly for $t \in [0, 1]$. Therefore, $\{x_k\}$ converges to x in $C^1[0, 1]$, which shows that K is compact in $C^1[0, 1]$.

Now we shall show that K is connected. Suppose that K is not connected. Then there exist two nonempty compact sets K_1 and K_2 such that $K_1 \cup K_2 = K$ and that $K_1 \cap K_2 = \emptyset$. It is easy to find an open set G in $C^1[0, 1]$ satisfying $K_1 \subset G$ and $\overline{G} \cap K_2 = \emptyset$, where \overline{G} denotes the closure of G. Therefore, we obtain that

$$\partial G \cap K = \emptyset,$$

where ∂G denotes the boundary of G. Let x and y be any fixed elements in K_1 and K_2 , respectively.

For any fixed small number $\varepsilon > 0$ and a number T satisfying $0 \le T \le 1$, define a mapping $\varphi : [0,1] \to \mathbf{R}^n$ by

(6)
$$\varphi(t) = \begin{cases} x(t) & \text{for } 0 \le t \le T \\ x(T) + \int_T^t f(s, x(T)) \, ds & \text{for } T \le t \le T + \varepsilon \\ \varphi(T + \varepsilon) + \int_{T + \varepsilon}^t f(s, \varphi(s - \varepsilon)) \, ds & \text{for } T + \varepsilon \le t \le 1. \end{cases}$$

It is not difficult to observe that φ belongs to $C^{1}[0,1]$. We denote the mapping φ

by φ_T . Clearly, φ_T coincides with x when T = 1, while φ_T does not depend on x.

We shall show that the correspondence $T \mapsto \varphi_T$ is a continuous mapping from [0,1] into $C^1[0,1]$. Let $T \in [0,1]$ be fixed, and let $\{T_k\}$ be any sequence in [0,1] converging to T. For simplicity, we denote φ_{T_K} and φ_T , respectively, by φ_k and φ . It will be verified that $\{\varphi_k\}$ converges to φ in $C^1[0,1]$ as $k \to \infty$ in the following two cases where $T_k > T$ holds for $k \in \mathbb{N}$ and $T_k < T$ holds for $k \in \mathbb{N}$. Since $\varepsilon > 0$ and $T_k \to T$ as $k \to \infty$, we may assume that

(7)
$$|T_k - T| < \varepsilon$$
 for every $k \in \mathbf{N}$.

(i) In the case where $T_k > T$ holds for $k \in \mathbb{N}$. It follows from (6) that φ_k is expressed as

(8)
$$\varphi_k(t) = \begin{cases} x(t) & \text{for } 0 \le t \le T_k, \\ x(T_k) + \int_{T_k}^t f(s, x(T_k)) \, ds & \text{for } T_k \le t \le T_k + \varepsilon, \\ \varphi_k(T_k + \varepsilon) + \int_{T_k + \varepsilon}^t f(s, \varphi_k(s - \varepsilon)) \, ds & \text{for } T_k + \varepsilon \le t \le 1. \end{cases}$$

Since $T_k > T$, an equality $\varphi_k(t) = \varphi(t) = x(t)$ holds for $t \in [0, T]$.

We shall observe that

(9)
$$\begin{aligned} |\varphi_k(t) - \varphi(t)| &\leq 2M(T_k - T) \\ &+ \int_T^{T+\varepsilon} |f(t, x(T_k)) - f(t, x(T))| \, ds \quad \text{for } t \in [T, T+\varepsilon] \end{aligned}$$

and

(10)
$$\begin{aligned} |\varphi'_k(t) - \varphi'(t)| &\leq \sup_{t \in [T, T_k]} |f(t, x(t)) - f(t, x(T))| \\ &+ \sup_{t \in [T_k, T+\varepsilon]} |f(t, x(T_k)) - f(t, x(T))| \quad \text{for } t \in [T, T+\varepsilon] \end{aligned}$$

hold, where M is the positive constant satisfying (2). Here, notice that an inequality $T < T_k < T + \varepsilon$ holds by assumption (7). For any $t \in [T, T_k]$, we have

$$\varphi_k(t) - \varphi(t) = x(T) + \int_T^t f(s, x(s)) \, ds - \left\{ x(T) + \int_T^t f(s, x(T)) \, ds \right\}$$
$$= \int_T^t \{ f(s, x(s)) - f(s, x(T)) \} \, ds$$

and hence it follows from (2) that

(11)
$$|\varphi_k(t) - \varphi(t)| \le 2M(T_k - T) \quad \text{for } t \in [T, T_k].$$

Furthermore, we have, by (6) and (8), that

(12)
$$\varphi'_k(t) - \varphi'(t) = f(t, x(t)) - f(t, x(T)) \quad \text{for } t \in [T, T_k].$$

On the other hand, for $t \in [T_k, T + \varepsilon]$, it follows, respectively, from (6) and (8) that

$$\varphi_k(t) = x(T_k) + \int_{T_k}^t f(s, x(T_k)) \, ds$$

= $x(T) + \int_{T}^{T_k} f(s, x(s)) \, ds + \int_{T_k}^t f(s, x(T_k)) \, ds$

and that

$$\begin{split} \varphi(t) &= x(T) + \int_T^t f(s, x(T)) \, ds \\ &= x(T) + \int_T^{T_k} f(s, x(T)) \, ds + \int_{T_k}^t f(s, x(T)) \, ds, \end{split}$$

and hence, we have

(13)
$$|\varphi_k(t) - \varphi(t)| \le 2M(T_k - T) + \int_T^{T+\varepsilon} |f(s, x(T_k)) - f(s, x(T))| \, ds.$$

Furthermore, it is clear that the following equality holds.

.

(14)
$$\varphi'_k(t) - \varphi'(t) = f(t, x(T_k)) - f(t, x(T)) \text{ for } t \in [T_k, T + \varepsilon].$$

It then follows from (11) and (13) that (9) holds. Inequality (10) is a direct concequence of (12) and (14). Thus, we obtain, by (9) and (10), that

(15)
$$\varphi_k \to \varphi \text{ in } C^1[0, T+\epsilon] \text{ as } k \to \infty.$$

Now we shall estimate $|\varphi_k(t) - \varphi(t)|$ and $|\varphi'_k(t) - \varphi'(t)|$ on the interval $[T + \varepsilon, 1]$. For any $t \in [T + \varepsilon, T + 2\varepsilon]$, it will be verified that the following inequality holds.

(16)
$$\begin{aligned} |\varphi_k(t) - \varphi(t)| &\leq 4M(T_k - T) + \varepsilon \sup_{s \in [T, T + \varepsilon]} |f(s, x(T_k)) - f(s, x(T))| \\ &+ |\varphi_k(T + \varepsilon) - \varphi(T + \varepsilon)| \\ &+ \int_{T + \varepsilon}^{T + 2\varepsilon} |f(s, \varphi_k(s - \varepsilon)) - f(s, \varphi(s - \varepsilon))| \, ds. \end{aligned}$$

When $t \in [T + \varepsilon, T_k + \varepsilon]$, it follows from (6) and (8) that

$$\begin{aligned} |\varphi_k(t) - \varphi(t)| &\leq \int_T^{T_k} |f(s, x(s)) - f(s, x(T))| \, ds \\ &+ \int_{T_k}^{T+\varepsilon} |f(s, x(T_k)) - f(s, x(T))| \, ds \\ &+ \int_{T+\varepsilon}^t |f(s, x(T_k)) - f(s, \varphi(s-\varepsilon))| \, ds \\ &\leq 2M(T_k - T) + \int_T^{T+\varepsilon} |f(s, x(T_k)) - f(s, x(T))| \, ds \\ &+ \int_{T+\varepsilon}^{T_k+\varepsilon} |f(s, x(T_k)) - f(s, \varphi(s-\varepsilon))| \, ds \end{aligned}$$

(17)
$$\leq 4M(T_k - T) + \int_T^{T+\varepsilon} |f(s, x(T_k)) - f(s, x(T))| \, ds$$
$$\leq 4M(T_k - T) + \varepsilon \sup_{s \in [T, T+\varepsilon]} |f(s, x(T_k)) - f(s, x(T))|.$$

When $t \in [T_k + \varepsilon, T + 2\varepsilon]$, φ_k and φ are expressed, respectively, as

$$\varphi_{k}(t) = \varphi_{k}(T_{k} + \varepsilon) - \varphi_{k}(T + \varepsilon) + \varphi_{k}(T + \varepsilon) + \int_{T_{k} + \varepsilon}^{t} f(s, \varphi_{k}(s - \varepsilon)) ds$$
$$= \int_{T + \varepsilon}^{T_{k} + \varepsilon} f(s, x(T_{k})) ds + \varphi_{k}(T + \varepsilon) + \int_{T_{k} + \varepsilon}^{t} f(s, \varphi_{k}(s - \varepsilon)) ds$$

 and

$$\varphi(t) = \varphi(T+\varepsilon) + \int_{T+\varepsilon}^{T_k+\varepsilon} f(s,\varphi(s-\varepsilon)) \, ds + \int_{T_k+\varepsilon}^t f(s,\varphi(s-\varepsilon)) \, ds.$$

Therefore, we have, for $t \in [T_k + \varepsilon, T + 2\varepsilon]$,

$$\begin{aligned} |\varphi_k(t) - \varphi(t)| &\leq |\varphi_k(T + \varepsilon) - \varphi(T + \varepsilon)| \\ &+ \int_{T+\varepsilon}^{T_k + \varepsilon} |f(s, x(T_k)) - f(s, \varphi(s - \varepsilon))| \, ds \\ &+ \int_{T_k + \varepsilon}^t |f(s, \varphi_k(s - \varepsilon)) - f(s, \varphi(s - \varepsilon))| \, ds \\ &\leq |\varphi_k(T + \varepsilon) - \varphi(T + \varepsilon)| + 2M(T_k - T) \\ &+ \int_{T+\varepsilon}^{T+2\varepsilon} |f(s, \varphi_k(s - \varepsilon)) - f(s, \varphi(s - \varepsilon))| \, ds. \end{aligned}$$

It then follows from this inequality and (17) that (16) holds for $t \in [T + \varepsilon, T + 2\varepsilon]$. Thus, we have $|\varphi_k(t) - \varphi(t)| \to 0$ as $k \to \infty$ uniformly on $[T + \varepsilon, T + 2\varepsilon]$ because of (15) and the uniform continuity of f on $[0, 1] \times L$.

We have to confirm that $|\varphi'_k(t) - \varphi'(t)| \to 0$ as $k \to \infty$ uniformly on $[T + \varepsilon, T + 2\varepsilon]$. For $t \in [T + \varepsilon, T_k + \varepsilon]$, it follows that

(18)
$$\varphi'_k(t) - \varphi'(t) = f(t, x(T_k)) - f(t, \varphi(t-\varepsilon)).$$

Since $\varphi(t-\varepsilon) = x(T) + \int_T^{t-\varepsilon} f(s, x(T)) \, ds$ and $T \leq t - \varepsilon \leq T_k$ hold, we have

(19)
$$|x(T_k) - \varphi(t - \varepsilon)| \le |x(T_k) - x(T)| + M(T_k - T) \text{ for } t \in [T + \varepsilon, T_k + \varepsilon].$$

For $t \in [T_k + \varepsilon, T + 2\varepsilon]$, we have evidently that

(20)
$$\varphi'_k(t) - \varphi'(t) = f(t, \varphi_k(t-\varepsilon)) - f(t, \varphi(t-\varepsilon)).$$

It follows from (18), (19) and (20) that $|\varphi'_k(t) - \varphi'(t)| \to 0$ as $k \to 0$ uniformly for $t \in [T + \varepsilon, T + 2\varepsilon]$. Therefore, we obtain that $\varphi_k \to \varphi$ in $C^1[0, T + 2\varepsilon]$ as $k \to \infty$. Repeating this procedure, we get that $\varphi_k \to \varphi$ in $C^1[0, 1]$ as $k \to \infty$. (ii) In the case where $T_k < T$ holds for $k \in \mathbb{N}$. When $t \in [0, T_k]$, we have that $\varphi_k(t) = \varphi(t)$ holds. For $t \in [T_k, T]$, it follows from (2), (6) and (8) that

$$|\varphi_k(t) - \varphi(t)| \leq \int_{T_k}^t |f(s, x(T_k)) - f(s, x(s))| \, ds \leq 2M(T - T_k).$$

Therefore, $\{\varphi_k\}$ converges to φ uniformly on [0, T]. Furthermore, for $t \in [T_k, T]$, we have that

$$\varphi'_k(t) - \varphi'(t) = f(t, x(T_k)) - f(t, x(t))$$

and that $|x(T_k) - x(t)| \leq M(t - T_k) \leq M(T - T_k) \to 0$ as $k \to \infty$. Therefore, it follows that $\{\varphi'_k\}$ converges to φ' uniformly on [0, T], and hence we obtain that

(21)
$$\varphi_k \to \varphi \text{ in } C^1[0,T] \text{ as } k \to \infty.$$

Now we shall show that, for $t \in [T, T + \varepsilon]$,

(22)
$$|\varphi_k(t) - \varphi(t)| \le 4M(T - T_k) + \varepsilon \sup_{s \in [T, T + \varepsilon]} |f(s, x(T_k)) - f(s, x(T))|.$$

For $t \in [T, T_k + \varepsilon]$, φ_k and φ are expressed, respectively, as

$$\varphi_k(t) = x(T_k) + \int_{T_k}^T f(s, x(T_k)) \, ds + \int_T^t f(s, x(T_k)) \, ds$$

and

$$\varphi(t) = x(T_k) + \int_{T_k}^T f(s, x(s)) \, ds + \int_T^t f(s, x(T)) \, ds,$$

which imply that

$$|\varphi_k(t) - \varphi(t)| \le 2M(T - T_k) + \int_T^t |f(s, x(T_k)) - f(s, x(T))| \, ds$$

(23)
$$\leq 2M(T-T_k) + \varepsilon \sup_{s \in [T,T+\varepsilon]} |f(s,x(T_k)) - f(s,x(T))|.$$

For $t \in [T_k + \varepsilon, T + \varepsilon]$, φ_k and φ are expressed, respectively, as

$$\varphi_k(t) = x(T_k) + \int_{T_k}^T f(s, x(T_k)) \, ds + \int_T^{T_k + \varepsilon} f(s, x(T_k)) \, ds$$
$$+ \int_{T_k + \varepsilon}^t f(s, \varphi_k(s - \varepsilon)) \, ds$$

and

$$\varphi(t) = x(T_k) + \int_{T_k}^T f(s, x(s)) \, ds + \int_T^{T_k + \varepsilon} f(s, x(T)) \, ds$$
$$+ \int_{T_k + \varepsilon}^t f(s, x(T)) \, ds,$$

which imply that

$$|\varphi_k(t) - \varphi(t)| \le \int_{T_k}^T |f(s, x(T_k)) - f(s, x(s))| \, ds$$

$$\begin{split} &+ \int_{T}^{T_{k}+\varepsilon} |f(s,x(T_{k})) - f(s,x(T))| \, ds \\ &+ \int_{T_{k}+\varepsilon}^{t} |f(s,\varphi_{k}(s-\varepsilon)) - f(s,x(T))| \, ds \\ &\leq 2M(T-T_{k}) + \int_{T}^{T_{k}+\varepsilon} |f(s,x(T_{k})) - f(s,x(T))| \, ds \\ &+ \int_{T_{k}+\varepsilon}^{T+\varepsilon} |f(s,\varphi_{k}(s-\varepsilon)) - f(s,x(T))| \, ds \\ &\leq 4M(T-T_{k}) + \int_{T}^{T+\varepsilon} |f(s,x(T_{k})) - f(s,x(T))| \, ds \\ &\leq 4M(T-T_{k}) + \varepsilon \sup_{s \in [T,T+\varepsilon]} |f(s,x(T_{k})) - f(s,x(T))| \, ds \end{split}$$

It follows from this inequality and (23) that (22) holds. Therefore, we have that (24) $\varphi_k(t) \to \varphi(t)$ uniformly for $t \in [T, T + \varepsilon]$ as $k \to \infty$.

On the interval $[T, T + \varepsilon]$, we have

$$\varphi'_{k}(t) - \varphi'(t) = \begin{cases} f(t, x(T_{k})) - f(t, x(T)) & \text{for } t \in [T, T_{k} + \varepsilon], \\ \\ f(t, \varphi_{k}(t - \varepsilon)) - f(t, x(T)) & \text{for } t \in [T_{k} + \varepsilon, T + \varepsilon]. \end{cases}$$

For $t \in [T_k + \varepsilon, T + \varepsilon]$, notice that $\varphi_k(t - \varepsilon)$ is expressed as

$$\varphi_k(t-\varepsilon) = x(T_k) + \int_{T_k}^{t-\varepsilon} f(s, x(T_k)) \, ds,$$

and hence, we have

$$|\varphi_k(t-\varepsilon)-x(T)| \le |x(T_k)-x(T)| + \int_{T_k}^{t-\varepsilon} |f(s,x(T_k))| \, ds \le 2M(T-T_k).$$

Therefore, we obtain that $\varphi'_k(t) - \varphi'(t) \to 0$ as $k \to \infty$ uniformly for $t \in [T, T + \varepsilon]$. Which, together with (21) and (23), implies that

(25)
$$\varphi_k \to \varphi \text{ in } C^1[0, T+\varepsilon] \text{ as } k \to \infty.$$

For $t \in [T + \varepsilon, T + 2\varepsilon]$, φ_k and φ are, respectively, expressed as

$$\varphi_k(t) = \varphi_k(T_k + \varepsilon) + \int_{T_k + \varepsilon}^{T + \varepsilon} f(s, \varphi_k(s - \varepsilon)) \, ds + \int_{T + \varepsilon}^t f(s, \varphi_k(s - \varepsilon)) \, ds$$

and

$$\varphi(t) = \varphi(T_k + \varepsilon) + \int_{T_k + \varepsilon}^{T + \varepsilon} f(s, x(T)) \, ds + \int_{T + \varepsilon}^t f(s, \varphi(s - \varepsilon)) \, ds,$$

and hence, it follows that

$$\begin{aligned} |\varphi_k(t) - \varphi(t)| &\leq |\varphi_k(T_k + \varepsilon) - \varphi(T_k + \varepsilon)| \\ &+ \int_{T_k + \varepsilon}^{T + \varepsilon} |f(s, \varphi_k(s - \varepsilon)) - f(s, x(T))| \, ds \end{aligned}$$

$$(26) + \int_{T+\varepsilon}^{t} |f(s,\varphi_{k}(s-\varepsilon)) - f(s,\varphi(s-\varepsilon))| ds$$

$$\leq |\varphi_{k}(T_{k}+\varepsilon) - \varphi(T_{k}+\varepsilon)| + 2M(T-T_{k})$$

$$+ \int_{T+\varepsilon}^{T+2\varepsilon} |f(s,\varphi_{k}(s-\varepsilon)) - f(s,\varphi(s-\varepsilon))| ds$$

$$\leq |\varphi_{k}(T_{k}+\varepsilon) - \varphi(T_{k}+\varepsilon)| + 2M(T-T_{k})$$

$$+ \varepsilon \sup_{s \in [T+\varepsilon, T+2\varepsilon]} |f(s,\varphi_{k}(s-\varepsilon)) - f(s,\varphi(s-\varepsilon))|.$$

We note, by (25), that

 $\varphi_k(s-\varepsilon) \to \varphi(s-\varepsilon)$ uniformly for $s \in [T+\varepsilon, T+2\varepsilon]$ as $k \to \infty$, which shows, by (26), that

 $|\varphi_k(t) - \varphi(t)| \to 0 \text{ as } k \to \infty \text{ uniformly for } t \in [T + \varepsilon, T + 2\varepsilon].$

Moreover, we also obtain that

$$\varphi'_k(t) - \varphi'(t) = f(t, \varphi_k(t-\varepsilon)) - f(t, \varphi(t-\varepsilon)) \to 0 \text{ as } k \to \infty$$

uniformly for $t \in [T + \varepsilon, T + 2\varepsilon]$. These facts, together with (25), imply that $\varphi_k \to \varphi$ in $C^1[0, T + 2\varepsilon]$ as $k \to \infty$.

Repeating this procedure, we get that $\{\varphi_k\}$ converges to φ in $C^1[0,1]$. Thus, we proved the continuity of the mapping $T \mapsto \varphi_T$.

Similarly to φ_T , we can define a mapping $\psi = \psi_T : [0,1] \to \mathbb{R}^n$ by using y instead of x for the above $\varepsilon > 0$ and T. We note that ψ_T coincides with y when T = 1 while ψ_T does not depend on y when T = 0. Moreover, the mapping $[0,1] \ni T \mapsto \psi_T \in C^1[0,1]$ is continuous. Here, notice that φ_T coincides with ψ_T when T = 0. Since $x \in G$ while $y \notin G$, we can choose a T with $0 \leq T < 1$ satisfying

$$\varphi_T \in \partial G \quad \text{or} \quad \psi_T \in \partial G.$$

We denote the above T by $T(\varepsilon)$. For any fixed sequence $\{\varepsilon_k\}$ of positive numbers converging to 0, we denote $T(\varepsilon_k)$ by T_k . Moreover, the mappings φ_{T_k} and ψ_{T_k} will be donoted, respectively, by φ_k and ψ_k . We may assume, without loss of generality, that the relation $\varphi_k \in \partial G$ holds for every $k \in \mathbb{N}$. It follows from (6) that φ_k satisfies the following three equalities;

(27)
$$\varphi_k(t) = x(t) \quad \text{for } t \in [0, T_k],$$

(28)
$$\varphi_k(t) = x(T_k) + \int_{T_k}^t f(s, x(T_k)) \, ds \quad \text{for} \ t \in [T_k, T_k + \varepsilon_k],$$

(29)
$$\varphi_k(t) = x(T_k + \varepsilon_k) + \int_{T_k + \varepsilon_k}^t f(s, \varphi_k(s - \varepsilon_k)) \, ds \quad \text{for} \quad t \in [T_k + \varepsilon_k, 1].$$

Therefore, we have that $|\varphi'_k(t)| \leq M$ for $t \in [0, 1]$ and that $\varphi_k(0) = \xi$, and hence, by Ascoli-Arzelà's theorem, we may assume that $\{\varphi_k\}$ converges to some $\bar{\varphi}$ in C[0, 1] by taking a subsequence if necessary. Furthermore, we may assume that $\{T_k\}$ converges to some T_0 in [0, 1].

It is clear from (27) that $\bar{\varphi}(t) = x(t)$ holds for $0 \leq t < T_0$. By letting $k \to \infty$ in (28), we have that $\bar{\varphi}(T_0) = x(T_0)$. For any t with $T_0 < t \leq 1$, an inequality $T_k < T_k + \varepsilon_k < t$ holdes for large k, it then follows from (29) that

$$\bar{\varphi}(t) = x(T_0) + \int_{T_0}^t f(s, \bar{\varphi}(s)) \, ds \quad \text{for} \ T_0 < t \le 1.$$

These facts show that $\bar{\varphi}$ is a solution of (1), namely, $\bar{\varphi} \in K$.

Now we shall show that $\{\varphi_k\}$ converges to $\bar{\varphi}$ in $C^1[0,1]$. For every $k \in \mathbb{N}$, let $\bar{\varphi}_k$ be a mapping defined by

(30)
$$\bar{\varphi}_{k}(t) = \begin{cases} \bar{\varphi}(t) & \text{for } 0 \leq t \leq T_{k} \\ \bar{\varphi}(T_{k}) & \text{for } T_{k} \leq t \leq T_{k} + \varepsilon_{k} \\ \bar{\varphi}(t - \varepsilon_{k}) & \text{for } T_{k} + \varepsilon_{k} \leq t \leq 1. \end{cases}$$

Then, it is clear that $\bar{\varphi}_k(t) \to \bar{\varphi}(t)$ uniformly for $t \in [0, 1]$ as $k \to \infty$. Furthermore, it follows from (27) through (29) that φ'_k satisfies the following equity

(31)
$$\varphi'_{k}(t) = \begin{cases} f(t,\varphi_{k}(t)) & \text{for } 0 \leq t \leq T_{k} \\ f(t,\varphi_{k}(T_{k})) & \text{for } T_{k} \leq t \leq T_{k} + \varepsilon_{k} \\ f(t,\varphi_{k}(t-\varepsilon_{k})) & \text{for } T_{k} + \varepsilon_{k} \leq t \leq 1. \end{cases}$$

Since $\bar{\varphi}$ is a solution of (1), we have an inequality

(32)
$$|\varphi'_{k}(t) - \bar{\varphi}'(t)| \leq |\varphi'_{k}(t) - f(t, \bar{\varphi}_{k}(t))| + |f(t, \bar{\varphi}_{k}(t)) - f(t, \bar{\varphi}(t))|.$$

It is clear that the second term of the right hand side in the above tends to 0 as $k \to \infty$. By (30) and (31), we have

$$\varphi'_{k}(t) - f(t, \bar{\varphi}_{k}(t)) = \begin{cases} f(t, \varphi_{k}(t)) - f(t, \bar{\varphi}(t)) & \text{for } 0 \leq t \leq T_{k} \\ f(t, \varphi_{k}(T_{k})) - f(t, \bar{\varphi}(T_{k})) & \text{for } T_{k} \leq t \leq T_{k} + \varepsilon_{k} \\ f(t, \varphi_{k}(t - \varepsilon_{k})) - f(t, \bar{\varphi}(t - \varepsilon_{k})) & \text{for } T_{k} + \varepsilon_{k} \leq t \leq 1. \end{cases}$$

Since $\{\bar{\varphi}_k\}$ converges to $\bar{\varphi}$ uniformly on [0, 1], we can conclude from (32) and the above equality that $\{\bar{\varphi}'_k\}$ converges to $\bar{\varphi}'$ uniformly on [0, 1], which assures that $\{\varphi_k\}$ converges to $\bar{\varphi}$ in $C^1[0, 1]$. It then follows from the relation $\varphi_k \in \partial G$ and the closedness of ∂G that $\bar{\varphi}$ belongs to ∂G , which contrdicts (5) and the fact that $\bar{\varphi} \in K$. This completes the proof.

$$\{(x(1), x'(1)); x \text{ is a solution of } (1)\}$$

is compact and connected in \mathbf{R}^{2n} for every $\xi \in \mathbf{R}^n$.

Corollary 2. If E is a compact and connected subset of \mathbb{R}^n , then a set

 $\{x ; x \text{ is a solution of } (1) \text{ with } \xi \in E\}$

is compact and connected in $C^1[0,1]$.

Example. An initial value problem

(33) $x' = 2\sqrt{|x|}, \quad x(0) = 0$

admits two solutions $x_1(t) \equiv 0$ and $x_2(t) = t^2$. It follows from Corollary 1 that a compact and connected set

 $\{(x(1), x'(1)); x \text{ is a solution of } (33)\}$

contains two points $(x_1(1), x'_1(1)) = (0, 0)$ and $(x_2(1), x'_2(1)) = (1, 2)$. Therefore (33) admits a solution x satisfying

$$x(1) + x'(1) = 2$$

because the straight line x + y = 2 separates two points (0, 0) and (1, 2).

REFERENCES

[1] Hartman, P., Ordinary Differential Equations, John Wiley and Sons, Inc. 1964.