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Relations of formal diffeomorphisms

Isao Nakai (/& I, Kana Yanai(¥l# /ES)*

Abstract

Germs of holomorphic diffeomorphisms of C, 0 are formally conjugated to
time-1 maps of some holomorphic vector fields on C. Thus a word of germs of
holomorphic diffeomorphisms is a composite of some time-1 maps of formal
vector flelds. We give a formula for the Taylor coefficients of the time-1 trans-
port maps of formal ordinary differential equations. We apply the formula
to the differential equations corresponding to words of diffeomorphisms. We
investigate the various results on the existence of relations of formal diffeomor-
phisms. The complete account of these results will appear in a forthcoming
paper[22].

1 Diff(C,0) and associated First Order ODE

Let Diff(C, 0) denote the group of germs of holomorphic diffeomorphisms of C fixing
0 € C, and Diff(C,0) the group of formal diffeomorphisms without constant term.
The classification problem of subgroups of Diff(C,0) arises naturally in the study
of foliations as well as differential equations. A relation of length [ of n elements in

Diff(C, 0) is a word
W(fl) s 7f'n) = fi(lil) 0---0 fz(zil) = 17

where W is not a priori 1 and ™ denotes the m-hold iteration of f. A subgroup
G is free if there exists no relation of elements of G. A word, or a set of words, of n
diffeomorphisms W{fi,..., fn) is holomorphically (respectively formally)conjugated
toa W(g1,-..,9») (the same word with substituted letters) if there exists a holo-
morphic (resp. formal) diffeomorphism ¢ € Diff(C,0) such that f; = dNogioep
fori=1,...,n. If two germs f, g are tangent to identity (i.e. the linear terms = 1)
and commutative : fog = go f, then f, g are simultaneously formally conjugated to
a time-s and a time-t maps of an equal holomorphic vector field x for some s,t € C.
It is also known that a holomorphic vector field is holomorphically conjugated to
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either a linear vector field or a zP*!/(1 — mzP?) 0z for some m € C and positive
integer p invariant under the linear action of Z, (m being the residue of x.) Thus
the commutativity relation is formally embedded to either the linear subgroup C*
or the commutative subgroup C x Z, C Diff(C,0) generated by the complex flow
of the y and the linear action. When the residue m = 0, the linear conjugate of x
by an arbitrary A € C* remains in the form of its constant multiple. Therefore the
linear conjugate action of C* and the complex one parameter group of x generate
a semidirect product C x C*, which is nothing but the affine transformation group
Aff(C). This group contains also the various other relarions. We call the relations
formally conjugated to those relations elementary relations.

In the geometric study of a codimension 1 foliation F, the question whether
there exist non elementary relations or not in Diff(C,0) has been at crucial issue.
When F is deformed leaving a leaf L stable, relations in the holonomy group Hol(L)
of L may be violated or some extra relations may appear for some values of the
deformation parameter. While, there exist only countably many words. Thus it
follows if there exists no relation stable under deformation, the holonomy group is
free for a generic parameter. Ilyashenko and Pyartli [18] showed that for a generic
rational differential equation

dy/dz = P(z,y)/Q(z,y)

on CP?, the holonomy group Hol(L,) of Ly, is free by showing that the set of k-jets
of diffeomorphisms with a relation is smaller than the set of k-jets of the generators
of holomnomy when k tends to co. This implies that no relation in Hol(Ls) is
stable under deformation, thus Hol(Ls) is free for a generic differential equation.
This argument relies on the dimension estimate and basically on the countableness
of the set of relations, and does not tell any concrete free groups or non free groups
with non elementary relations. Our argument can tell a precise asymptotics of the
codimension of the set of k-jets of diffeomorphisms with a relation.

Cerveau [4] showed the diffeomorphisms f(z) = z/1 + z and g(2) = z/V1+ 22
play no relations using the result by Cohen [8] that asserts z + 1 and 2z* generate a
free group. On the other hand Ecalle [12] constructed many relations in the formal
group Diff(C,0) of the various types such as

(AL AL o {g {9, 119 =1,

{f,g} being the commutator f(-Y o gt~V o f 0 g, by solving f,g in formal power
series. In the paper [12] it is stated that some of those f,g are not convergent
but summable in a certain manner, and also predicted that non convergence is a
mathematical law. |

In §8,9 of this paper we calculate the Taylor coefficients of words of diffeomnor-
phisms in terms of their phase diagram (Feynman diagram, see the next section for
the definition). As an immediate consequence we show that, if initial jets of lower
order of diffeomorphisms satisfy a certain algebraic condition on the various mo-
ments of a Feynman diagram, we can choose their subsequent infinite jets properly
so that the relation associated to the diagram holds. Our method is in the same vein
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as the classical linearlization of (C, 0)-diffeomorphisms due to Poincaré and Siegel.
The difference in contrast in our case is that the denominators behave tamely in a
polynomial growth while the numerators might tend to infinity rapidly.

By simple observation we see that a relation W{fi, f) = 1 implies a series of
algebraic relations P, = 1, P, = 0,k = 2,3,... of Taylor coefficients P of the 2*
terms of W(f1(2), f2(#)), which are polynomials of Taylor coefficients of fi, fo of
order equal or lower than 7. So clearly if these coeflicients of f, g are all algebraically
independent, it would follow some special conditions on the word W. In §7 it is
shown that Pj are presented in terms of integration of 1-forms on the Feynman
diagram of . So the above conditions imply that the winding number of v = 0 at
each point.

It would be worth to note that a generic finite subset of a non solvable Lie group
generate a free subgroup [15]. The group of truncated diffeomorphisms Dift*(C, 0) of
degree k is solvable for all k, while Diff(C, 0) is non solvable. We define a subgroup
G*  Diff*(C, 0) is stably free if any subgroup G C Diff(C,0) with k-jet G* is free.
The existence or non existence of stably free subgroup is not clear [23].

To end this section we give some words on the calculation of Taylor coeflicients
of a word W(f1,..., fn). Assume f; = exp a;0, with a holomorphic vector field a;8,
and consider the piecewise holomorphic non linear ordinary differential equation

%:)\t(z) = dai(z) if te[i—1,9), forzeC,0<t<!
where the right hand side is determined corresponding to the i-th letter and its sign
in the word W(fi,..., fi) from the right hand side. It is easily seen the word W
is the time-l transport map h; (or the product integrall9]) of the equation. To solve
the equation we employ the classic method due to Picard, Volterra, Dyson, Chen
and Chacon and Chacon, Fomenko. The logarithm of k,, as a diffeomorphism is a
formal vector field of one valuable such that its time-1 map is k,. Such a vector
field is uniquely determined by analytic continuation of the branch logid = 0, and
called the Lie integral (of the left hand side of the above differential equation).
Now we suppose the right hand side as a piecewise smooth function of ¢ valued
in the Lie algebra of formal vector fields x(C,0). The Feynman diagram v and its
dual diagram ~* associated to the above W are the integral curves in x(C,0) with
the initial point 0 and the velocities X; = A\;d, and X;_; = A\j_.0, respectively. One
of our results is that for a closed v the Taylor coefficient Ly of 2* in the Taylor
expansion of Lie integral is expressed in terms of integration on of 1-forms wy on v*

for some small k = 2,3,...:
loghn:(f w2z2+/ w323+~-)5z,
,y* ,Y*

in other words,
hnzexp(/ wo zz—}—/ Ws z3+---) d. .
,.Y* ,Y!k

And also in the case where the velocity vectors of v and 4* have all trivial linear
parts, in other words, ,v* are confined in the subspace of formal diffeomorphisms
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without linear terms, all the coefficients are "holomorphic functions” of 7. Although,
the coefficints of higher order terms may not be written in integration of 1-forms on
~, since even in the case where W = W(fi, f;) and the winding number of ¥* is 0
everywhere on the plane spanned by a;9;,a»0,, the relation W = 1 does not hold in
general for highly non commutative fi, fo. We investigate some applications of the
formula in the later sections of the note.

2 Some examples

Before we define Feynman diagram, let us consider the real n dimensional sub space
L, in the Lie algebra x(R) spanned by n formal vector fields a;0,,7 = 1,2,...,n. We

suppose L, is the n dimensional vector space R” whose coordinate is (1,825« o3 Tn)"
z; axes correspond respectively to a;d, direction, ¢ = 1,2,...,n. From now on, we
identify L, with R™.

Let H; be a segment of length 1 in z; direction, : = 1,2,...,n, in R". Feynman

diagram vy = (t), 0 < t < [, is then defined by a composite of some of these
segments, say,

y=HMoH0---oH 0. .0 H,fro=(n=1) o HyFro=n-2) o ... o H, 5

with v(0) = 0 and |k;| + kg + - - + |knp| = [, where H;*m denotes the k,,-times
composites of H;. And let us define the dual diagram y* = v*(), 0 < <[, by the
transpose

')/* — anﬂp o Hn_lk"P—l c---0 Hlkﬂp"(ﬂ—l) O+«++0 an" o} Hn—-lkn—l O+++0 Hlki

with v*(0) = 0 for 4. We get then clearly (y*)* =~ for a diagram ~.

Figure 1 shows examples of closed Feynman diagram and its dual diagram in
the real (z1,2)-plane R%. Let H and V be segments of length 1 in z;-direction and
zo-direction respectively, then ~;,7 = 1,2, 3, in Figure 1 are as follows.

v = HoV?oH oV 2cH 20VoH*o V™,

v = HoVoH 2oV 3 cH 'oVoH*oV 3 icH 'oVoH*oVoH o V2

vg = HoVoH YoV 3ioVoHoVoH 1 oV™?
oH'oVoHoV 3 oH *oVoHoV ™ o H o H

And v;*,7 = 1,2, 3, are as follows.
w = V3ieH?oVoeH 20V 2cH oV H,
v = V2oH'oVoH?oVoH oV 3oH’oVoH oV oH ?0VoH,
vt = H*oH YoV 3ioHoVoH 20V loHoV
oH oV cH 'oVoHoVoVoH 'oVoH.

~;* is obtained by rotating v; 180 degrees with respect to the origin and reversing
the orientation of it for 7 = 1,2,3. For the domain D enclosed by a closed diagram
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v in RZ, j.e. v = 0D, let denote the domain enclosed by the dual diagram v* by D*,
ie. v* = 0D We get (D*)* = D then, for (y*)* = v.

Lo

.
—
P

PG By B

Figure 1: closed Feynman diagram and its dual diagram

The integer written in the domain enclosed by Feynman diagram or its dual
diagram in Figure 1 is its winding number. We denote the winding number of a
closed diagram «y in R? at a point (zy, z2) by p(7)(@1,z2). We get then p(y)(z1,22) =
—p(7*) (=21, —22) for a closed diagram « in R2. '

Now, let us show some examples of relations of time-1 maps f = exp 10, of 4,0,
and g = exp a8, of a,9, in Diff(C, 0) for two formal vector fields

a0, = (anz+ a7 + a32° + - - - )0z,

a23z = (Gzlz + (1,2222 -+ a2323 EEP )az

€ %(C,0) on C. We see that there exist relations of f and g in Diff(C,0) with
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(a11,a21) = (0,0), (a12, a52) = (—1,3) and (ay3, azs) = (£, ), as follows
Wy (fr9) = {0, fC2 o {e®, =1,
W, (f9) = gV o{g, f1o{fCD,d M o fo{fV,g M o f0og0f=1,
W, (frg) = [P o{g f}Vofo{g, f1Y
oftVogtVo{g flogo{g, f} =1

by Theorem 8.2, since the Area of ;" = fth_.p dzy A dzy is 0 and the mo-
ment of v* = ([[p.p @idey A dzg, [[p.e p T2dzi A dzz) is (3,1) # (0,0) and
S P (@221 + agox0) dey A dzy = 16 # 0 for the vector (a1g,a22) = (—1,3) or-
thogonal to the moment of * for ¢ = 1,2,3. Az = (a3, as3) is determined by the
solution of the simultaneous linear equations in the proof of Theorem 8.2. It is noted
that the pairs (f,g) of formal diffeomorphism satisfying the above three relations
can be different from each other since (ayx,a2x), k& > 4, can be arbitrary.

Although we get the relations in the form of W,(f,g) = 1 for a closed Feyn-
man diagram « in the above by computing the Area and the moment of 4%, and
[ p Ko*dzy Adzy = [[p.p (a2 + a92%2) dty A dig for a vector (a1z,az) or-
thogonal to the moment of v*, we consider relations in the form of Wo«(f,g) = 1
for a dual closed diagram ~v* in §6-9 of the note for simplicity of notations of Lie
integral.

It seems that there exist many different relations in Diff(C,0). We will treat the
existence of relations of many diffeomorphisms in DIff(C,0) in a forthcoming paper
[22]. We investigate the existence of relations of two formal diffeomorphisms in this
note.

3 Transport formula by Picard iteration and Dyson
exponential

Let us consider the linear differential equation
du(t)
dt

where K(t) is a n X n matrix valued analytic function of ¢. For small £, the solution
can be uniquely presented as

= K(t) u(t), ueC”, teR,

u(t) =exp Z(t) u(0) .
The Z(t) is called the Lie element or Lie integral of K(t) and denoted

20) = I / Kt

Now let us follow the begining of the paper of Dyson [11]. In the manner of numerical
method of differential equations, the matrix exp Z(¢), 0 < ¢, can be approximated
by a composite (or product)

exp(K(En)AN) - -+ - exp(K (&) A7) - exp(K (&) A1) (1)
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with a division A : 0 =ty < #; < -+ < ty =t of the interval [0,t] , A; = ¢;—t;_; and
tio1 < & < t;. And as max A; tends to 0, this is convergent to exp Z(t). The limit
is called the product integral [9]. One may substitute the above finite composite by

(1+ / K@) (14 / TRty - (14 f " Kt ) .

IN-1

Simply by expanding the product we see this is equal, modulo max A;, to

1
1+ / K(t)dt+ / K(t2)K () dtydtat / K (1)K (1)K (t1) dydtadis -
0 <t <2<t 0Lt < <<L13 <t .

It is an elementary exercise to verify the first and the second products are conver-
gent to the third formula. This presentation is called Volterra Expansion or Dyson
exponential, and in Chen’s notation, presented as

w):1+Lw+£ww+waw+--- (2)

where w = K(t)dt and + denotes the path from 0 to t. It is easily seen by the above
argument that

Tyomy(w) = Ty (w) Ty (w) (3)
where v, 0 7, stands for the composite of v; and v, with y1(1) = ¥,(0). This is
nothing but the formula due to Chen [7, 16].

4 Lie integral for linear differential equations

To expand the composite in (1), we may apply the so-called BACH formula (Campbell-
Baker-Hausdorfl-Dynkin formula) for » x v matrices X,Y as follows.

log (eprepr):X-%Y%-%[X,Y] P XIXY]] 4 VX)) +
l

This formula has been generalized in the fo]lowmg manner. Let X;,..., Xy be
noncommuting indeterminates and let exp Z = exp Xy exp Xz - -exp Xn. Then

Z = log (exp X; exp X3 - exp Xn)
=Xi+ X+ o+ Xn+z ZX“X

z<g

The generalized BACH formula is
Theorem 4.1 (Strichartz[25]).

) N N
z=Y > ((~l)m*1 [m (D0 i) Hﬂﬁf:ﬂ?j#))

m=1 pjx i=1 k=1

« (adXp)Pm - (adX )P e (adXN)P - (ad Xy )P

where (ad X)(Y) =[ X,Y] = XY —YX, (ad X) = X and the sum over pjj is
taken over all p;x > 0 such that Zi\;l pik >0 for3=1,2,...,m
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The next theorem explains the convergence.
Theorem 4.2 (Chacon, Fomenko[3]). Let H, denote the homogeneous part of Z
in Xq,...,Xn of degree n:
Z=H +Hy+Hs+--- (4)
Then H, satisfies the recursion relation

(n+1) Hopy = %’ﬂ")(o) + 2(7;1_7—), (é—[ H,, T"7(0)]

+ Z kZp z [Hmza{ 1[ H’m2P7T(n_r)(0)} ] ] )

p>1,2p<r mi >0,my+-+mop=r
(2p)ks, = Bapbeing Bernoulli’s number, and
TOH0) = ad s, (Xiv-1)

UN—i—1

N—1 &k o
3D ID D DA et

=2 a1=0a2=0 ay-—;=0

k—on -y QN i ] =N aN—; ) {k)
x ad g tad o™ cad YT ad_y (Xio1) + Xy

where

k
(k)_d . 0 k‘ZI
’N"Et_kXN—{XN k=0

Moreovere, there ezisists & > 0 such that if || X]] = 3.8 |Xi] < &, the series (4)
converges absolutely uniformly in N.

By taking the limit as N — oo of the above formulas, Strichartz and Chacon,
Fomenko obtained the formulas for the Lie integral. Here we employ the following
formula by Chacon and Fomenko.

Theorem 4.3 (Chacon, Fomenko[3]). Assume K(t),0 < ¢t < 1, is Riemann
integrable. Then Taylor expansion of L f; AK(s)ds in X at A =0

1
L / AK(s)ds = M, [t] + N H[t] + - -
0

is convergent. Here Hi[t] = f; K (s)ds, and H,[t] is uniquely defined by the recursion

formula
— (1
(nt1)Hogr =Tn+ Y (§[HT,TH_T] +3 kY [Huoloo gy Tuss] '--]]),
r=1 p>1 mi >0
2p<r mi+etmep=r
forn > 1, and

Ty = / . / duy -+ dugpq[- - [K(uy), K(ug)], -, K(ur)], K(ugr)] (B>1).

This formula is nothing but the logarithm of the transport map 7., {(w) in (3) §3.
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5 Solving non linear ordinary differential equa-
tions by Lie integral

Counsider the ordinary differential equation

dz
% = f(1,7) = () )
where f; 1s a family of germs of holomorphic functions on C at 0 with f;(0) = 0.
Let hi(z) denote the solution with the initial value hqo(z5) = 2 at ¢ = 0. Clearly
hi is a holomorphic diffeomorphism in z;. We call h; a time-t transport map .
Differentiating the equation

hi g=gohy
we obtain J J
;l_t_h: 9= E{(go hi) = Xi g (h) = B} X: g,
X: = f:0,, from which

d * *®
'J’t"ht = h’i Xt
and ‘
d x—1 w1
Zi?ht =—-X; h;7", (6)

which is a linear differential equation in the space of linear operator on the germs
of holomorphic functions. In order to reduce the equation to a finite dimensional
space and assure the existence of solution, we consider truncated those operators to
the space of degree n polynomials, which we denote with the suffix [n]. Applying
truncation to the both sides of the equation (6), we obtain the linear ordinary

equation
d #\1ni — n *\in|y—
(R = X (R}

By Thorem 4.3 the Lie integral of —X,;[n] is well defined for small ¢. By definition
' i
(he") "1 = exp L/ —Xt{n}dt
, 0
and by the definition of the transpose map in §3
-0
(R = exp L / ~xMar, (7)
i
This is seen also by the relation
¢ 0
L/ —XMdt+ L / ~XMar =0,
0 Ji

which follows from Chen’s formula (3) in §3 and also directly from the formula in
Theorem 4.3. The equation (7) holds for all n, however, the domain of definition for
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t may shrink to 0 as n tends to infinity. It is easily seen by the formula in Theorem
4.3 that if f; dose not have linear term, the Lie integral exists for all ¢, hence the
Lie integral of — X, also exists for all t. Although the Lie integral of —X; may not
be well defined in general case, the relation (7) holds as long as the Lie integral

0
L / ~xM gt
3

is analytically prolonged.

6 Relations in the Lie algebra x(C)

First we consider relations of two holomorphic vector fields ad,,bd,. So let w =
ad,dz + b8,dy be a closed holomorphic 1-form on the real zy-plane valued in x(C),
and consider the equation

V:  8,dz=w = ad,dz + bd,dy. (8)

The —w may be regarded as a connection form of a x{C)-valued connection on the
trivial (C,0)-bundle over the zy-plane, which is defined by the (horizontal) plane
field _

H:dz=adr+bdy.
On a path v(¢) = (z(¢), y(t)) this restricts to an ordinary differential equaiton

dz dz dy

FAkrTRRrTS )
The time-t transport map (h; in the previous section) of the equation corresponds
to the parallel transport of the connection along v. When v is a segment of length
1 in z-direction H, (9) becomes dz/dt = a, and the time-1 transport map hy = f
is the time-1 map of @ 0,. When v is a segment of length 1 in y-direction V, (9)
becomes dz/dt = b, and the time-1 transport map hy = g is the time-1 map of b ,.
More in general let v be a composite of some of these segments of length %, say,

y=H"oV™oH™oV™o-...0 H" 10 V"

with |ni] 4 - - -+ |nep] = k, where H™, V™ denote the m-composites of H,V respec-
tively. Then the time-k transport map Ay i1s a-word of f, g of length &

g(nzﬁ) o] f(n2p—1) 0 g(”ZP—Z) fe} f(nZP—‘?*) O-+-0 g(nz) fe} f(nl)'
On the other hand we have the formula

hy = L[O—(éf+bdy)dt
AR A P TR YA

In the later sections we shall compute, instead, the Lie integral

Fodr dy
L, = LYY
y L/O (adt+bdt)di
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for simplicity of notations, of which the exponential is the transpose
I/V,Y* (f, g) o f(nl) o g(nz) o f(ns) o g(““) 0--r0 f(ngp_l) o g(mp)

If the Lie integral vanishes, the relation W,»(f,¢g) = 1 holds. Clearly this rela-
tion holds whenever v is closed and f,g commute, in other words, a,b are linearly
dependent.

Next let us consider relations of many diffeomorphisms. Recall that all germs of
diffeomorphisms in Diff(C,0) are formal conjugate with a time-1 map of holomorphic
flow. In other words, all germs of holomorphic diffeornorphisms are time-1 maps of
some formal vector fields: time-t map is not neccessarily convergent for a general
t. So we may seek relations of time-1 maps of formal vetor fields. To a word
of those time-1 maps there corresponds a piecewise linear Feynman diagram ~ in
the space of formal vector fields ¥(C,0) without constant terms: To a time-1 map
exp ad, of ad, € X(C,0) corresponds a segment which is a parallel translation of
the vector ad, € %(C,0). By the view point of differential geometry we are led to a
generalization the notion of word of diffeomorphisms, i.e., piecewise smooth curves
in ¥(C).

Now consider the tautological x(C)-valued 1-form on x(C)

V: 0, dz=w.

This defines a ¥(C)-valued connection on the trivial (C,0)-bundle over x(C). The
holonomy map of the bundle along the piecewise linear path v is nothing but the
word of time-1 maps of formal vector fields corresponding to each segment of the
path. All results on the Lie integral remain valid for piecewise smooth loop « in the
Lie algebra.

7  Taylor coefficients of Lie integral of
w = a10,dz; + a90,d Ty
Let us calculate some coefficients of Taylor expansion of Lie integral L fﬁ w for formal
vector fields without linear term
a0, = ((1122”2 + a2’ + - -) 0,
a20, = (a2’ + anz’ +-+) 8.

Let
A = [a“} , and  K; = a2y + 022 -

g
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Assume v is closed. Then H; =T = Lw =0. Let K(¢) = a; 0, % o +a2(72%3-. Then

T, = / / duy -+ dugsa [ [ K (u2), K ()], - K (ug)], K ()]

0<up 1 < <ug <l

— Z [ o Hala;n 0282}7 Gy, az]: Tyl az]

14,2, ip—1 52
dm’ik—l del dl‘l 03332
X s dul"'dUk+1 .-
duk+1 du3 dU,Z dul
OLuppr SorSur <l

= Z [ o [[alaz, azaz], ailag], e ,a,-k_l (L] /dxék_l e d$52d1-‘,'1 [dﬂ:l, dfbg]
Y

1<41 82,15 -1 <2

First assume Zu 213 # 0. Then Taylor expansion of H,, H3 and [ are respec-
22 Ug3
tively
1
= 300, 0u0] [ [dos, o
2 v
— _{ 1z 13 249 Q14 iz5+(3 @12 a15 a3 G14 )36%_“.}
Q23 a12 Q14 G2z Ggs Q23 Q24
// P dﬂ?l A dﬂ?z 25
Since Ty = 0,
1 1 1
H, = §T2 + 6fTo,Hz} = §T2
1
= g{ alaz’ sz ‘11 /dl’l dmi,dmg] ”:01182”(120 Cifza d332 d.’Ll,dCL'2 }
¥
21 a
— [ :3—- ] a:z Z: ( /d’ﬂl dl’l,dxg] + 0,22 dil'g d()ﬁ‘;, dl‘Q )
12 Q14
-+ {*—-2 ( /d(El dll,dCEQ +G22/d$2 dﬂ:l,dl'g)
G2z G24
11 a1 ag3 6
~ 3 a1z [ dzi[dzy, dza] + ags | dzo[dzy, dzy) +---18,
Qg2 Qo3 y p
poad { -2 diz @ 14 I{le’l A d:IJQZS
@22 D
+ (—6 12 // p Kydzy A dzy — @13 //p]&’gdwl/\d:c2>26+---}8z,
oo D ao3 D
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Since Ty = H; = 0,
1 4 1 1
1 g[HhTz] + k_,z'[Hla [Hi, To]] + g[Hs,To} = ZT3
1

= _Z Z [[[alaﬁ,az&] cz“&] 6112 /dmzidlzg[d$lad$2]

1
H = -Tz+

1<i1,i2<2
1
= _Z{ 6 312 s Z auazzfdatﬂda:w[dwl,dmz] 26_;_...}32
2 a23 1<11 22<2

- {( //plxzdzz/\dmg)z—}— }a

Thus Lie integral L f,yw =H; + Hy; + Hs + - -- 1s in the form

33
Gzz Q23

H1 = 0
H, = (xz*+*%++2%+%"4.--)0,
Hy = (x2° + %25 + %27 4 ---) 0,
H, = (25 + %27 +--4) 8,
+) :
Lfjw = (k2?52 425+ 2" +--4) G,

From above calculation we see that the Taylor coefficients of L fww are as follows.

The coefficient of 24 = — | Y12 %13 // p dzy A dzy = // pdK; ANdK; .
Q22 23 D
The coefficient of 2° = 2| 2 13 // p Kodzy A dzg = 2// p KodKy; ANdK5
Q22 G23 D D

mod // p dzy A dz,.
/f Ag - 3]{2 d&f]_ A dCUz
aa2
= // P (1(3 — 3[1’22)611{2 A dﬁr;g,
D
mod // p dri A dwg,// p Kydzy A dzs.
f/ I\Q - KgKg)dll A dlg

= 4// — IX2I§3)dI§2 A d.[&g,

mod // p dzy A dwg,/f p Kadzy N dza,
D D

[ P (Kg - 3[{22)65331 A d.ﬁl?g .
JD

The coefficient of 2% =

13
Qa3

Q12 4y

The coefficient of 27 = 4 3
dgg 493
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In general, the coefficient of z*(k > 8) is

| k— 5)(k — 4)(k —
f/ P ((k 5K, - B . N 3)1(22) Ky A dKs
D
— (k - 7)p I{k_;gd,[(g A d]\’;g

mod // p dzy A d:vz,// p Kydzy A dza, Ri(Ag, As, . . ., Ak—y)
b D
1
D 6 o~

Q22 023
mod // p (K5 —3K3)dzy A dz,
D

El} d[(z A d]fk_gg

8 Relations in two formal diffeomorphisms with
trivial linear terms

Here we consider time-1 maps of two vector fields

c’flaz = (GHZ + a1222 + (;1,1323 + .- ) az

a0, = (az1z + ag922% + ag2® + - -} 0,

and their relations such that the diagram v and its dual 4* are closed. From now
on we write ; = z and z, = y for simplicity. All those diagrams are confined in
the 2-plane in the Lie algebra {(R) spanned by @10, and a30,. Thus we suppose the
plane is the zy-plane: z,y axes correspond respectively to a,0, and a0, directions,
and we draw the diagram « in the zy-plane.

By the results in the previous section, the condition

zterm = 0, z°-term =0, 25-term =0, z'-term = 0

is equivalent to the following condition

[fpp dKy AdKs =0, i)
fpo (’K3 - 31{%) dK2 A d[{3 = O, (111)

fpo (]{g - I{?K:;) Cle A d[(s =0 (IV)

The Areq of v C R? is

Area(y) = // pdrAdy .
D
The moment of v C R? is

G('y):(//};pxdm/\dy,[/l)pydr/\dy).

The above second condition is equivalent that the vector A, be orthogonal to the
moment G(v).



159

Theorem 8.1. Let vy be a closed Feynman diagram with Area(y) = 0 and G(v) # 0.
Assume Ay = 0, Ay # 0, l 41z %3 { # 0 and the 3-jets of ay, ay satisfy the above 4

Qg2 Q23
conditions. Then the equation Lf,yw = 0 admits formal solutions ay,ay. The f-th
order term of ay,as can be arbitrary. If the y-moment fpo y dx A dy is not 0,
then the Taylor coefficients of a; of order > 5 can be arbitrary, and if the z-moment
fpo x dz A dy is not 0, then the Taylor coefficients of ay of order > 5 can be

arbitrary.
Proof. Under the above 4 conditions, the z* term has the coefficient

o = //Dp { _ -é-(k—.B)(k—fﬁ)(k—?)Ka + f;(m )

+ Rk (A27 ety Ak—-4)
for k > 8. The first integration part is the inner product

6
,0)).G(7)X/f pdl{z/\d.ﬁrk_g,
D

((k""5)(k—‘6)a13, (k"—5)(k*‘6)023)—(a—

22
where o stands for the inner product of the plane vectors. One can solve the linear
equation O = 0 in terms of Kj.3, if the inner product is not zero. Since A, is
orthogonal to G(v) by the second condition, we may replace G(v) with (—ass, a12).
Then the inner product becomes

Gip G313
G G323

:z:l} dKy ANdK_3

a12 13
ag2 23

iz 13
gz 23

((k—5)(k—6)+6)

which is not 0 for all £ > 8. The second statment is easily seen as A, is orthogonal
to G(v) and we may add AK,, X € C to Ky_3 without changing ffD p dKs NdK_5
for k=28,9,.... O

Theorem 8.2. Let v C R? be a closed Feynman diagram. Assume Area(y) =0 and
G(y) # 0. Let Ay = (a2, a22) # 0 be orthogonal to G(v), and assume

//pﬁ’f dx A dy # 0.
D

Then the relation W (f,g) = 1 admits formal non commuting solulions f,g such
that f'(0) = ¢'(0) = 1,(f"(0),9"(0)) = Ay. And the 4-jet of f,g can be arbitrary.
If the y-moment [{, py dz Ady is not 0, then the Taylor coeficients of f. of order
> 5 can be arbitrary, and if the z-moment ffD p z dz Ady is not 0, then the Taylor
coeficients of g of order > 5 can be arbitrary.

Proof. Assume ayq,ag; = 0. By the results in the previous section, the holonomy
map along the diagram ~* has a Taylor expansion starting with the z*-term.
The second condition tells the vector A; = (ayg, @2:) is orthogonal to the moment.

So we may suppose

K2:a12$+d22y:'"//P&/dm/\dy«"5+//:09«'dfc/\d3/y
JJp D
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Conditions (iii), (iv) are equivalent to the linear equation

ffppxdendy JopydeAdy A = 3 [fpp K3 dzAdy
[pp Kax dz ANdy  [f,p Kyy dzAdy 2T S pp K3 de Ady

The determinant of the above 2 x 2-matrix is ffD p K% dz A dy, which is not 0 by
the assumption. Thus the above linear equation has a solution Az = (a1s, azs). By
the assumption [/, p Ky? dz A dy # 0-and Condition (iii), we see A3 is not parallel
to A hence f,g do not commute. The solution Az depends on Ay: for AA; the
solution is A245;. The second part of the theorem follows from the same argument
as in the proof of the previous theorem.

O

9 Relations in two formal diffeomorphisms with
non trivial linear terms

Next Jet us consider the case A; # 0. From now on we assume 7 is a composite of
horizontal or vertical segments of length 1 in the plane. Similarly to §7, we obtain

the followings.
The coefficient of 2% in the Taylor expansion of L f7 w=y o His

L2 - /E_R'l d[(g.
¥
Thus the coefficient of z* in the Taylor expansion of L fww is
Ly = / e 4K
vy

In general, the coefficient of z*(k > 4) in the Taylor expansion of L fww is of the
form ) '
Lk = / 6_(k_l)KldK;c + Rk<AI, Ag, ey Ak—l)*

Y
In the case of non zero linear terms, the nature of the remainder term R} is com-
pletely unkown. By the convergence theorem by Chacon and Fomenko in §4, each
coefficient is well defined and analytic for sufficiently small y. But the infimum of
the radii of convergence might be 0.
The first term

Ly = /6“(1"_1)1{1de = —(k 1) // p e” VK R A dK
y D

1 1
/ dz / dy e~(E=DEi(=3)
4] 0

is of the form

o) B i) et

(i.7)eZ?

a1 Gk
Qo1 Gok
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where p (2,7) denotes the winding number of v on the domain {i < z < i+ 1,5 <
y < j + 1}. The summation part is a polynomial in e~ -1 g=(k~Dazt [t the
hights of 4 in z and y directions be X and Y respectively. Then the degree of L in
e 1 is X — 1 and the degree in 7% is ¥ — 1. Thus the equation

Lg =0 N Lg =0
has at most 2(X + Y — 2)%solutions counting multiplicity by Bézout theorem if
11 1z # 0, “n G13 # 0 and L., Lz do not have a common factor. The
Q21 Q2 @21 Q23

following theo

Theorem 9.1. Let f; = expa;0, for i

Q11 @13
Q21 da3 %
then f1, f2 pla
identically 0.

On the oth

holds for one

successively fg
are all well de

rem is a simple corollary of the above argument.

Q12
(¢3))]

a1y
G21

# 0 or

1,2 and assume

0, and ™11, e™%2t gdmit no algebraic relation with integer coefficients
4 b 2

y no relation with closed v* such that the winding number p(y*) is not

rer hand, if
3 pli,g) e EIRED 0 k=34,
5f the solutions of [y = Ls = 0, then we can solve the equation

/e"’("“l)]ﬁdﬁ’k + Bip(Ay, .oy Aper) =0

5

r k£ = 4,5,... and obtain a relation, provided the remainder terms

fined.
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