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Relations of formal diffeomorphisms

Isao Nakai (中居 功), Kana Yanai(柳井 佳奈) *

Abstract

Germs of holomorphic diffeomorphisms of $\mathbb{C}$ , 0 are formally conjugated to
time-l maps of some holomorphic vector fields on C. Thus a word of germs of
holomorphic diffeomorphisms is a composite of some time-l maps of formal
vector fields. We give a formula for the Taylor coefficients of the time-l trans-
port maps of formal ordinary differential equations. We apply the formula
to the differential equations corresponding to words of diffeomorphisms. We
investigate the various results on the existence of relations of formal diffeomor-
phisms. The complete account of these results will appear in a forthcoming
paper[22],

1 Diff(C, 0) and associated First Order ODE

Let Diff(C, 0) denote the group of germs of holomorphic diffeomorphisms of $\mathbb{C}$ fixing
$0\in \mathbb{C}$ , and Diff(C, 0) the group of formal diffeomorphisms without constant term.
The classification problem of subgroups of Diff(C, 0) arises naturally in the study
of foliations as well as differential equations. A relation of length $l$ of $n$ elements in
Diff(C, 0) is a word

$W(f_{1}, \ldots, f_{n})=f_{i_{1}}^{(\pm 1)}\mathrm{o}\cdots \mathrm{o}f_{i_{l}}^{(\pm 1)}=1$ ,

where $W$ is not a priori 1 and $f^{(m)}$ denotes the $m$-hotd iteration of $f$ . A subgroup
$G$ is free if there exists no relation of elements of $G$ . A word, or a set of words, of $n$

diffeomorphisms $W(f_{1}, \ldots , f_{n})$ is holomorphically (respectively formally) conjugated
to a $W(g_{1}, \ldots, g_{n})$ (the same word with substituted letters) if there exists a holo-
morphic (resp. formal) difTeomorphism $\phi\in$ Diff(C, 0) such that $f_{i}=\phi^{(-1)}\mathrm{o}g_{i}\mathrm{o}\phi$

for $\mathrm{i}=1$ , $\ldots$ , $n$ . If two germs $f$, $g$ are tangent to identity (i.e. the linear terms $=1$ )
and commutative : $f\mathrm{o}g=g\mathrm{o}f$ , then $f,g$ are simultaneously formally conjugated to
a time-l and a iime-t maps of an equal holomorphic vector field $\chi$ for some $s$ , $t$ %C.

It is also known that a holomorphic vector field is holomorphically conjugated to
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either a linear vector field or a $z^{p+1}/$ ( $1-$ rnzp) $\partial z$ for some $m\in \mathbb{C}$ and positive
integer $p$ invariant under the linear action of $\mathbb{Z}_{p}$ ( $m$ being the residue of $\chi.$ ) Thus
the commutativity relation is formally embedded to either the linear subgroup C’
or the commutative subgroup $\mathbb{C}\cross$ $\mathbb{Z}_{p}\subset$ Diff(C, 0) generated by the complex flow
of the $\chi$ and the linear action. When$\mathrm{n}$ the residue $m=0$ , the linear conjugate of $\chi$

by an arbitrary $\lambda\in \mathbb{C}^{*}$ remains in the form of its constant multiple. Therefore the
linear conjugate action of C’ and the complex one parameter group of $\chi$ generate
a semidirect product $\mathbb{C}\mathrm{x}$ $\mathbb{C}^{*}$ , which is nothing but the affine transformation group
Aff(C). This group contains also the various other relarions. We call the relations
formally conjugated to those relations elementary relations.

In the geometric study of a codimension 1 foliation $\mathcal{F}$ , the question whether
there exist non elementary relations or not in Diff(C, 0) has been at crucial issue.
When $\mathcal{F}$ is deformed leaving a leaf $L$ stable, relations in the holonomy group Hol(L)
of $L$ may be violated or some extra relations may appear for some values of the
deformation parameter. While, there exist only countably many words. Thus it
follow $\mathrm{s}$ if there exists no relation stable under deformation, the holonomy group is
free for a generic parameter. Ilyashenko and Pyartli [18] showed that for a generic
rational differential equation

$dy/dx=P(x,y)/Q(x, y)$

on $\mathbb{C}P^{2}$ , the holonomy group Hol(L$\infty$ ) of $L_{\varpi}$ is free by showing that the set of fc-jets
of diffeomorphisms with a relation is smaller than the set of $k$-jets of the generators
of holomnomy when $k$ tends to $\infty$ . This implies that no relation in Hol(L $\infty$ ) is
stable under deformation, thus Hol(L$\infty$ ) is free for a generic differential equation.
This argument relies on the dimension estimate and basically on the countableness
of the set of relations, and does not tell any concrete free groups or non free groups
with non elementary relations. Our argument can tell a precise asymptotics of the
codimension of the set of $k$-jets of diffeomorphisms with a relation.

Cerveau [4] showed the diffeomorphisms $f(z)=z/1+z$ and $g(z)=z/\sqrt{1+z^{2}}$

play no relations using the result by Cohen [8] that asserts $z+1$ and $z^{2}$ generate a
free group. On the other hand Ecalle [12] constructed many relations in the formal
group Diff(C, 0) of the various types such as

$\{f, \{f, \{f, g\}\}\}^{(p)}0\{g_{7}\{g, f\}\}^{(q)}=1$ ,

$\{f,g\}$ being the commutator $f^{(-\mathrm{I})}\mathrm{o}g^{(-1)}\mathrm{o}f\mathrm{o}g$, by solving $f,g$ in formal power
series. In the paper [12] it is stated that some of those $f$, $g$ are not convergent
but summable in a certain manner, and also predicted that non convergence is a
mathematical law.

In \S 8,9 of this paper we calculate the Taylor coefficients of words of diffeomor-
phisms in terms of their phase diagram (Feynman diagram, see the next section for
the definition). As an immediate consequence we show that, if initial jets of lower
order of diffeomorphisms satisfy a certain algebraic condition on the various mo-
ments of a Feynman diagram, we can choose their subsequent infinite jets properly
so that the relation associated to the diagram holds. Our method is in the same vein
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as the classical h.rlearlization of $(\mathbb{C}, 0)$-diffeomorphisms due to Poincare and SiegeL
The difference in contrast in our cas $\mathrm{e}$ is that the denominators behave tamely in a
polynomial growth while the numerators might tend to infinity rapidly.

By simple observation we see that a relation $W(f_{1}, f_{2})=1$ implies a series of
algebraic relations $P_{1}=1$ , $P_{k}$. $=0$ , $k=2$ , 3, $\ldots$ of Taylor coefficients $P_{k}$ of the $z^{k}$

terms of $W(f_{1}(z)\}f_{2}(z))$ , which are polynomials of Taylor coefficients of $f_{1}$ , $f_{2}$ of
order equal or lower than $\mathrm{i}$ . So clearly if these coefficients of $f$ , $g$ are all algebraically
independent, it would follow some special conditions on the word $W$ . In \S 7 it is
shown that $P_{k}$ are presented in terms of integration of 1-forms on the Feynman
diagram of $\gamma$ . So the above conditions imply that the winding number of $\gamma=0$ at
each point.

It would be worth to note that a generic finite subset of a non solve le Lie group
generate a free subgroup [15]. The group of truncated diffeomorphisms $\mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}^{k}.(\mathbb{C}, 0)$ of
degree $k$ is solvable for all $k$ , while Diff(C, 0) is non solvable. We define a subgroup
$G^{k}\subset \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}^{k}(\mathbb{C}, 0)$ is stably free if any subgroup $G\subset$ Diff(C, 0) with k-jet $G^{k}$ i $\mathrm{s}$ free.
The existen ce or non existence of stably free subgroup is not clear [23].

To end this section we give some words on the calculation of Taylor coefficients
of a word $W(f_{1}$ , . . . , $f_{n})$ . Assume $f_{i}=\exp a_{i}\partial_{z}$ with a holom orphic vector field $a_{i}\partial_{z}$

and consider the piecewise holomorphic non linear ordinary differential equation

$\frac{dz}{dt}=$ A$t(z)$ $=$ $\pm a_{i}(z)$ if $t\in[\mathrm{i}-1, \mathrm{i})$ , for $z\in \mathbb{C}_{7}0\leq t\leq l$

where the right hand side is determined corresponding to the i-th letter and its sign
in the word $W(f_{1}, \ldots, \mathrm{f}\mathrm{k})$ from the right hand side. It is easily seen the word $W$

is the time-l rransport map $h_{l}$ (or the product integral[9|| ) of the equation. To solve
the equation we employ the classic method due to Picard, Volterra, Dyson, Chen
and Chacon and Chacon, Fomenko. The logarithm of $h_{n}$ as a diffeomorphism is a
formal vector field of one valuable such that its time-l map is $h_{n}$ . Such a vector
field is uniquely determined by analytic continuation of the branch $\log$ id $=0$ , and
called the Lie integral (of the left hand side of the above differential equation).

Now we suppose the right hand side as a piecewise smooth function of $t$ valued
in the Lie algebra of formal vector fields $\mathrm{x}(\mathrm{C}, 0)$ . The Fey$n$ nman diagram $\gamma$ and its
dual diagram $\gamma^{*}$ associated to the above $W$ are the integral curves in $\hat{\chi}(\mathbb{C}, 0)$ with
the initial point 0 and the velocities $X_{t}=\lambda_{t}\partial_{z}$ and $X_{l-t}=\lambda_{l-t}\partial_{z}$ respectively. One
of our results is that for a closed 7 the Taylor coefficient $L_{k}$ of $z^{k}$ in the Taylor
expansion of Lie integral is expressed 1n terms of integration on of 1-forms $\omega_{k}$ on $\gamma^{*}$

for some small $k=2,3$ , $\ldots$ :

$\log h_{n}=$ $( \int_{\gamma^{*}}\omega_{2}z^{2}+\int_{\gamma^{*}},\omega_{3}z^{3}+\cdots )\partial_{z}$ ,

in other words,
$h_{n}=\exp$ $( \int_{\gamma^{*}}\omega_{2}z^{2}+\int_{\gamma^{*}}\omega_{3}z^{3}+\cdots)\partial_{\tau,\sim}$, .

And also in the case where the velocity vectors of $\gamma$ and $\gamma^{*}$ have all trivial linear
parts, in other words, $\gamma,\gamma^{*}$ are confined in the subspace of formal diffeomorphisms
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without linear terms, all the coefficients are ’7 holomorphic functions” of 7. Although,
the coefficints of higher order terms may not be written in integration of 1-forms on
$\gamma$ , since even in the case where $W=$ $(\mathrm{x}\mathrm{i}, f_{2})$ and the winding num ber of 7 is 0
everywhere on the plane spanned by $a_{1}\partial_{Z7}\mathrm{a}2\mathrm{d}\mathrm{z}$ , the relation $W=1$ does not hold in
general for highly non commutative $f_{1}$ , $f_{2}$ . We investigate some applications of the
formula in the later sections of the note.

2 Some examples

Before we define Feynman diagram, let us consider the real $n$ dimensional sub space
$L_{n}$ in the Lie algebra $\hat{\chi}(\mathbb{R})$ spanned by $n$ formal vector fields aidZ) $\mathrm{i}=1,2$ , . . . , $n$ . We
suppose $L_{n}$ is the $n$ dimensional vector space $\mathbb{R}^{n}$ whose coordinate is $(x_{1}, x_{2}, \ldots, x_{n})$ :
$x_{i}$ axes correspond respectively to $a_{\iota}\partial_{z}$ direction, $\mathrm{i}=1,2$ , $\ldots$ , $n$ . From now on, we
identify $L_{n}$ with $\mathbb{R}^{n}$ .

Let $H_{i}$ be a segment of length 1 in $x_{i}$ direction, $\mathrm{i}=1,2$ , $\ldots$ , $n$ , in $\mathbb{R}^{n}$ . Feynman
diagram $\gamma=\gamma(t)$ , $0\leq t\leq l$ , is then defined by a composite of some of these
segments, say,

$\gamma=H_{1}^{k_{1}}\mathrm{o}H_{2}^{k_{2}}\mathrm{o}\cdots \mathrm{o}H_{n}^{k_{n}}o\cdots \mathrm{o}H_{1}^{k_{np-(n-1)}}\mathrm{o}H_{2}^{k_{n\mathrm{p}-(n-2)}}\mathrm{o}$ . . . $\mathrm{o}H_{n}^{k_{n\mathrm{p}}}$

with $\gamma(0)=0$ and $|k_{1}|+|k_{2}|+\cdots+|k_{np}|=l$ , where $H_{i}^{k_{m}}$ denotes the $f_{\vee m}^{4}$-times
composites of $H_{i}$ . And let us define the dual diagram $\gamma^{*}=\gamma^{*}(t)_{7}0\leq t\leq l$ , by the
transpose

$\gamma^{*}=H_{n}^{k_{n\mathrm{p}}}\mathrm{o}H_{n-1}^{k_{np-1}}\mathrm{o}\cdots \mathrm{o}H_{1}^{k_{n\mathrm{p}-(n-1)}}\mathrm{o}\cdots \mathrm{o}H_{n}^{k_{n}}\mathrm{o}H_{n-1}^{k_{n-1}}\mathrm{o}\cdots \mathrm{o}H_{1}^{k_{1}}$

with $\gamma^{*}(0)=0$ for 7. We get then clearly $(\gamma^{*})^{*}=\gamma$ for a diagram $\gamma$ .
Figure 1 shows examples of closed Feynman diagram and its dual diagram in

the real $(x_{1}, x_{2})$ plane $\mathbb{R}^{2}$ . Let $H$ and $V$ be segments of length 1 in $x_{1}$ -direction and
$x_{2}$-direction respectively, then 7;’ $\mathrm{i}=1$ , 2, 3, in Figure 1 are as follows.

$\gamma_{1}$ $=$ $H\mathrm{o}V^{2}\mathrm{o}H^{-1}\mathrm{o}V^{-2}\mathrm{o}H^{-2}\circ V\mathrm{o}H^{2}\mathrm{o}V^{-1}$ ,
$\gamma_{2}$ $=$ $H\mathrm{o}V\mathrm{o}H^{-2}\mathrm{o}V^{-1}\mathrm{o}H^{-1}\mathrm{o}V\circ H^{2}\mathrm{o}V^{-1}\mathrm{o}H^{-1}\circ V\circ H^{2}\circ V\circ H^{-1}\mathrm{o}V^{-2}$ ,
$\gamma_{3}$ $=$ $H\mathrm{o}V\circ H^{-1}\mathrm{o}V^{-}$’ $\mathrm{o}V\mathrm{o}H\mathrm{o}V\mathrm{o}H^{-1}\mathrm{o}V^{-2}$

$\mathrm{o}H^{-1}\mathrm{o}V\mathrm{o}H\mathrm{o}V^{-1}\mathrm{o}H^{-2}\mathrm{o}V\circ H\circ V^{-1}\circ H^{-1}\circ H^{2}$ .

And $\gamma_{i^{*}}$ , $\mathrm{i}=1,2,3$ , are as follows.

$\gamma_{1}^{*}$ $=$ $V^{-1}\mathrm{o}H^{2}\mathrm{o}V\mathrm{o}H^{-2}\mathrm{o}V^{-2}\mathrm{o}H^{-1}\circ V^{2}\mathrm{o}H$ ,
$\gamma_{2}^{*}$ $=$ $V^{-2}\circ H^{-1}\mathrm{o}V\circ H^{2}\circ V\circ H^{-1}\circ V^{-1}\circ H^{2}\mathrm{o}V\mathrm{o}H^{-1}\mathrm{o}V^{-1}\circ H^{-2}\mathrm{o}V\circ H_{\mathrm{J}}$

$\gamma_{3}^{*}$ $=$ $H^{2}\mathrm{o}H^{-1}\mathrm{o}V^{-1}\mathrm{o}H\mathrm{o}V\mathrm{o}H^{-2}\circ V^{-1}\circ H\mathrm{o}V$

$\circ H^{-1}\circ V^{-2}\mathrm{o}H^{-1}\mathrm{o}V\mathrm{o}H\mathrm{o}V$ $\mathrm{o}V^{-1}\mathrm{o}H^{-1}\circ V\mathrm{o}H$ .

$\gamma_{i^{*}}$ is obtained by rotating $\gamma_{i}180$ degrees with respect to the origin and reversing
the orientation of it for $\mathrm{i}=1,2,3$ . For the domain$\mathrm{n}D$ enclosed by a closed diagram
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$\gamma$ in $\mathbb{R}^{2}$ , i.e. $\gamma=\partial D$ , let denote the domain enclosed by the dual diagram $\gamma^{*}$ by $D^{*}$ ,
i.e. $\gamma^{*}=\partial D^{*}$ . We get $(D$ ’$)’=D$ then, for $(\gamma^{*})^{*}=\gamma$ .

Figure 1: closed Feynman diagram and its dual diagram

The integer written in the domain enclosed by Feynman diagram or its dual
diagram in Figure 1 is its winding number. We denote the winding number of a
closed diagram $\gamma$ in $\mathbb{R}^{2}$ at a point $(x_{1}, x_{2})$ by $\rho(\gamma)(x_{1}, x_{2})$ . We get then $\rho(\gamma)(x_{1},x_{2})=$

$-\rho(\gamma^{*})(-x_{1_{?}}-x_{2})$ for a closed diagram $\gamma$ in $\mathbb{R}^{2}$ .
Now let us show some examples of relations of time-l maps $f=\exp a_{1}\partial_{z}$ of $a_{1}\partial_{z}$

and $g=\exp a_{2}\partial_{z}$ of $a_{2}\partial_{z}$ in Diff(C, 0) for two formal vector fields

$a_{1}\partial_{z}$ $=$ $(a_{11}z+a_{12}z^{2}+a_{13}z^{3}+\cdots)\partial_{z}$ ,
$a_{2}\partial_{z}$ $=$ $(a_{21}z+a_{22}z^{2}+a_{23}z^{3}+\cdot 1. )\partial_{z}$

$\in \mathrm{x}(\mathrm{C}, 0)$ on C. We see that there exist relations of $f$ and $g$ in Diff(C, 0) with



150

$(a_{11}, a_{21})=(0, 0)$ , $(a_{12}, a_{22})=(-1,3)$ and $(a_{13}, a_{23})=( \frac{63}{\mathrm{s}}, \frac{107}{\mathrm{s}})$ , as follows

$W_{\gamma 1}(f,g)$ $=$ $\{g, f^{\langle-2)}\}\circ\{g^{(2)}, f\}=1$ ,
$W_{\gamma 2}(f, g)$ $=$ $g^{\{-1)}\mathrm{o}\{g, f\}\circ\{f^{(-1)},g^{(-1)}\}\mathrm{o}fo\{f^{\langle-1\rangle},g^{(-1)}\}of^{(-2)}\mathrm{o}g\mathrm{o}f=1$,
$\mathrm{P}V_{\gamma \mathrm{s}}(f,g)$ $=$ $f^{\{\mathrm{z}\rangle}\mathrm{o}\{g, f\}^{(-1)}\mathrm{o}f^{(-1)}\circ\{g, f\}^{(-1)}$

$\mathrm{o}f^{(-1\rangle}\mathrm{o}g^{(-1)}\circ\{g, f\}\mathrm{o}g\circ\{g, f\}=1$

by Theorem 8.2, since the Area of $\gamma_{i^{*}}=\iint_{D;^{\mathrm{L}}}\rho dx_{1}$ A $dx_{2}$ is 0 and the mo-
menl of $\gamma_{i^{*}}=$ ( $\iint_{D_{i^{\mathrm{Y}}}}\rho x_{1}dx_{1}$ A $dx_{2},$ $\iint_{D_{i^{t}}}\rho x_{2}dx_{1}\Lambda dx_{2}$ ) is $(3, 1)$ $\neq(0,0)$ and
$\iint_{D_{\mathrm{t}}^{*}}\rho(a_{12}x_{1}+a_{22}x_{2})^{2}dx_{1}$ A $dx_{2}=16\neq 0$ for the vector $(a_{12}, \mathrm{a}23)=$

.
(-1, 3) or-

thogonal to the moment of $\gamma_{i}$

’ for $\mathrm{i}=1,2,3$ . $A_{3}=(a_{13}, a_{23})$ is determined by the
solution of the simultaneous linear equations in the proof of Theorem 8.2. It is noted
that the pairs $(f,g)$ of formal diffeomorphism satisfying the above three relations
can be different from each other since $(a_{1k}, \mathrm{a}23)$ $k\geq 4$ , can be arbitrary.

Although we get the relations in the form of $W_{\gamma}(f,g)=1$ for a closed Feyn-
man diagram $\gamma$ in the above by computing the Area and the moment of $\gamma^{*}$ , and
$\iint_{D^{*}}\rho I\zeta_{2}^{2}dx_{1}\Lambda dx_{2}=\iint_{D^{4}}\rho(a_{12}x_{1}+a_{22}x_{2})^{2}dx_{1}$ A $dx_{2}$ for a vector $(a_{12}, \mathrm{a}23)$ or-
thogonal to the moment of 7, we consider relations in the form of $W_{\gamma^{\mathrm{r}}}(f_{2}g)=1$

for a dual closed diagram 7 in \S 6-9 of the note for simplicity of notations of Lie
integral.

It seems that there exist many different relations in $\overline{\mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}}(\mathbb{C}, 0)$ . We will treat the
existence of relations of many diffeomorphisms in Diff(C, 0) in a forthcoming paper
[22]. We investigate the existence of relations of two formal diffeomorphisms in this
note.

3 Transport formula by Picard iteration and Dyson
exponential

Let us consider the linear differential equation

$\frac{du(t)}{dt}=\mathrm{u}(\mathrm{t})\mathrm{u}(\mathrm{t})$ , $u\in \mathbb{C}^{\mathcal{U}}$ , $t\in \mathbb{R}$ ,

where $K(t)$ is a $n><n$ matrix valued analytic function of $t$ . For small $t$ , the solution
can be uniquely presented as

$\mathrm{u}(\mathrm{t})=\exp Z(t)u(0)$ .

The $Z(t)$ is called the Lie element or Lie integral of $I\iota^{\nearrow}(t)$ and denoted

$\mathrm{Z}(\mathrm{t})=L\int_{0}^{t}I\acute{t}(t)dt$ .

Now let us follow the begining of the paper of Dyson [11]. In the manner of numerical
method of differential equations, the matrix $\exp Z(t)$ , $0<t$ , can be approximated
by a composite (or product)

$\exp(K(\xi_{N})\triangle_{N})\cdot\cdots\cdot\exp(I\acute{\iota}(\xi_{2})\triangle_{2})\cdot\exp(K(\xi_{1})\triangle_{1})$ (1)
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with adivision A : $0=t_{0}<t_{1}<\cdots<t_{N}=t$ of the interval $[0, t]$ , $\triangle_{i}=t_{i}-t_{i-1}$ and
$t_{i-1}\leq\xi_{i}\leq t_{i}$ . And as $\max\triangle_{i}$ tends to 0, this is convergent to $\exp Z(t)$ . The limit
is called the product integral [9]. One may substitute the above finite composite by

$(1+f_{t_{N-1}}^{t}K(t)dt)(1+ \oint_{t_{N-2}}^{t_{N-1}}I\acute{\iota}(t)dt)\cdots(1+\int_{0}^{t_{1}}K(t)dt)$ .

Simply by expanding the product we see this is equal, modulo $\max\triangle_{i}$ , to

$1+ \oint_{0}^{t}$ If(t) $dt+ \oint_{0\leq t_{1}\leq t_{2}\leq t}$ If $(t_{2})I \acute{\mathrm{t}}(t_{1})dt_{1}dt_{2}+\int_{0\leq t_{1}\leq t_{2}\leq\leq t_{3}\leq t}K(t_{3})K(t_{2})I\iota^{r}(t_{1})dt_{1}dt_{2}dt_{3}+\cdot$ .

It is an elementary exercise to verify the first and the second products are conver-
gent to the third formula. This presentation is called Volterra Expansion or Dyson
exponential, and in Chen’s notation, presented as

$T_{\gamma}( \omega)=1+\oint_{\gamma}\omega$ $+f_{\gamma}\omega\omega+l$ $\omega\omega\omega+\cdots$ (2)

where $\omega=K(t)dt$ and $\gamma$ denotes the path from 0 to $\mathrm{t}$ . It is easily seen by the above
argument that

$T_{\gamma_{1}0\gamma 2}(\omega)=T_{\gamma 2}(\omega)T_{\gamma[perp]}(\omega)$ (3)

where $\gamma_{1}0\gamma_{2}$ stands for the composite of $\gamma_{1}$ and $\gamma_{2}$ with $7\mathrm{i}(1)=\gamma_{2}(0)$ . This is
nothing but the formula due to Chen $[7, 16]$ .

4 Lie integral for linear differential equations
To expand the composite in (1), we may apply the so-called BACH formula (Campbell-
$\mathrm{B}\mathrm{a}\mathrm{k}^{P}\mathrm{e}\mathrm{r}$-Hausdorff-Dynkin formula) for $\nu$ $\rangle\langle$ $1/$ matrices $X$ , $Y$ as follows.

$\log(\exp X\exp Y)=X+Y+\frac{1}{2}\lfloor\lceil X$ , $Y]+ \frac{1}{12}[X, [X, Y]]+,\frac{1}{1,[perp] 2}[Y, [Y, X]]+\cdots$

This formula has been generalized in the following manner. Let $X_{1}$ , $\ldots$ , $X_{N}$ be
noncommuting indeterminates and let $\exp Z=\exp X_{1}\exp \mathrm{A}_{2}^{\Gamma}\cdots\exp X_{N}$. Then

$Z=\log(\exp X_{1}\exp X_{2}\cdots \exp X_{N})$

$=X_{1}+X_{2}+ \cdots+X_{N}+\frac{1}{2}\sum_{i<j}[X_{i}, X_{\mathrm{i}}]+\cdots$

The generalized BACH formula is

Theorem 4.1 (Strichartz[25]).

$Z= \sum_{m=1}^{\infty}\sum_{p_{\mathit{3}^{k}}}((-1)^{m-1}/m(\sum_{j=1}^{N}\sum_{k=1}^{N}p_{jk})\Pi_{j=1}^{m}\mathrm{I}\mathrm{I}_{k=1}^{N}(p_{\mathrm{J}^{k}}!))$

$\mathrm{x}$ $(\mathrm{a}\mathrm{d}X_{N})^{p_{mN}}\cdots(\mathrm{a}\mathrm{d}X_{1})^{p_{ml}}$ $\cdots$ $\langle \mathrm{a}\mathrm{d}X_{N})^{p_{1N}}\cdots(\mathrm{a}\mathrm{d}X_{1})^{p11}$

where (ad $X$ ) $(Y)=$ $[X, Y]$ $=XY-YX$ , (ad X) $=X$ and the sum over $pjk$ is
taken over all $pjk$ $>0$ such that $\sum_{k=1}^{N}pjk>0$ for $j=1,2$ , $\ldots$ , $m$ .
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The next theorem explains the convergence.

Theorem 4.2 (Chacon, Fomenko [3] ). Let $H_{n}$ denote the homogeneous part of $Z$

in $X_{1}$ , $\ldots$ , $X_{N}$ of degree $n$ :

$Z=H_{1}+H_{2}+H_{3}+\cdots$ (4)

Then $H_{n}$ satisfies the recursion relation

$(n+1)H_{n+1}=$ $\frac{1}{n!}T^{\langle n)}(0)+\sum_{\tau=1}^{n}\frac{1}{(n-r)!}(\frac{1}{2}[H_{r}, T^{(n-r)}(0)]$

$+ \mathrm{I}_{\leq r}^{k_{2p}}\sum_{m_{\mathrm{g}}p\geq>0,m_{1}+\cdots+m_{2p}=r}[ H_{m_{1}}, [\cdots, [H_{m_{2p}}, T^{(n-r)}(0)]\cdots ]])$

$(2p)!k_{2p}=B_{2p}be\mathrm{i}ng$ Bernoulli ’s number, and

$T^{(k)}(0)=\mathrm{a}\mathrm{d}_{-X_{N}}^{k}(X_{N-1})$

$+\mathrm{I}$ I $\mathrm{I}$ . . .
$\alpha_{N}$

$\sum C_{\alpha_{1}}^{k}C_{\alpha_{2}}^{\alpha_{1}}-i-1$

,

. . .
$C_{\alpha_{0}N-i}^{\alpha_{N-\mathrm{i}-\iota}}$

$i=2\alpha_{1}=0\alpha_{2}=0$ $\alpha_{N-i}=0$

$\mathrm{x}$ $\mathrm{a}\mathrm{d}_{-X_{N}}^{k-\alpha_{1}}\mathrm{a}\mathrm{d}_{-X_{N-1}}^{\alpha_{1}-\alpha_{2}}$ . . . $\mathrm{a}\mathrm{d}_{-x_{+1}}^{\alpha_{N-\mathrm{a}-1}-\alpha_{N-i}},\mathrm{a}\mathrm{d}_{-X_{i}}^{\alpha_{N-i}}(X_{i-1})+X_{N}^{(k)}$

whe re
$X_{N}^{(k)}= \frac{d^{k}}{dt^{k}}X_{N}=\{$

0 $k\geq 1$

$X_{N}$ $k=0$ .
Moreovere, there exisists $\delta$ $>0$ such that if $||X||= \sum_{i=1}^{N}|X_{I}|<\mathit{5}_{f}$ the series (4)
converges absolutely uniformly in $N$.

By taking the limit as $Narrow$ oo of the above formulas, Strichartz and Chacon,
Fomenko obtained the formulas for the Lie integral. Here we employ the following
formula by Chacon and Fomenko.

Theorem 4.3 (Chacon, Fomenko[3]). Assume $I\backslash ^{r}(t)$ , 0 $\leq t\leq$ 1, is Riemann
integrable. Then Taylor expansion of $L \int_{0}^{t}XK\{s$ ) ds in A at $\lambda=0$

$L \int_{0}^{t}$ AK$(s)ds=\lambda H_{1}[t]+\lambda^{2}H_{2}[t]+\cdots$

is convergent. Here $H_{1}[t]=I_{0}^{t}$ If(s) $ds_{J}$ and $H_{n}[t]$ is uniquely defined by the recursion
formula

$(n+1)H_{n+1}=T_{n}+ \sum_{r=1}^{n}(\frac{1}{2}[H_{r}, T_{n-r}]+2p\leq r\sum_{p\geq 1}k_{2p}$
$m_{1}+ \cdots+m_{2p}=r\sum_{m_{i}>0},[H_{m_{1}},$

$[[\ldots, [H_{m_{2p}}, T_{n-r}]\cdots]])$ ,

for $n\geq 1$ , and

$T_{k}= \oint_{0\leq u_{k+1}\leq}\cdots..\int_{\leq u_{1}\leq t}du_{1}\cdots$ $du_{k+1}[\cdots[[K(u_{1}), K(u_{2})], \ldots, K(u_{k})], I\iota^{\nearrow}(u_{k+1})]$
$(k\geq 1)$ .

This formula 1s nothing but the logarithm of the transport map $T_{\gamma}(\omega)$ in (3) \S 3.
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5 Solving non linear ordinary differential equa-
tions by Lie integral

Consider the ordinary differential equation

$\frac{dz}{dt}=f(t, z)=f_{t}(z)$ (5)

where $f_{t}$ is a family of germs of holomorphic functions on $\mathbb{C}$ at 0 with $f_{t}(0)=0$ .
Let $h_{t}(z_{0})$ denote the solution with the initial value $\mathrm{h}\mathrm{o}(\mathrm{z}\mathrm{o})=z_{0}$ at $t=0$ . Clearly
$h_{t}$ is a holomorphic diffeomorphism in $z_{0}$ . We call $h_{t}$ a time-t rransport map .
Differentiating the equation

$h_{t}^{*}g=g\mathrm{o}h_{t}$

we obtain
$\frac{d}{dt}h_{t}^{*}g=\frac{d}{dt}\langle g\circ h_{t})=X_{t}g(\mathrm{h}\mathrm{t})=h_{t}^{*}X_{t}g$ ,

$X_{t}=f_{t}\partial_{z}$ , from which
$\frac{d}{dt}h_{t}^{*}=h_{t}^{*}X_{l}$

an $\mathrm{d}$

$\frac{d}{dt}h_{t}^{*-1}=-X_{t}h_{t}^{*-1}$ , (6)

which is a linear differential equation in the space of linear operator on the germs
of holomorphic functions. In order to reduce the equation to a finite dimensional
space and assure the existence of solution, we consider truncated those operators to
the space of degree $n$ polynomials, which we denote with the suffix $[n]$ . Applying
truncation to the both sides of the equation (6), we obtain the linear ordinary
equation

$\frac{d}{dt}\{(h_{t}^{*})^{[n]}\}^{-1}=-X_{t}^{[n]}\{(h_{t}^{*})^{[n]}\}^{-1}$ .

By Thorem 4.3 the Lie integral of $-X_{t}^{[n]}$ is well defined for small $t$ . By definition

$(h_{t}^{*})^{-1[n]}=\exp Ll^{t}-X_{t}^{[n]}dt$

and by the definition of the transpose map in \S 3

$(h_{t}^{*})^{[n]}=\exp LJ_{t}^{0}.-X_{t}^{[n]}dt$ . (7)

This is seen also by the relation

$L \int_{0}^{t}-X_{t}^{[n]}dt+L\int_{t}^{0}-X_{t}^{[n]}dt=0$ ,

which follow $\mathrm{s}$ from Chen’s formula (3) in Q3 and also directly from the formula in
Theorem 4.3. The equation (7) holds for all $n$ , however, the domain of definition for
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$t$ may shrink to 0 as $n$ tends to infinity. It is easily seen by the formula in Theorem
4.3 that if $f_{t}$ dose not have linear term, the Lie integral exists for all $t$ , hence the
Lie integral of $-X_{t}$ also exists for all $t$ . Although the Lie integral of $-X_{t}$ may not
be well defined in general case, the relation (7) holds as long as the Lie integral

$L \int^{0}-X_{\mathrm{f}}^{[n]}dt$

is analytically prolonged.

6 Relations in the Lie algebra $\hat{\chi}(\mathbb{C})$

First we consider relations of two holomorphic vector fields $a\partial_{z}$ , $b\partial_{z}$ . So let $\omega=$

adzdx $+$ bdzdy be a closed holomorphic 1-form on the real $xy$-plane valued in $\chi(\mathbb{C})$ ,
and consider the equation

$\nabla$ : $\partial_{z}dz=\omega=adzdx+bdzdy$ . (8)

The -cp may be regarded as a connection form of a $\chi(\mathbb{C})$ -valued connection on the
trivial $(\mathbb{C}, 0)$-bundle over the $xy$-plane, which is defined by the (horizontal) plane
field

$H$ : $dz=adx+bdy$ .

On a path $\mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{C}),$ $y(t))$ this restricts to an ordinary differential equaiton

$\frac{dz}{dt}=a\frac{dx}{dt}+b\frac{dy}{dt}$. (9)

The time-i transport map ( $h_{t}$ in the previous section) of the equation corresponds
to the parallel transport of the connection along 7. When 7 is a segment of length
1 in $x$-direction $H$ , (9) becomes $dz/dt=a$ , and the time-i transport map $h_{1}=f$

is the time-l map of $a\partial_{z}$ . When $\gamma$ is a segment of length 1 in $y$-direction $V,$ $(9)$

becomes $dz/dt=b$ , and the time-i transport map $h_{1}=g$ is the time-l map of $b\partial_{z}$ .
More in general let $\gamma$ be a composite of some of these segments of length $k$ , say,

$\gamma=H^{n_{1}}\circ V^{n_{2}}\mathrm{o}H^{n_{3}}\circ V^{n_{4}}\mathrm{o}$ . . . $\mathrm{o}H^{n_{2p-1}}\circ V^{n_{2\mathrm{p}}}$

with $|n_{1}|+\cdots+|n_{2p}|=k$ , where $H^{m}$ , $V^{m}$ denote the $m$-composites of $H$, $V$ respec-
tively. Then the time-A transport map $h_{k}$ is a word of $f$ , $g$ of length A

$g^{(n_{2p})}\mathrm{o}f^{(n_{2p-1})}\mathrm{o}g^{(n_{2p-2})}\mathrm{o}f^{(n_{2\mathrm{p}-3})}\mathrm{o}$ . . . $\mathrm{o}g^{(n_{2})}\mathrm{o}f^{(n_{1})}$ .

On the other hand we have the formula

$h_{t}^{*}= \exp L\int^{0}-(a\frac{dx}{dt}+b\frac{d\tau/}{dt})dt$ .

In the later sections we shall compute, instead, the Lie integral

$L_{\gamma}=L \int_{0}^{t}(a\frac{dx}{dt}+b\frac{dy}{dt})dt$
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for simplicity of notations, of which the exponential is the transpose

$\mathrm{V}V_{\gamma^{*}}$
$(f, g)=f^{(n_{1})}\mathrm{o}g^{(n_{\sim})}’ \mathrm{o}f^{(n_{3})}\mathrm{o}g^{(n_{4})}\mathrm{o}$ . . . $\mathrm{o}f^{(n_{2p-1}\rangle}\mathrm{o}g^{(n_{2p})}$

If the Lie integral vanishes, the relation $W_{\gamma^{*}}(f, g)=1$ holds. Clearly this rela-
tion holds whenever $\gamma$ is closed and $f,g$ commu $\mathrm{t}\mathrm{e}$ , in other words, $a$ , $b$ are linearly
dependent.

Next let us consider relations of many diffeomorphisms. Recall that all germs of
diffeomorphisms in Diff(C, 0) are formal conjugate with a time 1 map of holomorphic
flow. In other words, all germs of holomorphic diffeomorphisms are time-l maps of
some formal vector fields: thne-t map is not neccessarily convergent for a general
$t$ . So we may seek relations of time-l maps of formal vetor fields. To a word
of those time-l maps there corresponds a piecewise linear Feynman diagram $\gamma$ in
the space of formal vector fields %(C, 0) without constant terms: To a time-l map
$\exp a\partial_{z}$ of $a\partial_{z}\in\hat{\chi}(\mathbb{C}, 0)$ corresponds a segment which is a parallel translation of
the vector $a\partial_{z}\in \mathrm{x}(\mathrm{C}, 0)$ . By the view point of differential geometry we are led to a
generalization the notion of word of diffeomorphisms, i.e., piecewise smooth curves
in $\hat{\chi}(\mathbb{C})$ .

Now consider the tautological $\hat{\chi}(\mathbb{C})$-valued 1-form on $\mathrm{x}(\mathrm{C})$

$\nabla$ : $\partial_{z}dz=\omega$ .

This defines a $\chi\wedge(\mathbb{C})$-valued connection on the trivial $(\mathrm{C}, 0)$ bundle over $\mathrm{x}(\mathrm{C})$ . The
holonomy map of the bundle along the piecewise linear path $\gamma$ is nothing but the
word of time 1 maps of formal vector fields corresponding to each segment of the
path. All results on the Lie integral remain valid for piecewise smooth loop $\gamma$ in tle
Lie algebra.

7 Taylor coefficients of Lie integral of
$\omega$ $=a_{1}\partial_{z}dx_{1}+a_{2}\partial_{z}dx_{2}$

Let us calculate some coefficients of Taylor expansion of Lie integral $L \int_{\gamma}\omega$ for formal
vector fields without linear term

$a_{1}\partial_{z}=(a_{12}z^{2}+a_{13}z^{3}+\cdots)\partial_{z}$ ,
$a_{2}\partial_{z}=(a_{22}z^{2}+a_{23}z^{3}+\cdots)\partial_{z}$ .

Let
$A_{i}=\ovalbox{\tt\small REJECT}_{a_{2i}}^{a_{1i}}\ovalbox{\tt\small REJECT}$ and $I\iota_{i}^{\nearrow}=a_{1i}x_{1}+a_{2i}x_{2}$ .
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Assume 7 is closed. Then $H_{1}=T_{0}= \int_{\gamma}\omega=0$ . Let $I \iota^{\nearrow}(t)=a_{1}\partial_{z}\frac{dx_{1}}{dt}+a_{2}\partial_{z}\frac{dx_{2}}{dt}$. Then

$T_{k}$. $=$
$0\leq u_{k+1}\leq \mathit{1}\cdots.\zeta_{1}\leq 1du_{1}\cdots du_{k+1}[\cdots[[I\mathrm{f}(u_{1}), I\mathrm{f}(u_{2})], \ldots, I\mathrm{f}(u_{k})], K(u_{k+1})]$

$=$ -

$\sum_{1\leq i_{1},i_{2},\cdots i_{k-1}\leq 2}[\cdots[[a_{1}\partial_{\mathrm{A}},, a_{2}\partial_{z}], a_{i_{1}}\partial_{\sim},], \cdots, a_{i_{k-\mathrm{I}}}\partial_{z}]$

$\rangle\langle$

$\oint_{0\leq u_{k+1}\leq}\cdots\ldots\int_{\leq u_{1}\leq 1}du_{1}\cdots du_{k+1}\frac{dx_{i_{\mathrm{A}-1}}}{du_{k+1}}.\ldots\frac{dx_{i_{1}}}{du_{3}}\ovalbox{\tt\small REJECT}\frac{dx_{1}}{du_{2}}$
, $\frac{dx_{2}}{du_{1}}]$

$=$
$-\mathrm{I}_{k-1}[\cdots[[a_{1}\partial_{z}, a_{2}\partial_{z}],$$a_{i_{\mathrm{I}}}\partial_{\sim},]1\leq i_{1},i\leq 2’\ldots,$

$a_{i_{k-1}} \partial_{z}]\int_{\gamma}dx_{i_{k-1}}.\cdots dx_{i_{2}}dx_{i_{1}}[dx_{1}, dx_{2}]$.

First assume $|\begin{array}{ll}a_{12} a_{13}a_{22} a_{23}\end{array}|\neq 0$ . Then Taylor expansion of $H_{2}$ , $H_{3}$ and $If_{4}$ are respec-

tively

$H_{2}$ $=$ $\frac{1}{2}T_{1}$

$=$ $- \frac{1}{2}[a_{1}\partial_{z}, a_{2}\partial_{z}]\oint_{\gamma}[dx_{1}, dx_{2}]$

$=$ $-\{$ $|\begin{array}{ll}a_{\mathrm{l}2} a_{13}a_{22} a_{23}\end{array}|$ $z^{4}+2$ $|\begin{array}{ll}a_{12} a_{14}a_{12} a_{14}\end{array}|$ $z^{5}+$ (3 $|\begin{array}{ll}a_{12} a_{15}a_{22} a_{25}\end{array}|+|\begin{array}{ll}a_{13} a_{14}a_{23} a_{24}\end{array}|$ ) $z^{6}+\cdots\}$

$\rangle\zeta\oint\int_{D}\rho dx_{1}\Lambda dx_{2}\partial_{z}$ ,

Since $T_{0}=0$ ,

$H_{3}$ $=$ $\frac{1}{3}T_{2}$ $+ \frac{1}{6}[T_{0}, H_{2}]]=\frac{1}{3}T_{2}$

$=$ $- \frac{1}{3}\{[[a_{1}\partial_{z}, a_{2}.\partial_{z}],$ $a_{1} \partial_{z}]\int dx_{1}[dx_{1}, dx_{2}]+[[a_{1}\partial_{z}, a_{2}\partial_{z}]$, $a_{2} \partial_{z}]\oint_{\gamma}dx_{2}[dx_{1}, dx_{2}]\}$

$=$ $[- \frac{2}{3}$ $|\begin{array}{ll}a_{12} a_{13}a_{22} a_{23}\end{array}|$ $(a_{12} \int dx_{1}[dx_{1}, dx_{2}]+a_{22}\int_{\gamma}.dx_{2}[dx_{1}, dx_{2}])z^{5}$

$+$ $\{-2$ $|\begin{array}{ll}a_{12} a_{14}a_{22} a_{24}\end{array}|$ $(a_{12} \int_{\gamma}dx_{1}[dx_{1}, dx_{2}]+a_{22}\oint_{\gamma}dx_{2}[dx_{1}, dx_{2}])$

$\frac{1}{3}$
$|\begin{array}{ll}a_{\mathrm{l}2} a_{13}a_{22} a_{23}\end{array}|$ ($a_{13} \int_{\gamma}dx_{1}[dx_{1}, dx_{2}]+a_{23}\oint_{\gamma}dx_{2}[dx_{1}, dx_{2}]$) $\}z^{6}+\cdots]\partial_{z}$

$=$ $\{-2$ $|\begin{array}{ll}a_{12} a_{13}a_{22} a_{23}\end{array}|$ $\mathit{1}\mathit{1}_{D}^{\rho I\iota_{2}^{r}dx_{1}}$

.
A $dx_{2}z^{5}$

$+$ (-6 $|\begin{array}{ll}a_{\mathrm{I}2} a_{14}a_{22} a_{24}\end{array}|$ $\int.\oint D\rho K_{2}dx_{1}$ A $dx_{2}-|\begin{array}{ll}a_{12} a_{13}a_{22} a_{23}\end{array}|$ $’\prime_{D}\rho l\mathrm{i}_{3}’dx_{1}\Lambda dx_{2})\sim \mathrm{z}^{6}+\cdots$ $\}\partial_{z}$ ,



157

Since $T_{0}=H_{1}=0$ ,

$H_{4}$ $=$ $\frac{1}{4}T_{3}+\frac{1}{8}[H_{1}, T_{2}]+\frac{4}{k_{2}},.[H_{1}, [H_{1}, T_{0}]]+\frac{1}{\mathrm{S}}[H_{3}, T_{0}]=\frac{1}{4}T_{3}$

$=$
$- \frac{1}{4}\sum_{1\leq i_{1},i_{\underline{9}}\leq 2}[[[a_{1}\partial_{z}, a_{2}\partial_{\sim},], a_{x_{1}}\partial_{\sim},], a_{i_{2}}\partial_{z}]\mathrm{x}$

$\oint_{\gamma}dx_{i_{1}}dx_{i_{2}}[dx_{1}, dx_{2}]$

$=$ $- \frac{1}{4}\{$ ($6|a_{22}a_{12}$ $a_{23}a_{13}| \sum_{1\leq i_{1},i_{2}\leq 2}a_{i_{1}}a_{i_{2}}\int dx_{i_{1}}dx_{i_{2}}[dx_{1}, dx_{2}]$) $z^{6}+\cdots\}\partial_{z}$

$=$ $\{$ (-3 $|\begin{array}{ll}a_{\mathrm{l}2} a_{13}a_{22} a_{23}\end{array}|$ $\int\oint_{D}\rho I_{\acute{1}2^{2}}dx_{1}$ A $dx_{2}$) $z^{6}$ % $\cdots\}\partial_{z}$ ,

Thus Lie integral $L \int_{\gamma}\omega$ $=H_{1}+H_{2}+H_{3}+\cdots$ is in the form

$H_{1}$ $=$ 0
$H_{2}$ $=$ $(*z^{4}+*z^{5}+*z^{6}+*z^{7}+\cdots)\partial_{z}$

$H_{4}H_{3}$ $==$ $(*z^{5}+*z^{6}+*z_{7}^{7}+\cdots)\partial_{z}(*z^{6}+*\sim 7+\cdots)\partial_{z}$

$. \cdot.\frac{+)}{L\int_{\gamma}\omega=(*z^{4}+*z^{5}+*z^{6}+*z^{7}+\cdots)\partial_{z}}$

From above calculation we see that the Taylor coefficients of $L \int_{\gamma}\omega$ are as follows.

The coefficient of $z^{4}=-|\begin{array}{ll}a_{12} a_{13}a_{22} a_{23}\end{array}|$ $’\prime_{D}\rho dx_{1}\Lambda dx_{2}=$ $- \int\oint_{D}\rho dI$$\acute{t}_{2}\mathrm{A}dK_{3}$ .

The coefficient of $z^{5}=2$ $|\begin{array}{ll}a_{12} a_{13}a_{22} a_{23}\end{array}|$ $\oint\oint_{D}$

.
$\rho If_{2}dx_{1}$ A $dx_{2}=2 \iint_{D}\rho \mathrm{A}_{2}^{\nearrow}dI\acute{\iota}_{2}\Lambda dI\iota_{3}^{\nearrow}$ ,

mod $\iint_{D}\rho dx_{1}$ A dx2

The coefficient of $z^{6}=|\begin{array}{ll}a_{12} a_{13}a_{22} a_{23}\end{array}|$ $I \int_{D}\rho(K_{3}-3I\mathrm{f}_{2}^{2})dx_{1}$ A $dx_{2}$

$= \oint\int_{D}\rho(I\mathrm{f}_{3}-3I\acute{\mathrm{c}}_{2}^{2})dK_{2}$ A $d\mathrm{A}_{3)}^{r}$

mod $f \int_{D}\rho dx_{1}$ A $dx_{2}$ , $\int\prime_{D}\rho \mathrm{A}_{2}^{r}dx_{1}$ A $dx_{2}$ .

The coefficient of $z^{7}=4$ $|\begin{array}{ll}a_{12} a_{\mathrm{l}3}a_{22} a_{23}\end{array}|$ $\iint_{D}\rho(I\acute{i}_{2}^{3}-K_{2}K_{3})dx_{1}\Lambda dx_{2}$

$=4 \oint\int_{D}$

.
$\rho(K_{2}^{3}-I\acute{\mathrm{i}}_{2}I\zeta_{3})dI\acute{\iota}_{2}$ A $dI\iota_{3}^{\Gamma}$ ,

mod $\int f_{D}\rho dx_{1}\Lambda dx_{2}$ , $\oint\int_{D}\rho \mathrm{A}_{2}’dx_{1}\Lambda dx_{2}$ ,

$\oint_{\acute{D}}.\rho(K_{3}-3I4_{2}^{2})dx_{1}$ A $dx_{2}$ .
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In general, the coefficient of $z^{k}(k\geq 8)$ is

$\int\int_{D}\rho((k-5)^{2}\mathrm{A}_{3}^{\Gamma}-\frac{(k^{\wedge}-5)(k-4)(k^{\pi}-3)}{2}I\acute{\iota}_{2}^{2})d\Lambda_{2}^{\nearrow}\Lambda dI\mathrm{t}_{k^{\pi}-3}^{\Gamma}$

$-(k-7)\rho I\mathrm{i}_{k-3}^{r}dIt_{2}^{r}$ A $d\mathrm{A}_{3}’$
.

$\mathrm{m}\mathrm{o}\mathrm{d}$
$\oint\int_{D}\rho dx_{1}\Lambda \mathrm{d}\mathrm{z}$ , $\iint_{D}\rho If_{2}dx_{1}$ A $\mathrm{d}\mathrm{z}$ , $R_{k}$ ( $A_{2}$ , A3, . . . ’

$A_{k-4}$ )

$= \oint\oint_{D}\rho\{-\frac{1}{6}(k-5)(k-6)(k-7)I\mathrm{f}_{3}+\frac{1}{a_{22}}(k-7)$ $|\begin{array}{ll}a_{12} a_{13}a_{22} a_{23}\end{array}|$ $x_{1}\}dI\mathrm{f}_{2}\Lambda dI\iota_{k-3}^{f}$

mod $\int\int_{D}\rho(I\mathrm{i}_{3}^{r}-3K_{2}^{2})dx_{1}$ A $dx_{2}$

8 Relations in two formal diffeomorphisms with
trivial linear terms

Here we consider time-l maps of two vector fields

$a_{1}\partial_{z}=$ $(a_{11}z+a_{12}z^{2}+a_{13}z^{3}+\cdots )\partial_{z}$

$a_{2}\partial_{z}=(a_{21}z+a_{22}z^{2}+a_{23}z^{3}+\cdots)\partial_{z}$ ,

and their relations such that the diagram $\gamma$ and its dual $\gamma^{*}$ are closed. From now
on we write $x_{1}=x$ and $x_{2}=y$ for simplicity. All those diagrams are confined in
the 2-plane in the Lie algebra $\hat{\chi}(\mathbb{R})$ spanned by $a_{1}\partial_{\sim}$, and $\mathrm{a}2\mathrm{d}\mathrm{z}$ . Thus we suppose the
plane is the $xy$-plane: $x$ , $y$ axes correspond respectively to $a_{1}\partial_{z}$ and $a_{2}\partial_{\vee}\sim$ directions,
and we draw the diagram $\gamma$ in the xy-plane.

By the results in the previous section, the condition

$z^{4}$-term $=0$ , $z^{5}$-term $=0$ , $z^{6}$-term $=0$ , $z^{7}$-term $=0$

is equivalent to the following condition

$\{$

$\iint_{D}\rho dI\acute{\iota}_{2}$ A $d\mathrm{A}_{3}’=0$ , (i)
$\iint_{D}\rho \mathrm{A}_{2}^{r}dIt_{\mathit{2}}^{r}$ A $dK_{3}=0$ , (ii)
$\iint_{D}\rho$ $(\mathrm{K}_{3}-3I\acute{\iota}_{2}^{2})dK_{2}$ A $d\mathrm{A}_{3}^{\nearrow}=0$ , (iii)
$\iint_{D}\rho(I\mathrm{f}_{2}^{3}-I\mathrm{f}_{2}K_{3})dK_{2}\Lambda dIf_{3}$ $=0$ (iv)

The $Area$ of $\gamma\subset \mathbb{R}^{2}$ is

Area(\gamma ) $=f \int_{D}\rho dx$ A $dy$ .

The moment of $\gamma\subset \mathbb{R}^{2}$ is

$G( \gamma)=(\int.\int D\rho xdx\Lambda dy, \int\int_{D}\rho ydx\Lambda dy)$ .

The above second condition is equivalent that the vector $A_{2}$ be orthogonal to the
moment $G(\gamma)$ .
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Theorem 8.1, Let $\gamma$ be a closed Feynman diagram with Area(y) $=0$ and $G(\gamma)\neq 0$ .

Assume $A_{1}=0$ , $A_{2}\neq 0$ , $|\begin{array}{ll}a_{12} c\iota_{13}a_{22} a_{23}\end{array}|\neq 0$ and the 3-jets of $a_{1}$ , $a_{2}$ satisfy the above 4
conditions. Then the equation $L \int_{\gamma}\omega$ $=0$ admits formal solutions $a_{1}$ , $a_{2}$ . The 4-th
order term of $a_{1}$ , $a_{2}$ can be arbitrary. If the $y$ -moment $\iint_{D}\rho ydx$ A $dy$ is not 0,
then the Taylor coefficients of $a_{1}$ of order $\geq 5$

. can be arbitrary, and if the x-mom.ent
$\iint_{D}\rho xdx$ A $dy$ is not 0, then the Taylor coefficients of $a_{2}$ of order $\geq 5$ can be
arbitrary.

Proof. Under the above 4 conditions, the $z^{k}$ term has the coefficient

$C_{k}= \int\oint_{D}p\{-\frac{1}{6}(k-5)(k-6)(k-7)I\mathrm{f}_{3}+\frac{1}{a_{22}}(k-7)$ $|\begin{array}{ll}a_{12} a_{13}a_{22} a_{23}\end{array}|$ $x_{1}\}dI\mathrm{t}_{2}^{f}$ A $dI\acute{\mathrm{i}}_{k-3}$

$+R_{k}(A_{2}, \ldots, A_{k-4})$

for $k\geq \mathrm{S}$ . The first integration part is the inner product

$((k-5)(k-6)a_{13}, (k-5)(k-6)a_{23})-( \frac{6}{a_{22}} |\begin{array}{ll}a_{12} a_{13}a_{22} a_{23}\end{array}|, 0))$ $\bullet$ $G( \gamma)\cross\oint\oint_{D}\rho dI\acute{\mathrm{e}}_{2}\Lambda dI\mathrm{t}_{\acute{k}-3_{\grave{J}}}$

where . stands for the inner product of the plane vectors. One can solve the linear
equation $C_{k}=0$ in terms of $Ii_{k-3}^{r}$ , if the inner product is not zero. Since $A_{2}$ is
orthogonal to $G(\gamma)$ by the second condition, we may replace $G(\gamma)$ with $(-a_{22}, \mathrm{a}22)$ .
Then the inner product becomes

$((k-5)(k-6)+6)$ $|\begin{array}{ll}a_{12} a_{13}a_{22} a_{23}\end{array}|$

which is not 0 for all $k\geq 8$ . The second statment is easily seen as $A_{2}$ is orthogonal
to $\mathrm{G}(7)$ and we may add ) $I\acute{\iota}_{2}$ , $\lambda\in \mathbb{C}$ to $I\mathrm{i}_{k-3}^{r}$ without changing $\iint_{D}\rho$ $d\mathrm{A}_{2}$ A $dIf_{k-3}$

for $k=8,9$ , $\ldots$ . $\square$

Theorem 8.2. Let $\gamma\subset \mathbb{R}^{2}$ be a closed Feynman diagram. Assume Area(7) $=0$ and
$G(\gamma)\neq 0$ . Let $A_{2}=(a_{12}, a_{22})\neq 0$ be orthogonal to $G(\gamma)$ , and assume

$\int\oint_{D}\rho$ $I\mathrm{f}_{2}^{2}dx$ A $dy\neq 0$ .

Then the relation $\mathrm{V}V_{\gamma^{*}}(f,g)$ $=1$ admits formal non commuting solutions $f,g$ such
that $f’(0)=g’(0)=3$ , $(f’(0),g’(0))=A_{2}$ . And the 4-jet of $f,g$ can be arbitrary..

If the $y$ -rnoment $\iint_{D}\rho ydx$ A $dy$ is not 0, then the Taylor coeficients of $f$, of order
$\geq 5$ can be arbitrary, and if the $x$ -rnoment $\iint_{D}\rho xdx$ A $dy$ is not 0, then the Taylor

coeficients of $g$ of order $\geq 5$ can be arbitra $ry$ .

Proof. Assume $a_{11}$ , $a_{21}=0$ . By the results in the previous section, the holonomy
map along the diagram $\gamma^{*}$. has a Taylor expansion starting with the $z^{4}$ term

The second condition tells the vector $A_{2}=(a_{12}, a_{22})$ is orthogonal to the moment.
So we may suppose

$I \mathrm{t}_{2}^{r}=a_{12}x+a_{22}y=-.\int\oint_{D}pyd^{r}x\Lambda dyx+\int.\int D\rho xdx\Lambda dyy$
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Conditions (iii), (iv) are equivalent to the linear equation

$\ovalbox{\tt\small REJECT}$ $I^{\int\int_{\int_{D}}\rho xdx\Lambda dy}D\rho I\mathrm{f}_{2}xd_{X}\Lambda dy$
$\int\int\rho I\mathrm{f}_{2}?Jd_{X}\Lambda dy\int\int_{D}D\rho ydx\Lambda dy\ovalbox{\tt\small REJECT}$ A$3=[3 \int_{\int}\int_{D}\rho I\mathrm{f}_{2}^{2}\int_{D}\rho I\mathrm{f}_{2}^{3}dx\Lambda dydx\Lambda dy\ovalbox{\tt\small REJECT}$

The determinant of the above 2 $:\prec 2$-matrix is $\iint_{D}\rho K_{2}^{2}dx$ A $dy$ , which is not 0 by
the assumption. Thus the above linear equation has a solution A$3=(a_{13}, a_{23})$ . By
the assumption $\iint_{D}\rho \mathrm{A}_{2^{2}}^{r}dx$ A $dy\neq 0$ and Condition (iii), we see A3 is not parallel
to $A_{2}$ hence $f,g$ do not commute. The solution A3 depends on $A_{2}$ : for $\lambda A_{2}$ the
solution is $\lambda^{2}A_{3}$ . The second part of the theorem follows from the same argument
as in the proof of the previous theorem.

$\square$

9 Relations in two formal difFeomorphisms with
non trivial linear terms

Next let us consider the case $A_{1}\neq 0$ . From now on we assume $\gamma$ is a composite of
horizontal or vertical segments of length 1 in the plane. Similarly to \S 7, we obtain
the followings.
The coefficient of $z^{2}$ in the Taylor expansion of $L \int_{\gamma}\omega$ $= \sum_{s=1}^{\infty}H_{s}$ is

$L_{2}= \int_{\gamma}e^{-R_{1}^{r}}dI\mathrm{t}_{2}^{r}$ .

Thus the coefficient of $z^{3}$ in the Taylor expansion of $L \int_{\gamma}\omega$ is

$L_{3}= \oint_{\gamma}e^{-2K_{1}}d\mathrm{A}_{3}’$ .

In general, the coefficient of $z^{k}(k\geq 4)$ in the Taylor expansion of $L \int_{\gamma}\omega$ is of the
form

$L_{k}= \int_{\gamma}.e^{-(k-1)I\zeta_{1}}dK_{k}+R_{k}(A_{1}, A_{2}, \ldots, A_{k-1})$ .

In the case of non zero linear terms, the nature of the remainder term $R_{k}$ is com-
pletely unkow $\mathrm{n}$ . By the convergence theorem by Chacon and Fomenko in \S 4, each
coefficient is well defined and analytic for sufficiently small $\gamma$ . But the infimum of
the radii of convergence might be 0.

The first term

$\hat{L}_{k}=\int e^{-(k-1)K_{1}}dK_{k}=-(k-1)$ $f \int_{D}\rho e^{-(k-1)I\mathrm{f}_{1}}dI\acute{\iota}_{1}$ A $dI^{d}1r_{k}$.

is of the form

$-(k-1) \sum_{(i_{7}j)\in \mathbb{Z}^{2}}\rho(\mathrm{i},j)e^{-(k-1)K_{1}(i,j)}$

$|\begin{array}{ll}a_{11} a_{\mathrm{l}k}a_{21} a_{9}karrow\end{array}|$ $\int_{0}^{1}dx\int_{0}^{1}dye^{-(k-1)K_{1}(x,y)}$
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where $\rho(\mathrm{i},j)$ denotes the winding number of $\gamma$ on the domain $\{\mathrm{i}<x<\mathrm{i}+1,j$ $<$

$y<j+1\}$ . The summation part is a polynomial in $e^{-(k-1)a_{11}}$ , $e^{-(k-1)a_{21}}$ . Let the
hights of $\gamma$ in $x$ and $y$ directions be $X$ and $Y$ respectively. Then the degree of $L_{2}$ in
$e^{-a_{11}}$ is $X$ –1 and the degree in $e^{-a_{21}}$ is $Y-1$ . Thus the equation

$L_{2}=0$ , $L_{3}=0$

has at most $2(X+Y-2)^{2}$-solutions counting multiplicity by Bezout theorem if
$|\begin{array}{ll}a_{11} a_{12}a_{21} a_{22}\end{array}|\neq 0$ , $.|\begin{array}{ll}a_{11} a_{13}a_{21} a_{23}\end{array}|$ $\neq 0$ and $L_{2}$ , $L_{3}$ do not have a common factor. The

following theorem is a simple corollary of the above argument.
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