Existence of positive solutions of some singular two-point boundary value problems

広島大学・理学研究科 高山 剛史 (Takeshi Takayama) Graduate School of Science, Hiroshima University 広島大学・総合科学部 宇佐美 広介 (Hiroyuki Usami) Faculty of Integrated Arts & Sciences, Hiroshima University

In this talk we treat the two-point boundary value problem of the form

$$(|y'|^{\alpha-1}y')' + f(t,y) = 0, \quad 0 < t < 1;$$
(1)

$$y(0) = y(1) = 0, (2)$$

where $\alpha \ge 1$ is a constant. As will be seen below, f(t, y) is allowed to take ∞ at t = 0, 1 and at y = 0. In this sense this problem may be called singular problem. The main objective here is to show the existence of positive solutions of BVP(1)-(2) under suitable assumptions. When $\alpha = 1$, such problems have been studied by [1],[2],[4]. In the case of $\alpha > 1$, a sufficient condition for the existence of positive solutions has been given by [6] from different point of view from ours presented here.

We always assume the following conditions throughout the talk:

- (C1) $f \in C((0,1) \times (0,\infty); (0,\infty));$
- (C2) there are functions $a \in C((0,1); (0,\infty)), g \in C((0,\infty); (0,\infty))$ and $h \in C((0,\infty); (0,\infty))$ such that

(a)
$$0 < f(t,y) \le a(t)g(y)h(y)$$
 in $(0,1) \times (0,\infty)$; and

- (b) g is nonincreasing, while yg(y) is nondecreasing;
- (C3) there are constants p, q > 0 with 1/p + 1/q = 1 such that

$$\int_0 h(u)^p du < \infty, \quad \int_0^1 a(t)^q dt < \infty.$$

(C4) for every constants $c_1, c_2 > 0$, the set

$$\left\{z > 0 \left| \int_0^z g(u)^{-\frac{p}{p\alpha+1}} du \le c_1 \left(\int_0^z h(u)^p \right)^{\frac{1}{p\alpha+1}} + c_2 \right\}\right\}$$

is bounded.

(C5) for every constant M > 0, there is a function $\psi_M \in C((0,1);(0,\infty))$ satisfying

$$f(t,y) \ge \psi_M(t) \quad \text{in } (0,1) \times (0,M).$$

Our result is as follows:

Theorem 1. Under assumptions (C1) - (C5) BVP (1)-(2) has a positive solution y satisfying $y \in C[0,1] \cap C^1(0,1), |y'|^{\alpha-1}y' \in C^1(0,1).$

Example 1. Let us consider the BVP

$$(|y'|^{\alpha-1}y')' + a_1(t)y^{\beta} + a_2(t)y^{-\gamma} = 0,$$

$$y(0) = y(1) = 0$$

where $\beta, \gamma > 0$ are constants and $a_i \in C((0,1); (0,\infty)), i = 1, 2$. Put $a(t) = \max\{a_1(t), a_2(t)\}$. If $0 < \beta < \alpha, 0 < \gamma < 1 + 1/p$ and

$$\int_0^1 a(t)^q dt < \infty, \quad q = \frac{p}{p-1}$$

for some p > 1, then this problem has a positive solution. To see this it suffices to apply our Theorem by taking $g(y) = y^{-1}$ and $h(y) = y^{\beta+1} + y^{1-\gamma}$.

To prove Theorem 1 we consider the modified BVP

$$(|y'|^{\alpha-1}y')' + f(t,y) = 0, \quad 0 < t < 1;$$

$$y(0) = y(1) = 1/n,$$
 (3)

for $n \in \mathbb{N} = \{1, 2, \dots\}$. We firstly prove the existence of a positive solution y_n to this BVP. Then, a desired solution to BVP (1)-(2) will be obtained as a limit function as $n \to \infty$ of a subsequence of $\{y_n\}$. The existence of y_n , a positive solution of BVP (1)-(3), is proved by applying the topological transversality theorem initiated by [2]. For this purpose we show that

Lemma 1. Let $n \in \mathbb{N}$ and $\lambda \in [0, 1]$. Suppose that $y = y_{n,\lambda}$ be a positive solution of BVP

$$(|y'|^{\alpha-1}y')' + \lambda f(t,y) = 0, \quad 0 < t < 1;$$

$$y(0) = y(1) = 1/n.$$
 (4)

Then, there are constants $M_0(n)$ and $M_1(n)$ independent of λ such that

$$\frac{1}{n} \leq y_{n,\lambda}(t) \leq M_0(n), \quad 0 \leq t \leq 1,$$

$$|y'_{n,\lambda}(t)| \leq M_1(n), \quad 0 \leq t \leq 1,$$
(5)

In what follows the functional spaces C[0,1] and $C^1[0,1]$ are regarded as Banach spaces equipped with the usual sup-norms. We will employ the notation

$$x^{\rho*} = |x|^{\rho-1}x$$

for $\rho > 0$ and $x \in \mathbf{R}$.

Lemma 2. (a) For every positive function $u \in C[0,1]$ we can find a unique constant $\xi(u)$ satisfying

$$\int_0^1 \left(\xi(u) - \int_0^s f(r, u(r)) \, dr \right)^{\frac{1}{\alpha^*}} ds = 0.$$

(b) The functional ξ is continuous on the set $\{u \in C[0,1] : u(t) > 0 \text{ on } [0,1]\}$.

Proof of Lemma 1. For simplicity we denote $y_{n,\lambda} = y$. The concavity of y implies the validity of the first inequality in (5). There is a unique point T, 0 < T < 1, such that $y(T) = \max_{[0,1]} y$. Let $t \in [0,T]$. We find by assumption (C2) that

$$-(y')^{1/p}((y')^{\alpha})' \le \lambda a(t)g(y)h(y)(y')^{1/p}$$

because $y' \ge 0$ there. Integrating both sides on [t, T], $0 \le t \le T$, we have for $t \in [0, T]$

$$\frac{\alpha}{p\alpha+1} [y'(t)]^{\frac{p\alpha+1}{p}} \le g(y(t)) \left(\int_{1/n}^{y(T)} h(u)^p \, du\right)^{1/p} \left(\int_0^1 a(t)^q \, dt\right)^{1/q}.$$

Therefore we obtain

$$\frac{y'(t)}{g(y(t))^{\frac{p}{p\alpha+1}}} \le c_1 \left(\int_0^{y(T)} h(u)^p \, du \right)^{\frac{1}{p\alpha+1}}, \quad 0 \le t \le T,$$

where $c_1 > 0$ is a constant independent of λ . One more integration on [0, T] gives

$$\int_{0}^{y(T)} \frac{du}{g(u)^{\frac{p}{p\alpha+1}}} \le c_1 \left(\int_{0}^{y(T)} h(u)^p \, du \right)^{\frac{1}{p\alpha+1}} + \int_{0}^{1} \frac{du}{g(u)^{\frac{p}{p\alpha+1}}}$$

By assumption (C4) we find that $y(T) \leq M_0(n)$ for some constant $M_0(n) > 0$ independent of λ .

To see the existence of $M_1(n)$ it suffices to integrate the inequality

$$-((y')^{\alpha})' \leq a(t)g(1/n) \max_{[1/n, M_0(n)]} h(u).$$

Proof of Lemma 2. Let a positive function $u \in C[0,1]$ be fixed, and consider the function $\Phi_u : \mathbf{R} \to \mathbf{R}$ defined by

$$\Phi_u(z) = \int_0^1 \left(z - \int_0^s f(r, u(r)) \, dr\right)^{\frac{1}{\alpha}*} ds.$$

By assumption (C2), Φ_u is well-defined, and obviously it is a strictly increasing continuous function. Since $\Phi_u(0) < 0$ and

$$\Phi_u(z) \ge \left(z - \int_0^1 |f(r, u(r))| \, dr\right)^{\frac{1}{\alpha}*},$$

there is a unique constant $\xi(u)$ satisfying $\Phi_u(\xi(u))=0$.

(b)This can be proved by the same method as in [3, Lemma 5.3].

Proposition 1. Let $n \in \mathbf{N}$. Then BVP (1)-(3) has a positive solution $y = y_n$ such that $y \in C^1[0,1]$ and $|y'|^{\alpha-1}y' \in C^1(0,1)$.

Proof. We employ the topological transvarsality theorem formulated in [3]. Put

$$C^{1}[0,1] \supset K = \{ u \in C^{1}[0,1] : u(0) = u(1) = 1/n \};$$

and

$$K \supset U = \{ u \in K : \frac{1}{2n} < u(t) < M_0(n) + 1, |u'(t)| < M_1(n) + 1 \text{ on } [0,1] \},\$$

where $M_0(n)$ and $M_1(n)$ are constants appearing in Lemma 1. It is easy to see that a positive function y is a solution of BVP (1)-(3) if and only if y satisfies the integral equation

$$y(t) = \frac{1}{n} + \int_0^t \left(\xi(y) - \int_0^s f(r, y(r)) \, dr\right)^{\frac{1}{\alpha}*} ds, \quad 0 \le t \le 1.$$

where ξ is the functional appearing in Lemma 2. Let us consider the mapping $H(\cdot, \cdot)$: $\overline{U} \times [0, 1] \to K$ defined by

$$H(u,\lambda)(t) = \frac{1}{n} + \lambda^{1/\alpha} \int_0^t \left(\xi(u) - \int_0^s f(r,u(r)) \, dr\right)^{\frac{1}{\alpha}*} ds, \quad 0 \le t \le 1.$$

It suffices to show that $H(\cdot, 1)$ has a fixed point in U. We can prove that

- (a) $H(\cdot, \lambda) : \overline{U} \to K$ is continuous for every $\lambda \in [0, 1]$;
- (b) $H(\cdot, \cdot) : \overline{U} \times [0, 1] \to K$ is compact;
- (c) $H(\cdot, \lambda)$ does not have fixed points on ∂U for $\lambda \in [0, 1]$.

Since $H(\cdot, 0)$ is a constant mapping $H(\cdot, 0) = 1/n$, and $1/n \in U$, we know from [2,Theorem 2.5] that $H(\cdot, 1)$ has a fixed point in U.

Lemma 3. Let $n \in \mathbb{N}$ and y_n be a positive solution of BVP (1)-(3). Then, there are positive constants M_0 and M_1 independent of n satisfying

$$|y_n(t)| \le M_0$$
 on $[0,1];$

and

$$||y'_n||_{L^{\theta}(0,1)} \le M_1, \quad \theta = 1/p + \alpha + 1.$$

Proof. A close look at the proof of Lemma 1 shows that the constant $M_0(n)$ appearing there really does not depend on n. So we can choose $M_0 = M_0(n)$. To find out M_1 let T_n be such $y_n(T_n) = \max_{[0,1]} y_n$. For $t \in (0, T_n]$ we have

$$-((y'_n)^{\alpha})' \le a(t)g(y_n)h(y_n);$$

that is

$$\begin{array}{rcl} -y_n(y'_n)^{1/p}((y'_n)^{\alpha})' &\leq a(t)y_ng(y_n)h(y_n)(y'_n)^{1/p} \\ &\leq M_0g(M_0)a(t)h(y_n)(y'_n)^{1/p}. \end{array}$$

An integration on $[0, T_n]$ gives

$$\frac{p\alpha}{n(1+p\alpha)} (y'_n(0))^{\alpha+1/p} + \frac{p\alpha}{1+p\alpha} \int_0^{1_n} |y'_n(s)|^{1+\alpha+1/p} ds \\
\leq M_0 g(M_0) \left(\int_{1/n}^{y_n(T_n)} h(u)^p du \right)^{1/p} \left(\int_0^{T_n} a(t)^q dt \right)^{1/q} \\
\leq M_0 g(M_0) ||a||_{L^q(0,1)} \left(\int_0^{M_0} h(u)^p du \right)^{1/p}.$$

Here we have employed the nondecreasing nature of $y \mapsto yg(y)$. This implies that $\int_0^{T_n} |y'_n|^{\theta} dt$ is bounded by a constant independent of n. Similarly we can show that $\int_{T_n}^1 |y'_n|^{\theta} dt$ is bounded.

Proof of Theorem 1. Let $y_n, n \in \mathbf{N}$, be the solution of BVP (1)-(3) introduced in Proposition 1. Since for $t_1, t_2 \in [0, 1], t_1 < t_2$, we have from Lemma 3

$$\begin{aligned} |y_n(t_1) - y_n(t_2)| &\leq \int_{t_1}^{t_2} |y_n'(s)| \, ds \\ &\leq \left(\int_{t_1}^{t_2} |y_n'(s)|^{\theta} \, ds \right)^{1/\theta} \left(\int_{t_1}^{t_2} \, ds \right)^{\frac{\theta - 1}{\theta}} \\ &\leq M_3 |t_2 - t_1|^{\frac{\theta - 1}{\theta}}, \end{aligned}$$

the sequence $\{y_n\}$ is equicontinuous. By the Ascoli-Arzelà theorem we can choose a subsequence $\{y_{n'}\} \subset \{y_n\}$ and a continuous function \tilde{y} such that $\{y_{n'}\}$ converges to \tilde{y} uniformly on [0, 1].

We show that \tilde{y} is a desired solution of BVP (1)-(2). We obviously have $\tilde{y}(0) = \tilde{y}(1) = 0$. We firstly show that $\tilde{y} > 0$ in (0,1). Let $T_n \in (0,1)$ be such that $y_n(T_n) = \max_{[0,1]} y_n$. Since the sequence $\{T_n\}$ is bounded, it contains a subsequence converging to some point $T \in [0,1]$. We may assume that $\lim_{n' \to \infty} T_{n'} = T$. By assumption (C5), we have $((y'_{n'}(t))^{\alpha*})' + \psi_{M_0}(t) \leq 0$ in (0,1). Integrating twice this inequality we obtain

$$y_{n'}(t) \ge \frac{1}{n'} + \int_0^t \left(\int_s^{T_{n'}} \psi_{M_0}(r) \, dr \right)^{1/\alpha} ds, \quad 0 \le t \le T_{n'}; \tag{6}$$

and

$$y_{n'}(t) \ge \frac{1}{n'} + \int_t^1 \left(\int_{T_{n'}}^s \psi_{M_0}(r) \, dr \right)^{1/\alpha} ds, \quad T_{n'} \le t \le 1.$$
(7)

Since $0 \leq y_{n'}(t) \leq y_{n'}(T_{n'})$ by definition, we find that

$$0 \le \widetilde{y}(t) \le \widetilde{y}(T), \quad 0 \le t \le 1$$
(8)

To see 0 < T < 1, suppose the contrary that T = 0, 1. We may suppose that T = 1. Then, it follows from (8) that $\tilde{y} \equiv 0$ on [0,1]. On the other hand by letting $n' \to \infty$ in (6) we have

$$y(t) \ge \int_0^t \left(\int_s^1 \psi_{M_0}(r) \, dr\right)^{1/\alpha} ds > 0, \quad 0 \le t < 1,$$

which is a contradiction. Hence 0 < T < 1. Letting $n' \to \infty$ in (6) and (7), we have

$$\widetilde{y}(t) \ge \int_0^t \left(\int_s^T \psi_{M_0}(r) \, dr\right)^{1/\alpha} ds, \quad 0 \le t < T;$$

and

$$\widetilde{y}(t) \ge \int_t^1 \left(\int_T^s \psi_{M_0}(r) \, dr\right)^{1/lpha} ds, \quad T < t \le 1,$$

respectively, which imply that $\tilde{y} > 0$ in (0, 1).

Finally letting $n' \to \infty$ in the formula

$$y_{n'}(t) = y_{n'}(T) - \int_t^T \left(\int_s^{T_{n'}} f(r, y_{n'}(r)) \, dr \right)^{\frac{1}{\alpha}*} ds, \quad 0 < t < 1,$$

we have

$$\widetilde{y}(t) = \widetilde{y}(T) - \int_t^T \left(\int_s^T f(r, \widetilde{y}(r)) \, dr \right)^{\frac{1}{\alpha} *} ds, \quad 0 < t < 1.$$

By differentiating, we find that \tilde{y} is a positive solution of equation (1). This completes the proof of Theorem 1.

References

- [1] Bobisud L.E., O'Regan D. and Royality W.D., Solvability of some nonlinear boundary value problems, Nonlinear Anal.,12 (1988), 855-869.
- [2] Granas A., Guenther R.B. and Lee J.W., Nonlinear boundary value problems for ordinary differential equations, Dissnes. Math., Warsaw, 1985.
- [3] Mizukami M., Naito M. and Usami H., Asymptotic behavior of solutions of a class of second order quasilinear ordinary differential equations, Hiroshima Math. J., 32 (2002).

- [4] O'Regan D., Singular second order boundary value problems, Nonlinear Anal., 15 (1990), 1097-1109.
- [5] O'Regan D., Existence of positive solutions to some singular and nonsingular second order boundary value problems, J.Differential Equations 84 (1990), 228-251.
- [6] Sugita K., Two-point boundary value problems to certain quasilinear singular ordinary differntial equations, Master's Thesis at Graduate School of Science, Hiroshima University, 2004.(in Japanese)