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This article is an announcement of the preprint [11]. A rational map $f$ is a
holomorphic endomorphism of the Riemann sphere C.

Notation, Rat denotes the set of all rational endomorphism of C. $\hat{\mathbb{C}}$ is identified
as the set of all constant functions of C.

In the cases $f$ is non-invertible, the Fatou and Julia strategy for studying the
complex dynamics $(\hat{\mathbb{C}},f)$ , which treats forward-images under iterations, is the
separation of $\hat{\mathbb{C}}$ into two completely invariant complementary subsets, one of
which is the Fatou set $F(f)$ , the region of normality of $\{f^{k}:=f^{\mathrm{o}k}\}$ , and the other

$\mathrm{t}\grave{\mathrm{n}}\mathrm{e}$ Julia set $J(f)$ . In other words, the restricted dynamical systems $(F(f), f)$ and
$(J(f),f)$ are tame and chaotic respectively. Consequently, the dynamical system
around $J(f)$ has an almost covering feature: There exists $E(f)\subset\hat{\mathbb{C}}$ such that for
every neighborhood $U$ of a point of $J(f)$ , the union of the forward-images of $U$

under iterations covers $\hat{\mathbb{C}}-\mathrm{E}(\mathrm{f})$ .

Definition 1 (dynamical exceptional set). $E(f)$ is called the dynamical excep-
tional set of f.
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From this almost covering feature, naturally arises the Nevanlinna theoretical
study, which treats preimages under iterations.

Definition 2 (value distribution). For $f$, $g$ $\in$ Rat, the value distribution $\mu(f, g)$

of $f$ for $g$ is defined by the mass distribution on the $(\deg f+\deg cf)$-roots of the
equation $f=g$.

The spherical area measure and the chordal distance on $\hat{\mathbb{C}}$ are

$o^{-}(w)= \frac{|dw|}{\pi(1+|w|^{2})^{2}}$ aannd $[z, w]= \frac{|z-w|}{\sqrt{1+|z|^{2}}\sqrt{1+|w|^{2}}}$

respectively. We note that they are normalized as $\sigma(\hat{\mathbb{C}})=1$ and $[0, \infty]=1$ .

Definition 3 (dynamical Nevanlinna theory [13]). For $f$, $g$ $\in$ Rat, the pointwise
proximityfunction is defined by

$(w(g, f))(z):= \log\frac{1}{[cf(z),f(z)]}$ : $\hat{\mathbb{C}}arrow[0, \infty]$ ,

and the mean proximnit}’ by

$m(g,f):= \int_{\hat{\mathbb{C}}}w(g,f)do^{\sim}\in[0, \infty)$.

Let $F$ be a rational sequence $\{f_{k}\}_{k=0}^{\infty}\subset$ Rat with increasing degrees $\{d_{k}:=$

$\deg f_{k}\}$ . For $g\in$ Rat, the dynamical Nevanlinna and Valiron exceptionalities are
defined by

NE(g; $\mathcal{F}^{\cdot}$) $:=$ $\lim_{karrow}\inf_{\infty}\frac{m(g,f_{k})}{d_{k}}\in[0, \infty]$ ,

$\mathrm{V}\mathrm{E}(g;F)$ $:=$ $\lim_{karrow}\sup_{\infty}\frac{m(g,f_{k})}{d_{k}}\in[0, \infty]$

respectively.

From now on, we consider the iteration sequence $\{f^{k}\}_{k=1}^{\infty}$ of a rational map $f$

of degree $d\geq 2$ .

Definition 4 (dynamical Nevanlinna and Valiron exceptional sets). The dy-
namical Nevanlinna and Valiron exceptional sets of $f$ in $\hat{\mathbb{C}}$ are defined by

$E_{N}(f):=$ {$p$
$\in\hat{\mathbb{C}}$ ; NE(p; $\{f^{k}\})>0$},

$E_{\mathcal{V}}$ ($f\rangle$ $:=\{p\in\hat{\mathbb{C}}$ ; VECp; $\{f^{k}\}$ ) $>0\}$

respectively.
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We shall use several notions from the geometric measure theory and the po-
tential theory. For the details, see, for example, [3], [10], and [7].

It is known that $\{(f^{k})\mathrm{A}\sigma/d^{k}\}$ converges weakly. The limit is also known as the
unique maximal entropy measure (see [8] and [9]).

Definition 5 (the maximal entropy measure).

$\mu_{f}:=\lim_{karrow\infty}\frac{(f^{\mathrm{A}’})^{*}\zeta\gamma}{d^{\mathrm{A}}}$ .

Definition 6 (accumulation and convergence loci). The accumulation and con-
vergence loci $0\dot{\mathrm{r}}$ the averaged value disrributions of f in $\hat{\mathbb{C}}$ are defined by

$A(f):=$ { $p\in\hat{\mathbb{C}}$ ; a subsequence of $\{\mu(f^{k},p)/d^{k}\}$ converges to p7},

Conv(f) $:= \{p\in\hat{\mathbb{C}};\lim_{\mathrm{A}arrow\infty}\frac{\mu(f^{k},p)}{d^{k}}=\mu_{f}\}$

respectively.

Now we state Main Theorem.

Main Theorem 1 (characterizations of exceptional sets). For $f\in$ Rat ofdegree
$\geq 2$ ,

$\hat{\mathbb{C}}-Ev(f)=\mathrm{C}\mathrm{o}\mathrm{n}\mathrm{v}(/)\subset A(f)=\hat{\mathbb{C}}-E_{N}(f)\subset\hat{\mathbb{C}}-E(f)$.
Independently, known is the following remarkable theorem which was first

proved for polynomials by Brolin [1] and later for rational maps by Lyubich [8]
and independently by Freire-Lopes-Mane \’e[5]. See also [2], [6], [4] for the other
proofs.

Theorem 1 (convergence of averaged value distributions). For $f\in$ Rat ofde-
$gree\geq 2$,

$\hat{\mathbb{C}}-E(_{-}\eta=\Gamma_{-\mathrm{O}_{-}}\eta \mathrm{v}\iota J)$.

Combining them, we have the following.

Main Corollary 1 (All exceptional sets are same.). For f $\in$ Rat ofdegree $\geq 2_{r}$

$E_{N}(f)=Ev(f)=\mathrm{E}(\mathrm{f})=\hat{\mathbb{C}}$ -Conv(/) $)=\hat{\mathbb{C}}-\mathrm{A}(\mathrm{f})$ .

Remark 1. In [12], Main Corollary 1 has been already implicitly applied to the
Siegel-Cremer linearizability problem of rational maps.

The important consequence of Main Corollary is a convergence theorem of
the potentials of the averaged value distributions
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Definition 7 (spherical potential). For a regular measure $\mu$ on $\hat{\mathbb{C}}$ , the potential is
defined by

$V_{\mu}:= \int_{\hat{\mathbb{C}}}-\log[\cdot,$ $w1\mu(w)$ : $\hat{\mathbb{C}}arrow[0, \infty]$ .

Remark 2. In the potential theory, the potential is usually defined as $-V_{\mu}$ , but the
definition will be more convenient in our study.

The (axiomatic) potential theory implies that when regular measures $\mu_{k}$ con-
verges to $\mu$ , then

$\lim_{\mathrm{A}^{r}arrow}\inf_{\mathrm{m}}V_{\mu k}=V_{\mu}$

quasieverywhere on C. For the averaged value distributions, we obtain the stronger
conclusion.

Main Theorem 2 (convergence theorem of potentials). Let f $\in$ Rat be ofdegree
$d\geq 2$ . If $p\in\hat{\mathbb{C}}-E(f)$ is not afixedpoint then

$\lim_{karrow}\inf_{\infty}V_{\mu(f^{k},p\rangle/d^{k}}$ $=V_{\mu_{f}}$ (1)

on C. Otherwise (1) holds on $\hat{\mathbb{C}}-\bigcup_{k>0}f^{-k}(p)$ .

We also characterize such points that the potentials actually converge there.

Main Theorem 3 (convergence of potentials and pointwise behavior). Let f $\in$

Rat be ofdegree $d\geq 2$ . For $p\in\hat{\mathbb{C}}-E(f)$ and $q\in\hat{\mathbb{C}}$,

$\lim_{karrow\infty}V_{\mu^{(}f^{k},p)/d^{\mathrm{A}}}(q)=V_{\mu_{f}}(q)$ (2)

ifand only if
$\lim_{karrow\infty}\frac{1}{d^{k}}\log\frac{1}{[p,f^{k}(q)]}=0$ . (3)
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