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In this talk we treat the two-point boundary value problem of the form

$(|y’|^{\alpha-1}y’)’+f(t, y)=0$ , $0<t<1$ ; (1)

$y(0)=y(1)=0$, (2)

where $\alpha\geq 1$ is a constant. As will be seen below, $f(t_{7}y)$ is allowed to take $\infty$ at
$t=0$ , 1 and at $y=0$ . In this sense this problem may be called singular problem. The
main objective here is to show the existence of positive solutions of BVP(1)-(2) under
suitable assumptions. When $\alpha=1$ , such problems have been studied by $[1],[2],[4]$ . In
the case of $\alpha>1$ , a sufficient condition for the existence of positive solutions has been
given by [6] from different point of view from ours presented here.

We always assume the following conditions throughout the talk:

(C1) $f\in C((0,1)\rangle\langle(0, \infty);(0, \infty))$ ;

(C2) there are functions $a\in C((_{\backslash }0_{7}1);(0, \infty)),g\in C((0, \infty).\rangle(0, \infty))$ and $h\in C((0, \infty);(0, \infty))$

such that

(a) $0<f(t, y)\leq$ a $(t)g(y)h(y)$ in $(0, 1)$ $\rangle\langle$ $(0, \infty)$ ; and
(b) $g$ is nonincreasing, while $yg(y)$ is nondecreasing;

(C3) there are constants $p$ , $q>0$ with $1/p+1/q=1$ such that

$\int_{0}h(u)^{p}du<\infty$ , $\int_{0}^{1}a(t)^{q}dt<\infty$ .

(C4) for every constants $c_{1}$ , $c_{2}>0$ , the set

$\{z>0|\int_{0}^{z}g(u)^{-_{\overline{p}\alpha\overline{+1}}^{A}}du\leq c_{1}(\oint_{0}^{z}h(u)^{p})^{\frac{1}{p\alpha+1}}+c_{2}\}$

is bounded
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(C5) for every constant $M>0$ , there is a function $\psi_{M}\in C((0,1);(0, \infty))$ satisfying

$f(t, y)\geq\psi_{M}(t)$ in $(0, 1)$ $\cross$ $(0, M)$ .
$\square$

Our result is as follows:

Theorem 1. Under assumptions $(C1)-(C5)$ BVP (1)$-(2)$ has a positive solution $y$

satisfying y $\in C[0,1]\cap C^{1}(0,1)$ , $|y’|^{\alpha-1}y’\in C^{1}(0,1)$ .

Example 1. Let us consider the BVP

$(|y’|^{\alpha-1}y’)’+a_{1}(t)y^{\beta}+a_{2}(t)y^{-\gamma}=0$ ,

$y(0)=y$ (1) $=0$

there $\beta$ , $\gamma>0$ are constants and $a_{i}\in C((0,1);(0, \infty))$ , $\mathrm{i}=1,2$ . Put $a(t)= \max${ $a_{1}(t)$ , a2(t)}.
If $0<\beta<\alpha$ , $0<\gamma<1+1/p$ and

$\int_{0}^{1}a(t)^{q}dt<\infty_{7}$ $q= \frac{p}{p-1}$

for some $p>1$ , then this problem has a positive solution. To see this it suffices to
apply our Theorem by taking $g(y)=y^{-1}$ and $h(y)=y^{\beta+1}+y^{1-\gamma}$ . $\square$

To prove Theorem 1 we consider the modified BVP

$(|y’|^{\alpha-1}y’)’+f(t, y)=0$ , $0<t<1_{\mathrm{j}}$

$y(0)=y(1)=1/n$ , (3)

for $n\in \mathrm{N}=\{1,2, \cdots\}.\mathrm{W}\mathrm{e}$ firstly prove the existence of a positive solution $y_{n}$ to this
BVP. Then, a desired solution to BVP (1)$-(2)$ will be obtained as a limit function as
$narrow\infty$ of a subsequence of $\{y_{n}\}$ . The existence of $y_{n}$ , a positive solution of BVP
(1)$-(3))$ is proved by applying the topological transversality theorem initiated by [2].
For this purpose we show that

Lemma 1. Let $n\in \mathrm{N}$ and A $\in[0,1]$ . Suppose that $y=y_{n,\lambda}$ be a positive solution of
BVP

$(|y’|^{\alpha-1}y’)’+\lambda f(t, y)=0$ , $0<t<1$ ; (4)

$y(0)=y(1)=1/n$ .

Then, there are constants $M_{0}(n)$ and $M_{1}(n)$ independent of A such that

$\frac{1}{n}\leq y_{n,\lambda}(t)\leq M_{0}(n)$ , $0\leq t\leq 1$ , (5)

$|y_{n,\lambda}’(t)|\leq M_{1}(n)$ , $0\leq t\leq 1$ ,

0
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In what follows the functional spaces $C[\mathrm{O}, 1]$ and $C^{1}[0, 1]$ are regarded as Banach
spaces equipped with the usual $\sup$-norms. We will employ the notation

$x^{\rho*}=|x|^{\rho-1}x$

for $p>0$ and $x\in$ R.

Lemma 2. (a) For every positive function $u\in C[0, 1]$ we can find a unique constant
$\xi(u)$ satisfying

$\int_{0}^{1}(\xi(u)-\int_{0}^{s}f(r, u(r))dr)\frac{1}{\alpha}*ds=0$ .

(b) The functional 4 is continuous on the set { $u\in C[0,$ $1]$ : $u(t)>0$ on [0, 1]}.

Proof of Lemma 1. For simplicity we denote $yn,\lambda$ $=y$ . The concavity of $y$ implies the
validity of the first inequality in (5). There is a unique point $T$, $0<T<1$ , such that
$\mathrm{y}(\mathrm{T})=\mathrm{C}[0,1]y$ . Let $t\in[0, T]$ . We find by assumption (C2) that

$-(y’)^{1/p}((y’)^{\alpha})’\leq\lambda a(t)g(y)h(y)(y’)^{1/p}$ ,

because $y’\geq 0$ there. Integrating both sides on [$\mathrm{i},$ $T_{\rfloor)}^{\rceil}0\leq t\leq T$ , we have for $t\in[0,T]$

$\frac{\alpha}{p\alpha+1}[y’(t)]^{\mapsto\alpha\underline{+1}}p\leq g(y(t))(\int_{1/n}^{y(T)}h(u)^{p}du)^{1/\mathrm{p}}(\int_{0}^{1}a(t)^{q}dt)^{1/q}$

Therefore we obtain

$\frac{y’(t)}{g(y(t))^{\overline{\mathrm{p}}\alpha\overline{+1}}s}\leq c_{1}(\oint_{0}^{y(T)}h(u)^{p}du)^{\frac{1}{p\alpha+1}}$, $0\leq t\leq T$ ,

where $c_{1}>0$ is a constant independent of A. One more integration on $[0, T]$ gives

$\int_{0}^{y(T)}\frac{du}{g(u)^{\overline{\mathrm{p}}\alpha\overline{+1}}f}\leq c_{1}(l^{y(T)}h(u)^{p}du)\frac{1}{p\alpha+1}+\int_{0}^{1}\frac{du}{g(u)\overline{p}\alpha\overline{+1}B}$

By assumption (C4) we find that $y(T)\leq M_{0}(n)$ for some constant $M_{0}(n)>0$ inde-
pendent of A.

To see the existence of $\Lambda’I_{1}$ $(n)$ it suffices to integrate the inequality

$-((y’)^{\alpha})’\leq$ $\mathrm{u}(\mathrm{t})g(1/n)$ $\max$ $h(u)$ .
$[1/n,M_{0}(n)]$

Proof of Lemma 2. Let a positive function $u\in C[0,1]$ be fixed, and consider the
function $\Phi_{u}$ : $\mathrm{R}-+\mathrm{R}$ defined by

$\Phi_{u}(z)=f_{0}^{1}(z-\int_{0}^{s}f(r, u(r))dr)^{\frac{1}{\alpha}*}ds$.
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By assumption (C2), $\Phi_{u}$ is well-defined, and obviously it is a strictly increasing con-
tinuous function. Since $\Phi_{u}(\mathrm{O})<0$ and

$\Phi_{u}(z)\geq(z-\int_{0}^{1}|f(r, u(r))|dr)\frac{1}{\alpha}*$ ,

there is a unique constant $\xi(u)$ satisfying $\Phi_{u}(\xi(u))=0$ .
$(\mathrm{b})\mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s}$ can be proved by the same method as in [3, Lemma 5.3].

Proposition 1. Let n $\in$ N. Then BVP (1)$-(3)$ has a positive solution y $=y_{n}$ such
that y $\in C^{1}[0,1]$ and $|y’|^{\alpha-1}y’\in C^{1}$ (0, 1).

$Proo/$. We employ the topological transvarsality theorem formulated in [3]. Put

$C^{1}[0,1]\supset K=\{u\in C^{1}[0,1] : u(0)=u(1)=1/n\}$ ;

and

$K\supset U=$ { $u\in I\acute{\mathrm{t}}$ : $\frac{1}{2n}<u(t)<M_{0}(n)+1$ , $|u’(t)|<M_{1}(n)$ $+1$ on [0, 1]},

where $M_{0}(n)$ and $M_{1}(n)$ are constants appearing in Lemma 1. It is easy to see that
a positive function $y$ is a solution of BVP (1)$-(3)$ if and only if $y$ satisfies the integral
equation

$y(t)= \frac{1}{n}+\int_{0}^{t}(\xi(y)-\oint_{0}^{s}f(r, y(r))dr)\frac{1}{\alpha}*ds$ , $0\leq t\leq 1$ .

where 4 is the functional appearing in Lemma 2. Let us consider the mapping $H$ ( $\cdot$ , $\cdot$ ) :
$\overline{U}\cross$ $[0,1]arrow I\mathrm{f}$ defined by

$H(u, \lambda)(t)=\frac{1}{n}+\lambda^{1/\alpha}\int_{0}^{t}(\xi(u)-\int_{0}^{s}f(r, u(r))dr)^{\frac{1}{\alpha}*}ds$ , $0\leq t\leq 1$ .

It suffices to show that $H(\cdot, 1)$ has a fixed point in $U$ . We can prove that

(a) $H(\cdot, \lambda)$ : $\overline{U}arrow I\mathrm{i}^{r}$ is continuous for every $\lambda$ $\in[0,1]$ ;

(b) $H(\cdot).)$ : $\overline{U}\rangle\langle$

$[0,1]arrow I\iota^{\nearrow}$ is compact;

(c) $H(\cdot, \lambda)$ does not have fixed points on au for A $\in[0, 1]$ .
Since $H(\cdot, 0)$ is a constant mapping $H(\cdot, \mathrm{O})=1/n$ , and $1/n\in U$ , we know from
$[2,\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m}2.5]$ that $H(\cdot, 1)$ has a fixed point in $U$ . $\square$

Lemma 3. Let n $\in \mathrm{N}$ and $y_{n}$ be a positive solution of BVP (1)$-(3)$ . Then, there are
positive constants $M_{0}$ and $M_{1}$ independent of n satisfying

$|y_{n}(t)|\leq M_{0}$ on $[0, 1]$ ;

and
$||y_{n}’||_{L^{\Theta}(0,\mathrm{I})}\leq M_{1}$ , $\mathit{0}=1/p+\alpha+1$ .
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Proof. A close look at the proof of Lemma 1 shows that the constant ]$|/I_{0}(n)$

appearing there really does not depend on $n$ . So we can choose $M_{0}=M_{0}(n)$ . To find
out $M_{1}$ Jet $T_{n}$ be such $y_{n}(T_{n})= \max[0,1]y_{n}$ . For $t\in(0, T_{n}]$ we have

$-((y_{n}’)^{\alpha})’\leq a(t)g(y_{n})h(y_{n})$ ;

that is

$-y_{n}(y_{n}’)^{1/p}((y_{n}’)^{\alpha})’$ $\leq$ $a(t)y_{n}g(y_{n})h(y_{n})(y_{n}’)^{1/p}$

$\leq$ $M_{0}g(M_{0})a(t)h(y_{n})(y_{n}’)^{1/p}$ .

An integration on $[0, T_{n}]$ gives

$\frac{p\alpha}{n(1+p\alpha)}(y_{n}’(0))^{\alpha+1/p}+\frac{p\alpha}{1+p\alpha}f_{0}^{\tau_{n}}|y_{n}’(s)|^{1+\alpha+1/p}ds$

$\leq$ $M_{0}g(M_{0})(l_{/n}^{y_{n}(T_{n})}h(u)^{v}du)^{1/p}( \int_{0}^{T_{n}}a(t)^{q}dt)^{1/q}$

$\leq$ $M_{0}g(M_{0})||a||_{L^{q}(0_{1}1)}( \int_{0}^{M_{0}}h(u)^{p}du)^{1/p}$

Here we have employed the nondecreasing nature of $y\vdash+yg(y)$ . This implies that
$f_{0}^{T_{n}}|y_{n}’|^{\theta}dt$ is bounded by a constant independent of $n$ . Similarly we can show that
$\mathit{1}_{T_{n}}^{1}|y_{n}’|^{\theta}dt$ is bounded.

$\square$

Proof of Theorem 1. Let $y_{n}$ , $n\in \mathrm{N}$ , be the solution of BVP (1)$-(3)$ introduced in
Proposition 1. Since for $t_{1}$ , $t_{2}\in[0,1]$ , $t_{1}<t_{2}$ , we have from Lemma 3

$|y_{n}(t_{1})-y_{n}(t_{2})|$ $\leq$ $\int_{t_{1}}^{t_{2}}|y_{n}’(s)|ds$

$\leq$
$( \int_{t_{1}}^{t_{2}}|y_{n}’(s)|^{\theta}ds)^{1/\theta}(f_{t_{1}}^{t_{2}}ds)\frac{\theta-1}{\theta}$

$\leq$ $M_{3}|t_{2}-t_{1}|^{\frac{\theta-1}{\theta}}$ ,

the sequence $\{y_{n}\}$ is equicontinuous. By the Ascoli-Arzela theorem we can choose a
subsequence $\{y_{n’}\}\subseteq\{y_{n}\}$ and a continuous function $\tilde{y}$ such that $\{y_{n’}\}$ converges to $\tilde{y}$

uniformly on $[0, 1]$ .
We show that $\tilde{y}$ is a desired solution of BVP (1)$-(2)$ . We obviously have $\overline{y}(0)=$

$\tilde{y}(1)=0$ . We firstly show that $\tilde{y}>0$ in $(0, 1)$ . Let $T_{n}\in(0, 1)$ be such that $y_{n}(T_{n})=$

$\max[0,1]yn$ . Since the sequence $\{T_{n}\}$ is bounded, it contains a subsequence converging
to some point $T\in[0,1]$ . We may assume that ,$\lim_{narrow\infty}T_{n^{J}}=T$ . By assumption (C5), we
have $((y_{n}’,(t))^{\alpha*})’+\psi_{M_{0}}(t)\leq 0$ in $(0, 1)$ . Integrating twice this inequality we obtain

$y_{n’}(t) \geq\frac{1}{n’}+\int_{0}^{t}(l^{T_{n’}}\psi_{M_{0}}(r)$ $dr)^{1/\alpha}ds$ , $0\leq t\leq T_{n^{J}}$ ; (6)
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and
$y_{n^{J}}(t)$ $\geq\frac{1}{n’}+\int_{t}^{1}(\oint_{T_{n}}^{s},$ $\psi_{M_{0}}(r)dr)^{1/\alpha}ds$ , $T_{n^{l}}\leq t\leq 1$ . (7)

Since $0\leq y_{n^{t}}(t)\leq y_{n}/(T_{n’})$ by definition, we find that

$0\leq \mathrm{y}(\mathrm{t})\leq\overline{y}(T)$ , $0\leq t\leq 1$ (8)

To see $0<T<1$ , suppose the contrary that $T=0,1$ . We may suppose that $T=1$ .
Then, it follows from (8) that $\tilde{y}\equiv 0$ on $[0, 1]$ . On the other hand by letting $n’arrow$ oo in
(6) we have

$\mathrm{y}(\mathrm{t})\geq f_{0}^{i}(l^{1}\psi_{M_{0}}(r)dr)^{1/\alpha}ds>0$ , $0\leq t<1$ ,

which is a contradiction, Hence $0<T<1$ . Letting $n’arrow$ cc in (6) and (7), we have

$\tilde{y}(t)\geq\int_{0}^{\mathrm{f}}(\oint_{s}^{T}\psi_{M_{0}}(r)dr)^{1/\alpha}ds$, $0\leq t<T$ ;

and
$\overline{y}(t)\geq\int^{1}(\int_{T}^{s}\psi_{M_{0}}(r)$ Jr$)^{1/\alpha}ds$ , $T<t\leq 1$ ,

respectively, which imply that $\overline{y}>0$ in $(0, 1)$ .
Finally letting $n’arrow \mathrm{c}\mathrm{o}$ in the formula

$y_{n’}(t)=y_{n’}(T)-l^{T}( \int_{s}\tau_{n’}f(r, y_{n’}(r))dr)\frac{1}{\alpha}*ds$ , $0<t<1$ ,

we have
$\mathrm{y}(\mathrm{t})=\mathrm{y}(\mathrm{t})-\int^{T}(\int_{s}\tau(f(r,\tilde{y}_{\iota}r))dr)\frac{1}{\mathrm{o}}*ds$ , $0<t<1$ .

By differentiating, we find that $\tilde{y}$ is a positive solution of equation (1). This completes
the proof of Theorem 1.
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