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In this talk we treat the two-point boundary value problem of the form

(Iy'" M) + fty) =0, 0<t<; (1)

y(0) =y(1) =0, (2)

where a > 1 is a constant. As will be seen below, f(,y) is allowed to take oo at
t=0,1 and at y = 0. In this sense this problem may be called singular problem. The
main objective here is to show the existence of positive solutions of BVP(1)-(2) under
suitable assumptions. When « = 1, such problems have been studied by [1],[2],/4]. In
the case of a > 1, a sufficient condition for the existence of positive solutions has been

given by [6] from different point of view from ours presented here.
We always assume the following conditions throughout the talk:

(CL) e C((0,1) x (0,00); (0,00));

(C2) there are functions a € C((0,1};(0,00)),9 € C({(0,00); (0,00)) and h € C((0, 00); (0, 00})
such that '

(2) 0 < f(t,y) < a(t)g(y)h(y) in (0,1) x (0, 00); and

(b) g¢ is nonincreasing, while yg(y) is nondecreasing;

(C3) there are constants p,¢ > 0 with 1/p+ 1/¢ = 1 such that

1
/h(u)pdu < 00, / a(t)?dt < co.
0 0

(C4) for every constants c;,c; > 0, the set

{z>0

1

/Ozg(u)“ﬁzﬂdu <q (/:h(@”)m + cz}

is bounded.
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(C5) for every constant M > 0, there is a function ¢ € C((0,1);(0, 00)) satisfying

f(ty) 2 ¥um(t) in(0,1) x (0, M).

Qur result is as follows:

Theorem 1. Under assumptions (C1) — (C5) BVP (1)-(2) has a positive solution y
satisfying y € C[0,1] N C*(0,1), |¥'|*~ 1y € C*{(0,1).

Example 1. Let us consider the BVP
(1) + as(8)yP + aa(B)y™ =0,

y(0) =y(1) =0
where 3,7 > 0 are constants and a; € C((0,1);(0,00)),7 = 1,2. Put a(t) = max{a;(¢), a2(¢)}.
f0<f<a,0<y<1+1/pand

' P
/ a(t)idt < o0, ¢=——r
0 p—1
for some p > 1, then this problem has a positive solution. To see this it suffices to
apply our Theorem by taking g(y) = y~! and h(y) = y?T! + ¢y 0
To prove Theorem 1 we consider the modified BVP
(Y1) + flty) =0, 0<i<];

y(0) =y(1) =1/n, (3)
forn € N = {1,2,---}.We firstly prove the existence of a positive solution y, to this
BVP. Then, a desired solution to BVP {1)-(2) will be obtained as a limit function as
n — oo of a subsequence of {y,}. The existence of y,, a positive solution of BVP
(1)-(3), is proved by applying the topological transversality theorem initiated by [2].
For this purpose we show that

Lemma 1, Let n € N and A € [0,1]. Suppose that y = y,,\ be a positive solution of
BVP
()Y +Af(ty) =0, 0<t<l (4)

y(0) =y(1) = 1/n.
Then, there are constants Mg(n) and M;(n) independent of A such that

I =

< ynn(t) < Mo(n), 0<t<1, (5)

lyfln,}\(t)! S Ml(n)a 0 .<_. ¢ S 17
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In what follows the functional spaces C[0,1] and C?[0,1] are regarded as Banach
spaces equipped with the usual sup-norms. We will employ the notation

2 = |z|f
for p >0 and z € R.

Lemma 2. (a) For every positive function u € C[0,1] we can find a unique constant

£(u) satisfying | !
/o (é(“) _/03 £, U(T))dry ds = 0,

(b) The functional £ is continuous on the set {u € C[0,1] : u(t) > 0 on [0,1]} .

Proof of Lemma 1. For simplicity we denote y,x = y. The concavity of y implies the
validity of the first inequality in (5). There is a unique point 7,0 < T' < 1, such that
y(T) = maxp y. Let ¢ € [0,T]. We find by assumption (C2) that

—W)P ()7 < daBg(Wh(y)(),

because ¢ > 0 there. Integrating both sides on [t,7],0 <t < T, we have for t € [0, T

pao—lk 1 WIS < 9(9@»(/:7(7) h(u)? du> N ( /01 a(t)? dl‘) 1/4'

Therefore we obtain

y(1) u(T) aTT
—'ISCI(/ h(u)pdu) N OStST,
gly(t)) =+ 0

where ¢; > 0 is a constant independent of A\. One more integration on [0, T] gives

W) g ¥(T) Tt 1
/ tfi._ < Cl(/ h(u)pdu>p ' +/ dlia__
0 g(u)ratt 0 o glu)mF

By assumption (C4) we find that y(T") < Mo(n) for some constant My(n) > 0 inde-
pendent of A. :
To see the existence of M;(n) it suffices to integrate the inequality

~((¥)%) < alt)g(l/n) Al h{u).

Proof of Lemma 2. Let a positive function u € C]0,1] be fixed, and consider the
function @, : R — R defined by

Bo(z) = /0 : (p [O " Fr, u(r) dr>%* ds.
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By assumption (C2), @, is well-defined, and obviously it is a strictly increasing con-
tinuous function. Since @,(0) < 0 and

092 (- [ 1 )l )

there is a unique constant {(u) satisfying @, (£(u))=0.
(b)This can be proved by the same method as in [3, Lemma 5.3].

Proposition 1. Let n € N. Then BVP (1)-(3) has a positive solution y = y, such
that y € C'[0,1] and |y/|* 'y’ € C(0,1).

Proof. We employ the topological transvarsality theorefn formulated in [3]. Put
C'0,1] > K = {u € C'[0,1] : u(0) = w(1) = 1/n};
and

1
K>U={uekK: o < u(t) < My(n) + 1, |&'(t)] < Mi(n) + 1on]0,1]},

where Mo(n) and Mi(n) are constants appearing in Lemma 1. It is easy to see that
a positive function y is a solution of BVP (1)-(3) if and only if y satisfies the integral
equation

vy =2+ [ (e~ [ pron Tds 0si<l

T
where ¢ is the functional appearing in Lemma 2. Let us consider the mapping H(-,-) :
U x [0,1] = K defined by

H{u, \)(t) = %Hila /Ot (g(u)—/Osf(r,u(r))drf*ds, 0<t<1.

It suffices to show that H(-,1) has a fixed point in U. We can prove that
(2) H(-,A): U — K is continuous for every X € [0,1];
(b) H(-,-): U x [0,1] = K is compact;
(c) H(-,A) does not have fixed points on oU for A € [0,1].

Since H(-,0) is a constant mapping H(-,0) = 1/n, and 1/n € U, we know from
[2,Theorem 2.5] that H(-,1) has a fixed point in U. 0

Lemma 3. Let n € N and y, be a positive solution of BVP (1)-(3). Then, there are
positive constants My and M, independent of n satisfying

lyn(t)] < My on [0,1];

and
Hynllzoony < M1, O0=1/p+a+l.
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Proof. A close look at the proof of Lemma 1 shows that the constant Mo(n)
appearing there really does not depend on n. So we can choose My = Mp(n). To find
out M; let T}, be such y,(T,) = maxo,1) yn. For t € (0,7,] we have

—((yn)") < a(t)g(yn)h(yn);
that is

(g (Y (5) (L) 7P
Mog(Mo)a(t)h(yn) (4.

= ()7 ((62))

IA A

An integration on [0,7,] gives

T,
pa / o+1/p pa / / +at1/p
_ 0 L S s ds

< Mgg(MO)( /1 :(Tﬂ) h(w)? du)1/p< /0 "ty dt)l/q
Sf%ﬂMMMMmm<L%hWFM)W-

Here we have employed the nondecreasing nature of y +— yg(y). This implies that
S5 7 lysl® dt is bounded by a constant independent of n. Similarly we can show that

f;ﬂ [/ | dt is bounded.
|

Proof of Theorem 1. Let y,,n € N, be the solution of BVP (1)-(3) introduced in

Proposition 1. Since for #1,¢; € [0,1],4; < t3, we have from Lemma 3

1a(t) - wat)] < [ﬁ%@nw

(f: iy;(s)!eds)l/‘?(/t:z ds>~9—

61
< Mslt, —t] 77,

AN

the sequence {y,} is equicontinuous. By the Ascoli-Arzela theorem we can choose a
subsequence {y, } C {y,} and a continuous function ¥ such that {y,} converges to ¥
uniformly on [0, 1].

We show that ¥ is a desired solution of BVP (1)-(2). We obviously have y(0) =
y(1) = 0. We firstly show that § > 0 in (0,1). Let T, € (0,1) be such that y,(T,) =
maxp,1] Y. Since the sequence {7} is bounded, it contains a subsequence converging
to some point 7' € [0,1]. We may assume that lim T, = 7. By assumption (C5), we

n—»

have ({y..(¢))**)" + ¥, (t) <0 in (0,1). Integrating twice this inequality we obtain

1 t T /o
Y (1) > = +/O ( Y, () clr) ds, 0<t<Ty; (6)



and
1 1 s /o
yn(t) > — +/ (/ Yar () dr> ds, T <t<l. (7)
i Tn’
Since 0 < yur(t) < ynu(Ty) by definition, we find that
< <HT), 0<i<l 0

To see 0 < T < 1, suppose the contrary that 7' = 0,1. We may suppose that T' = 1.
Then, it follows from (8) that § = 0 on [0,1]. On the other hand by letting n’ — oo in

(6) we have
¢ 1 1/
y(t)Z/ (/ zl)Mo(r)dr> ds>0, 0<t<1,
0 s

which is a contradiction. Hence 0 < 7' < 1. Letting n’ — oo in (6) and (7), we have

t 1/
g(z)z/o (/szMo(r)dr) ds, 0<i<T;

1 s 1/a
§(t>2[ ([szMo(r)dr> ds, T<t<1,

respectively, which imply that g > 0 in (0,1).
Finally letting n’ — oo in the formula

and

Ly
[+3

ynr(t)——:yn:(T)—/;T( ST”' f(r,yn:(r))dr> ds, 0<t<l,

we have L
y(t) =y(T) — /tT (le(r,g(r))dr)g ds, O0<t<l.

By differentiating, we find that ¥ is a positive solution of equation (1). This completes
the proof of Theorem 1.
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