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Abstract
Classifications of irreducible components of the set of polynomial differential equa-

tions with a fixed degree and with at least one center singularity lead to some other
new problems on Picard- Lefschetz theory and Brieskorn modules of polynomials. In
this article we explain these problems and their connections to such classifications.

0 Introduction

The set of polynomial 1-forms $\omega$ $=P(x, y)dy$ $-Q(x, y)dx$ , $\deg P$, $\deg Q\leq d$ , $d\geq 2$ is a
vector space of finite dimension and we denote by $\mathcal{F}\overline{(d)}$ its projectivization. Its subset $\mathcal{F}(d)$

containing all $\omega’ \mathrm{s}$ with $P$ and $Q$ relatively prime and $\deg(\omega):=\max\{\deg P, \deg Q\}=d$ is
Zariski open in $\overline{\mathcal{F}(d)}$ . We denote the elements of $\overline{\mathcal{F}(d)}$ by $\mathcal{F}(\omega)$ or $\mathcal{F}$ if there is no confusion
about the underlying 1-form $\omega$ in the text. Any $\mathcal{F}(\omega)$ induces a holomorphic foliation ?
in $\mathbb{C}^{2}$ i.e., the restrictions of $\omega$ to the leaves of $\mathcal{F}$ are identically zero. Therefore, we name
an element of $\mathcal{F}(_{\backslash }d)$ a (holomorphic) foliation of degree $d$ .

The points in sing(F(\mbox{\boldmath $\omega$})) $=\{P=0, Q=0\}$ are called the singularities of $\mathcal{F}(\omega)$ .
A singularity $p\in \mathbb{C}^{2}$ of $\mathcal{F}(\omega)$ is called reduced if $(P_{x}Q_{y}-P_{y}Q_{x})(p)\neq 0$ . A reduced
singularity $p$ is called a center singularity or center for simplicity if there is a holomorphic
coordinates system $(\tilde{x},\tilde{y})$ around $p$ with $\tilde{x}(p)=0,\overline{y}(p)=0$ such that in this coordinates
system $\omega$ A $d(\overline{x}^{2}+\overline{y}^{2})=0$ . One can call $f:=\tilde{x}^{2}+\tilde{y}^{2}$ a local first integral around $p$ . The
leaves of $\mathcal{F}$ around the center $p$ are given by $\tilde{x}^{2}+\tilde{y}^{2}=c$ . Therefore, the leaf associated to
the constant $c$ contains the one dimensional cycle $\{(\tilde{x}\sqrt{c},\tilde{y}\sqrt{c})|(\tilde{x},\tilde{y})\in \mathbb{R}^{2},\tilde{x}^{2}+\tilde{y}^{2}=1\}$

which is called the vanishing cycle. We consider the subset of $\mathcal{F}(d)$ containing $\mathcal{F}(\omega)’ \mathrm{s}$ with
at least one center and we denote its closure in $\overline{\mathcal{F}(d)}$ by $\mathcal{M}(d)$ . It turns out that $\mathcal{M}(d)$ is
an algebraic subset of $\mathcal{F}(d)$ (see for instance [Mol]). Now the problem of identifying the
irreducible components of $\mathcal{M}(d)$ arises. This problem is also known by the name ”Center
conditions” in the context of real polynomial differential equations. Let us introduce some
of irreducible components of $\mathcal{M}(d)$ .

For $n\in \mathrm{N}\mathrm{U}$ {C1}, let $P_{n}$ denote the set of polynomials of degree at most $n$ in $x$ and $y$

variables. Let also $d_{i}\in \mathrm{N}$ , $\mathrm{i}=1,2$ , $\ldots$ , $s$ with $\sum_{i=1}^{s}d_{i}=d-1$ and $\mathcal{L}(d_{1}, \ldots, d_{s})$ be the
set of logarithmic foliations

$\mathcal{F}(f_{1}\cdots f_{s}\sum_{i=1}^{s}\lambda_{i}\frac{df_{i}}{f_{i}})$, $f_{i}\in \mathcal{P}_{d_{\mathrm{t}}}$ , $\lambda_{i}\in \mathbb{C}$

For practical purposes, one assumes that $\deg f_{i}=d_{2}$ , $\lambda_{i}\in \mathbb{C}^{*}$ , $1\leq \mathrm{i}\leq s$ and that $f_{i}’ \mathrm{s}$

intersect each other transversally, and one obtains an element in $\mathcal{F}(d)$ . Such a foliation
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has the logarithmic first integral $f_{1}^{\lambda_{1}}\cdot\cdot f_{s}^{\lambda_{s}}$ . Since $\mathcal{L}(d_{1}, \ldots, d_{s})$ is parameterized by $\lambda_{i}$

and $f_{i}’ \mathrm{s}$ it is irreducible.

Theorem 1. (fMo2f) The set $\mathcal{L}(d_{1}$ , . . . ’
$d_{s})$ is an irreducible component of $\mathcal{M}(d)$ , where

d $= \sum_{i=1}^{s}d_{i}-1$ .

In the case $s=1$ we can assume that $\lambda_{1}=1$ and so $\mathcal{L}(d+1)$ is the space of foliations of
the type $\mathcal{F}(df)$ , where $f$ is a polynomial of degree $d+1$ . This case is proved by Ilyashenko
in [II].

In general the aim is to find $d_{i}\in \mathrm{N}\cup\{0\}$ , $\mathrm{i}=1,2$ , $\ldots$ , $k$ and parameterize an irreducible
component $X=X(d_{1}, d_{2}, \ldots, d_{k})$ of $\mathcal{M}(d)$ by $p_{d_{1}}\mathrm{x}$ $\mathrm{p}_{d_{2}}\cross-$ . $\cross$ $\mathcal{P}_{d_{k}}$ . In the above example
$k=2s$ and $d_{s+1}=\cdots d_{2s}=0$ . Once we have done this, we can reformulate the fact that
$X$ is an irreducible component of $\mathrm{M}(\mathrm{d})$ in a meaningful way as follows:

Theorem 2. There exists an open dense subset $U$ of $X$ with the following property: for
all $\mathcal{F}\in U$ parameterized with $f_{i}\in \mathcal{P}_{d_{i}}$ , $\mathrm{i}=1,2$ , $\ldots$ ?

$k$ and a center $p\in \mathbb{C}^{2}$ of $\mathcal{F}$ let $\mathcal{F}_{\xi}$ be
a holomorphic deformation of $\mathcal{F}$ in $\mathcal{F}(d)$ such that its unique singularity $p_{\epsilon}$ near $p$ is still
a center. Then there exist polynomials $f_{i\epsilon}\in \mathcal{P}_{d_{\mathrm{i}}}$ such that $\mathcal{F}_{\epsilon}$ is parameterized by $f_{i\epsilon}$ ’s.
Here $f_{i\epsilon}$ ’s are holomorphic in $\epsilon$ and $f_{i0}=f_{i}$ .

The above theorem also says that the persistence of one center implies the persistence
of all other type of singularities.

1 Usual method

To prove theorems like Theorem 2 usually one has to take $U$ the complement of $X\cap$

sing(M(d)) in $X$ . But this is not an explicite description of $U$ . In practice one defines
$U$ by conditions like: $f_{i}$ , $\mathrm{i}=1$ , 2, $\ldots$ , $k$ is of degree $d_{\text{\^{i}}}$ $f_{i}’ \mathrm{s}$ have no common factors,
$\{f_{i}=0\}’ \mathrm{s}$ intersect each other transversally and so on. To prove Theorem 2, after finding

such an open set $U$ , it is enough to prove that for at least one $\mathcal{F}\in U$

(1) $T_{F}X=T_{F}\mathcal{M}(d)$

where $T\tau$ means the tangent bundle at $\mathcal{F}$ . Note that for a foliation $\mathcal{F}\in X$ the equality
(1) does not imply that $\mathcal{F}\in U$ . There may be an irreducible component of $\mathcal{M}(d)$ of
dimension lower than the dimension of $X$ such that it passes through $\mathcal{F}$ and its tangent

space at $\mathcal{F}$ is a subset of $T_{F}X$ . For this reason after proving (1) for $\mathcal{F}$ with some generic

conditions on $f_{i}’ \mathrm{s}$ , we may not be sure that $U$ defined by such generic conditions on $f_{i}’ \mathrm{s}$

is $X$ – $(X\cap \mathrm{s}\mathrm{i}ng(\mathcal{M}(d)))$ . However, in the bellow $U$ can mean $X-$ ($X$ fl sing(M(d))) or
some open dense subset of $X$ .

An element $\mathcal{F}$ of the irreducible component $X$ may have more than one center. The

deformation of $\mathcal{F}$ within $X$ may destroy some centers but it preserves at least one center.

Therefore, we have the notion of stable and unstable center for elements of $X$ . A stable

center of $\mathcal{F}$ is a center which persists after any deformation of $\mathcal{F}$ within $X$ . An unstable
center is a center which is not stable. It is natural to ask

$\mathrm{P}1$ . Are all the centers of a foliation $\mathcal{F}\in U$ stable?

The answer is positive for $X=\mathcal{L}(d_{1}, d_{2}, \ldots , d_{s})$ in Theorem 1. Every element $\mathcal{F}\in U$

has $d^{2}- \sum_{i<j}d_{i}d_{\dot{J}}$ stable center. Here $U$ means just an open dense subset of $X$ .
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The inclusion $\subseteq$ in the equality (1) is trivial. To prove the other side $\supset$ , we fix a stable
center singularity $p$ of $T$ and make a deformation $\mathcal{F}_{\epsilon}(\omega+\epsilon\omega_{1}+\cdots)$ of $\mathcal{F}=\mathcal{F}(\omega)$ . Here $\omega 1$

represents an element $[\omega_{1}]$ of $T_{F}\mathcal{M}(d)$ . Let $f$ be a local first integral in a neighborhood
$U’$ of $p$ , $s$ a holomorphic function in $U’$ such that $\omega=s.d/$ , $\delta$ a vanishing cycle in a leaf
of $\mathcal{F}$ in $U’$ and $\Sigma\simeq(\mathbb{C}, 0)$ a transverse section to $\mathcal{F}$ in a point $p\in\delta$ . We assume that the
transverse section $\Sigma$ is parameterized by $t=f|\Sigma$ . The holonomy of $\mathcal{F}$ along $\delta$ is identity.
Let $h_{\epsilon}(t)$ be the holonomy of $\mathcal{F}_{\epsilon}$ along the path 6. It is a holomorphic function in 6 and $t$

and by hypothesis $h_{0}(t)$ $=t$ . We write the Taylor expansion of $h_{\epsilon}(t)$ in 6

$h_{\epsilon}(t)-t=M_{1}(t)\epsilon+M_{2}(t)\epsilon^{2}+\cdots+M_{i}(t)\epsilon^{i}+\cdots$ , $\mathrm{i}!.M_{i}(?)=\frac{\partial^{i}h_{\epsilon}}{\partial\epsilon^{i}}|_{\epsilon=}0$

The function $M_{\mathrm{t}}$ is called the i-th Melnikov function of the deformation $\mathcal{F}_{\epsilon}$ along the path
$\delta$ . It is well-known that the first Melnikov function is given by

$M_{1}(t)=- \int_{\mathit{5}_{t}}\frac{\omega_{1}}{s}$

where $\delta_{t}$ is the lifting up of $\delta$ in the leaf through $t\in\Sigma$ , and the multiplicity of $M_{1}$ at $t=0$

is the number of limit cycles (more precisely the number of fixed points of the holonomy
$h_{\epsilon})$ which appears around 5 after the deformation (see for instance [Mol] ). This fact shows
the importance of these functions in the local study of Hilbert 16-th problem.

Now, if in the deformation $\mathcal{F}_{\epsilon}$ the deformed singularity $p_{\epsilon}$ near $p$ is center then $h_{\epsilon}=\mathrm{i}d$

and in particular

(2) $\int_{\delta_{t}}\frac{\omega_{1}}{s}=0$ , $\forall t\in\Sigma$

Let $T_{F}^{*}X$ be the set of $[\omega_{1}]\in T_{F}\mathcal{F}(d)$ with the above property. It is easy to check that
the above definition does not depends on the choice of $f$ (see [Mol]). We have seen that
$T_{F}\mathcal{M}(d)\subseteq T_{F}^{*}X$ . The following question arises:

$\mathrm{P}2$ . Is $T_{F}fA(d)=T_{F}^{*}X^{p}$.

If the answer is positive then it means that form the vanishing of integrals (2) one
must be able to prove that $\omega_{1}\in T_{F}X.$ . Otherwise, calculating more Melnikov functions
to get more and more information on $\omega_{1}$ is necessary. The proof of Theorem 1 with
$s=1$ shows that the answer of P2 is positive in this case. However, the answer of P2 for
$X=\mathcal{L}(d_{1}, d_{2}, \ldots, d_{s})$ is not known.

2 Some singularities of At (d)

The method explained in the previous section has two difficulties: First, identifying $U:=$
$X\cap s\mathrm{i}ng(\Lambda\Lambda(d))$ and second to know the dynamics and topology of the original foliation

$\mathcal{F}$ . Away to avoid these diffculties is to look for foliations $\mathcal{F}(df)$ , where $f$ is adegree $d+1$

polynomial $\mathrm{i}\mathrm{n}-\mathbb{C}^{2}$ . We already know that such foliations lie in the irreducible component
$\mathcal{L}(d+1)$ . But if we take $f$ anon-generic polynomial then $\mathcal{F}(df)$ may lie in other irreducible
components of $\mathcal{M}(d)$ and even worse, $\mathcal{F}(df)$ may not be asmooth point of such irreducible
components.

$\mathrm{P}3$ . Do all irreducible components of $\mathcal{M}(d)$ intersect $\mathcal{L}(d+1)^{P}$
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If the answer of the above question is positive then the classification of irreducible
components of $f\Lambda(d)$ leads to the classification of polynomials of degree $d$ %1 in $\mathbb{C}^{2}$

according to their Picard-Lefschetz theory and Brieskorn modules. If not, we may be
interested to find an irreducible component $X$ which does not intersect $\mathcal{L}(d+1)$ . In any
case, the method which we are going to explain bellow is useful for those $X$ which intersect
$\mathcal{L}(d+1)$ .

The foliation $\mathcal{F}=\mathcal{F}(df)$ has a first integral $f$ and so it has no dynamics. The function
$f$ induces a $(C^{\infty})$ locally trivial fibration on $\mathbb{C}-C$ , where $C$ is a finite subset of C. The
points of $C$ are called critical values of $f$ and the associated fibers are called the critical
fibers. We have Picard-Lefschetz theory of $f$ and the action of monodromy

$\pi_{1}(\mathbb{C}-C_{7}b)\mathrm{x}$ $H_{1}$ ( $f^{-1}$ (&), Q) $arrow H_{1}(f^{-1}(b), \mathbb{Q})$

where $b\in \mathbb{C}-C$ is a regular fiber. Let $\delta’\in H_{1}(f^{-1}(b), \mathbb{Q})$ be the monodromy of li (the
vanishing cycle around a center singularity of $\mathcal{F}(df))$ along an arbitrary path in $\mathbb{C}$ $-C$

with the end point $b$ . From analytic continuation of the integral (2) one concludes that
$\int_{\pi_{1}(\mathbb{C}-C)\delta}\omega=0$ .

$\mathrm{P}4$ . Determine the subset $\pi_{1}(\mathbb{C}-C).\delta\subset H_{1}(f^{-1}(b), \mathbb{Q})$ .

In the case of a generic polynomial $f$ , Ilyashenko has proved that in P4 the equality
happens. To prove Theorem 1, I have used a polynomial $f$ which is a product of $d+1$ lines
in general position and I have proved that $\pi_{1}(\mathbb{C}-C).\delta$ together with the cycles at infinity
generate $H_{1}(f^{-1}(b), \mathbb{Q})$ . Cycles at infinity are cycles around the points of compactification
of $f^{-1}(b)$ .

Parallel to the above topological theory theory, we have another algebraic theory as-
sociated to each polynomial. The Brieskorn module $H= \frac{\Omega^{1}}{d\Omega^{0}+\Omega^{0}df}$ , where $\Omega^{i}$ , $\mathrm{i}=0,1,2$ is

the set of polynomial differential $\mathrm{i}$-forms in $\mathbb{C}^{2}$ , is a $\mathbb{C}[t]$-module in a natural way and we
have the action of Gauss-Manin connection

$\nabla$ : $H_{C}arrow H_{C}$

where $Hc$ is the localzation of $H$ over the multiplicative subgroup of $\mathbb{C}[t]$ generated by
$t-c$, $c\in C$ (see [Mo2]).

$\mathrm{P}5$ . Find the torsions of $H$ and classify the kernel of the maps $\nabla^{i}=\nabla\circ\nabla\circ\cdots 0\nabla$

i-times.

When $f$ is the product of lines in general position then $H$ has not torsions and the
classification of the kernel of $\nabla^{i}$ is done in [Mo2] using a theorem of Cerveau-Mattei.

Solutions to the both problems P4 and P5 are closely related to the position of $\mathcal{F}(df)$

in $\mathcal{M}(d)$ . Using solutions to P4 and P5 one calculates the Melnikov functions $M_{i}’ \mathrm{s}$ by

means of integrals of 1-forms (the data of the deformation) over vanishing cycles and
one calculates the tangent cone $TC_{F}f\mathrm{A}(d)$ of $\mathcal{F}=\mathcal{F}(df)$ in $\mathcal{M}(d)$ and compare it with

the tangent cone of suspicious irreducible components of $\mathcal{M}(d)$ . For instance, to prove
Theorem 1, we have taken $f$ the product of $d+1$ lines in general position and we have
proved that
(3) $\cup\Sigma_{i=1}^{s}d_{i}=d-1TC_{F}\mathcal{L}(d_{1}, d_{2}, \ldots, d_{s})=TC_{F}\mathcal{M}(d)$

All the varieties $\mathcal{L}(d_{1}, \ldots, d_{s})$ , $\sum_{i=1}^{s}d_{i}=d-1$ pass th rough $\mathcal{F}=\mathcal{F}(df)$ .



142

$\mathrm{P}6$ . Are $L(d_{1}$ , . . . , $d_{s})’.\mathrm{s}$ all irreducible compoints of $\mathcal{M}(d)$ through $\mathcal{F}(df)$ ?

Note that the equality (3) does not give an answer to this problem. There may be an
irreducible component of $\mathcal{M}(d)$ through $\mathcal{F}(df)$ and different form $\mathcal{L}(d_{1}, d_{2}, \ldots, d_{s})’ \mathrm{s}$ such

that its tangent cone at $\mathcal{F}(df)$ is a subset of (3). In this case the definition of other notions
of tangent cone based on higher order 1-forms in the deformation of $\mathcal{F}(df)$ seems to be
necessary.

The first case in which one may be interested to use the method of this section can be:

$\mathrm{P}7$ . Let $l_{i}=0$ , $i=0,1$ , . . . ’
$d$ be lines in the real plane and m$, $\mathrm{i}=0,1$ , $\ldots$ , $d$ be integer

numbers. Put $f=l_{0}^{m_{0}}\cdots l_{d}^{m_{d}}$ . Find all irreducible components of $\mathcal{M}(d)$ through $\mathcal{F}(df)$ .

In this problem the line $f_{i}$ has multiplicity $m_{i}$ and it would be interesting to see
how the classification of irreducible components through $\mathrm{T}(\mathrm{d}\mathrm{f})$ depends on the different
arrangements of the lines $l_{\mathrm{i}}$ in the real plane and the associated multiplicities. In particular,
we may allow several lines to pass through a point or to be parallel. When there are lines
with negative multiplicities then we have a third kind of singularities $\{l_{i}=0\}\cap\{l\mathrm{i}=0\}$

called dicritical singularities, where $l_{i}$ (resp. $l_{j}$ ) has positive (resp. negative) multiplicity.
They are indeterminacy points of $f$ and are characterized by this property that there are
infinitely many leaves of the foliation passing through the singularity. Also in this case
there are saddle critical points of $f$ which are not due to the intersection points of the
lines with positive (resp. negative) multiplicity. The reader may analy ze the situation by
the example $f=\ell_{\mathrm{n}^{l}\iota}\dot{\ell}_{2}l_{3}$ .

3 Looking for irreducible components of $\lambda 4(d)$

To apply the methods of previou$1\mathrm{S}$ sections one must find some irreducible subsets of $\mathcal{M}(d)$

and then one conjectures that they must be irreducible components of $\mathcal{M}(d)$ . The objective
of this section is to do this.

Classification of codimension one foliations on complex manifolds of higher dimension
is a subject related to center conditions. We state the problem in the case of $\mathbb{C}^{n}$ , $n$ $>2$

which is compatible with this text. However, the literature on this subject is mainly for
projective spaces of dimension greater than two (see [CL]).

The set of polynomial 1-forms $\omega$ $= \sum_{i=1}^{n}P_{i}(x)dx_{\mathrm{i}}$ , $\deg P_{t}\leq d$ is a vector space of finite
dimension and we denote by $\overline{\mathcal{F}(n,d)}$ its projectivization. Its subset $\mathcal{F}(n, d)$ containing all

$\omega$ ’s with$\underline{P}_{\mathrm{h}}’\underline{s}\underline{\mathrm{r}\mathrm{e}}1\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}1\mathrm{y}$ prime and $\deg(\omega):=\max\{\deg P_{i}, \mathrm{i}=1,2, . . , n\}=d$ is Zariski
open in $\mathcal{F}(n, d)$ . An element $[\omega]\in\overline{\mathcal{F}(n,d)}$ induces a holomorphic foliation $\mathcal{F}=\mathcal{F}(\omega)$ in
$\mathbb{C}^{n}$ if and only if $\omega$ satisfies the integrability condition

(4) $\omega$ A clW $=0$

This is an algebraic equation on the coefficients of $\omega$ . Therefore, the elements of $\mathcal{F}(n, d)$

which induce a holomorphic foliation in $\mathbb{C}^{n}$ form an algebraic subset, namely $\mathcal{M}(n, d)$ , of
$\mathcal{F}(n, d)$ . Now we have the problem of identifying the irreducible components of $\mathcal{M}(n, d)$ .
We define $\mathcal{F}(2, d)$ $:=\mathcal{F}(d)$ and $\mathrm{M}(\mathrm{d})d):=\mathrm{M}(\mathrm{d})$ .

Let us be given a polynomial map $F:\mathbb{C}^{2}arrow \mathbb{C}^{n}$ , $n\geq 2$ and a codimension one foliation
$\mathcal{F}=\mathcal{F}(\omega)$ in $\mathbb{C}^{n}$ . In the case $n>2$ , let us suppose that $F$ is regular in a point $p\in \mathbb{C}^{2}$ .
This implies that $F$ around $p$ is a smooth embedding. We assume that $F(\mathbb{C}^{2},p)$ has a
tangency with the leaf of $\mathcal{F}$ through $F(p)$ ‘ In the case $n=2$ , we assume that $F$ is singula
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at $p$ . In both cases, after choosing a generic $F$ and $\mathcal{F}$ , the pullback of $\mathcal{J}^{}$ by $F$ has a center
singularity at $\mathrm{P}$ .
$\mathrm{P}8$ . Fix an irreducible component $X$ of $\mathcal{F}(n, d)$ . Is

$\{F^{*}\mathcal{F}, \mathcal{F} \in X, \deg f_{i}\leq d_{i}, \mathrm{i}=1,2, \ldots, n\}$

where $F=$ $(fi, f_{2}, \ldots 1f_{n})$ , an irreducible component of $\mathcal{M}$ $(d’)$ for some $d’\in \mathrm{N}^{\{)}$

For instance in Theorem 1, the elements of $\mathrm{C}$(du $d_{2}$ , $\ldots$ , $d_{s}$ ) are pull backs of holo-
morphic foliations $\mathcal{F}(x_{1}x_{2}\cdots x_{s}\sum_{i=1}^{s}\lambda_{i^{\frac{dx}{x_{\dot{\mathrm{t}}}}\mathit{1}}})$ , $\lambda_{i}\in$ C’ in $\mathbb{C}^{s}$ by the polynomial maps
$F=(f_{1}, f_{2}, \ldots, f_{s})$ , $\deg f_{i}\leq d_{i}$ .

Another way to find irreducible subsets of $\mathcal{M}(d)$ is by looking for foliations of lower
degree. Take a polynomial of degree $d$ in $\mathbb{C}^{2}$ with the generic conditions considered by
Ilyashenko, i.e. $f$ has non degenerated singularities with distinct images. Now $\mathcal{F}(df)$ has

degree $d-1$ which is less than the degree of a generic foliation in $\mathcal{F}(d)$ .

$\mathrm{P}9$ . Classify all irreducible components of $\mathcal{M}(d)$ through $\mathcal{F}(df)$ .
All $\mathrm{C}$ (du , . . , , $d_{s}$ )’ $\mathrm{s}$ pass through $\mathcal{F}(df)$ . There are other candidates as follows:

1. $\mathrm{A}_{i}=\{\mathcal{F}(_{p}^{pd}+d(\frac{q}{p^{\mathrm{g}}}))|deg(p)=1, deg(q)=d\}\mathrm{i}=0$, 1, 2, $\ldots$ , $d$ ;

2. $B_{1}=\{\mathcal{F}(_{q}^{\underline{d}q}+d(p))|deg(p)=1, deg(q)=d\}$;

An element of $A_{i}$ (resp. $B_{1}$ ) has a first integral of the type $pe^{q/p^{i}}$ (resp. $qe^{p}$ ). These

candidates are supported by Dulac’s classification (see [Du] and $[\mathrm{C}\mathrm{L}1\lrcorner$ p.601) in the case
$d=2$ .

We can look at our problem in a more general context. Let $M$ be a projective complex

manifold of dimension two. We consider the space $\mathcal{F}(L)$ of holomorphic foliations in $M$

with the normal line bundle $L$ (see for instance [Mol]). Let also $f\Lambda(L)$ be its subset

containing holomorphic foliation with at least one center singularity. Again $\mathcal{M}(L)$ is an
algebraic subset of $\mathcal{F}(L)$ and one can ask for the classification of irreducible components

of $\mathcal{M}(L)$ . For $M=\mathbb{C}P(2)$ some irreducible components of $\mathrm{M}(\mathrm{L})$ are identified in [Mol].

$\mathrm{P}10$ . Prove a theorem similar to Theorem 1 for an arbitrary projective manifold of

dimension two.

In this generality one must be careful about trivial centers which we explain now. Let

I be a }$\mathrm{l}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{m}\mathrm{o}\mathrm{r}\mathrm{p}\mathrm{h}\mathrm{i}\mathrm{c}$ foliation in $\mathbb{C}^{2}$ and 0 a regular point of $\mathcal{F}$ . We make a blow up (see

[CaSa] $)$ at 0 and we obtain a divisor $\mathrm{C}\mathrm{P}(1)$ which contains exactly one singularity of the

blow up foliation and this singularity is a center.
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