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1 Introduction
For a Riemann surface $R$, we consider the reduced Teichm\"uler modular group
$\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ , which is a group of automorphisms on the reduced Teichm\"uller space
$T^{\neq}(R)$ . If $R$ is of analytically finite type, $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ and $T^{\neq}(R)$ are nothing but
the ordinary Teichm\"uller modular group Mod(R) and the ordinary Teichm\"uller

space $T(R)$ , respectively. In this case, $T^{\neq}(R)$ is finite dimensional, and the
action of $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ on $T\#(R)$ is properly discontinuous. On the other hand,
if $R$ is of topologically infinite type, $T\#(R)$ is infinite dimensional and is not
locally compact. It is different from the case of finite type that the action of
$\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ is not necessarily properly discontinuous. On the basis of this fact,
we introduced the notions of the limit set and the region of discontinuity for
the Teichm\"uller modular group, which were defined analogously to the theory
of Kleinian groups acting on the Riemann sphere.

Definition 1.1 ([1]) For a subgroup $G$ of $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ , we define $\Lambda(G)$ as the
set of points $p\in T^{\neq}(R)$ for which there exists a sequence $\{\chi_{n}\}$ of distinct
elements of $G$ satisfying $\mathrm{h}.\mathrm{m}_{narrow\infty}d_{T}(\chi_{n}(p),p)=0$. We also define $\Omega(G)$ as the
complement of $\Lambda(G)$ . We call $\mathrm{A}(\mathrm{G})$ the limit set of $G$ and $\mathrm{Q}(\mathrm{G})$ the region of
discontinuity of $G$ .

Proposition 1.2 ([1]) Let $G$ be a subgroup of $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ . Then $G$ acts on
$\Omega(G)$ properly discontinuously. Namely, for any point $p\in\Omega(G)$ , there eists $a$

neighborhood $U$ of $p$ such that the set $\{\chi\in G|\chi(U)\cap U\neq\emptyset\}$ consists of only
finitely many elements.

Furthermore, in [1], we showed that limit sets and regions of discontinuity for
Teichm\"uller modular groups satisfy similar properties to those of limit sets and
regions of discontinuity for Kleinian groups, and proposed some problems. In
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the next section, we shall explain these properties and answ ers of the problems.
In section 3, we observe properties of limit sets which are different from those
for Kleinian groups.

2 Properties of limit sets
It is easy to see that for any subgroup $G\subset \mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ , the limit set $\Lambda(G)$ is
closed and $G$-invariant. To state other properties of limit sets, we classify the
points in the limit set.

Definition 2,1 ([1]) In a subgroup $G$ of $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ , the stabilizer of a point
$p\in T\#(R)$ is defined by $\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}_{G}(p)=\{\chi\in G|\chi(p)=p\}$.

We define $\Lambda_{0}(G)$ as the set of points $p\in\Lambda(G)$ for which there exists a
sequence $\{\chi_{n}\}$ of distinct elements of $G$ satisfying $\lim_{narrow\infty}d_{T}(\chi_{n}(p),p)=0$

and $\chi_{n}(p)\neq p$ for all $n$ , and $\Lambda_{\infty}(G)$ as the set of points $p\in\Lambda(G)$ such that
StabG(p) consists of infinitely many elements. Furthermore, we divide $\Lambda_{\varpi}(G)$

into two disjoint subsets, $\Lambda_{\varpi}^{1}(G)$ and $\Lambda_{\infty}^{2}(G)$ . The $\Lambda_{\infty}^{1}(G)$ is the set of points
$p\in\Lambda_{\infty}(G)$ such that there exists an element in $\mathrm{S}\mathrm{t}\mathrm{a}\mathrm{b}_{G}(p)$ with infinite order,
and the $\Lambda_{\infty}^{2}(G)$ is the set of points $p\in\Lambda_{\infty}(G)$ such that all elements in state (P)
are of finite order.

Proposition 2.2 ([1]) (i) For a subgroup $G$ of $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$, the set $\Lambda(G)$ -

$\Lambda_{\infty}^{2}(G)$ does not have an isolated point. (ii) If $\Lambda(G)-\Lambda_{\infty}^{2}(G)$ is not empty,
then the limit set $\Lambda(G)$ is an uncountable set

Remark 2.3 The limit set $\Lambda(\Gamma)$ of a non-elementary Kleinian group $\Gamma$ is a
perfect set, which is proved by using the fact that the orbit $\Gamma(p)$ of a point
$p\in\Lambda(\Gamma)$ under the action of $\Gamma$ is dense in $\Lambda(\Gamma)$ (see [6, Theorem 2.4]), However,
for a subgroup $G\subseteq \mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ , the orbit $G(p)$ of $p\in\Lambda(G)$ is not dense in $\Lambda(G)$ ,
in general (see Example 3.7). Thus the proof of Proposition 2.2 is completely
different ffom that for Kleinian groups.

The following proposition is the answer of the first problem in [1, Problem
1].

Proposition 2.4 ([5]) For a subgroup G of $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ , the set $\Lambda_{0}(G)$ is dense
in $\Lambda(G)-\Lambda_{\infty}^{2}(G)$ .

For a Kleinian group $\Gamma$ , the set of accumulation points of $\Gamma(p)$ for a point $p$ in
the region of discontinuity of $\Gamma$ is coincident with the limit set $\Lambda(\Gamma)$ , and hence
$\Lambda(\Gamma)$ is nowhere dense. On the other hand, for a subgroup $G\subseteq \mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ , the
orbit $G(p)$ of the point $p\in\Omega(G)$ does not have an accumulation point. However,
in [1, Problem 2] and [1, Problem 3], we conjectured that for any Riemann
surface $R$, the region of discontinuity $\Omega(\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R))$ is connected and the limit set
$\Lambda(\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R))$ is nowhere dense in $T\#(R)$ unless $\Omega(\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R))$ is empty. Under
a certain assumption, these conjectures are true. To state the assumption, we
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make a couple of definitions given in terms of hyperbolic geometry of Riemann
surfaces.

Definition 2.5 For a constant $M>0$ , we define $R_{M}$ to be the set of points
$p\in R$ for which there exists a non-trivial simple closed curve passing through
$p$ with hyperbolic length less than $M$. The set $R_{\epsilon}$ is called the $\epsilon$-thin part of
$R$ if $\epsilon(>0)$ is smaller than the Margulis constant (see [6, p.56]). Further, a
connected component of the $\epsilon$-thin part corresponding to a puncture is called
the cusp neighborhood.

Definition 2.6 ([1], [2]) We say that a subdomain $R’\underline{\subseteq}R$ satisfies the lower
bound condition in $R$ if there exists a constant $\epsilon>0$ such that the $R_{\epsilon}\cap R’$

consists of either cusp neighborhoods or neighborhoods of geodesies which are
homotopic to boundary components. We also say that $R^{f}$ satisfies the mpper
bound condition in $R$ if there exist a constant $M>0$ and a connected component
$U$ of $R_{M}\cap R’$ such that the homomorphism of $\pi_{1}(U)$ to $\pi_{1}(R’)$ induced by the
inclusion map of $U$ into $R’$ is surjective.

Now we state the results.

Proposition 2.7 ([5]) Let $R$ be a Riemann surface satisfying the lower and
upper bound conditions. Then the region of discontinuity $\Omega(\mathrm{M}o\mathrm{d}^{\#}(R))$ is con-
nected, and the limit set $\Lambda(\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R))$ is nowhere dense in $T^{\neq}(R)$ ,

3 Examples
In this section, we observe some properties of limit sets of Teichmiiller modular
groups which are different from those for Kleinian groups. First, we recall some
results which were proved in other papers.

The following proposition gives a sufficient condition for the limit set to
coincide with the whole Teichmiiller space.

Proposition 3.1 ([1]) If R does not satisfy the lower bound condition, then
$T(R)=\Lambda(\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R))$ .

For readers’ convenience, we explain the proof of Proposition 3,1.

Sketch of the proof of Proposition 3J. By the assumption, there exists a se-
quence $\{c_{n*}\}$ of simple closed geodesies on $R$ such that $\mathrm{c}_{n*}$ are not freely ho-
motopic to boundary components and satisfy $\ell(c_{n*})arrow 0(narrow\infty)$ . Let $[h_{n}]$

be an element of $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ that is the Dehn twist along $c_{n}$ for each $n$ . We can
take a representative $h_{n}$ so that $\lim_{narrow\infty}K(h_{n})=1$ . Hence, for $p_{0}=[R, \mathrm{i}d]$ ,
we have $\lim_{narrow\infty}d_{T}([h_{\mathrm{n}}](p_{0}),p_{0})=0$ , which means that $p_{0}\in\Lambda(\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R))$ .
Let $p=[S, f]$ an arbitrary point in $T\#(R)$ . By Lemma 3.2 below, we have
$l(f(c_{n})_{*})arrow 0$ . Thus we cqn apply the same argument as above also to $p$. $\blacksquare$
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Lemma 3.2 ([7]) Let $f$ be a quasiconformal map on $R$ onto another Riemann
surface, and $c$ a non-trivial simple closed curve on R. Then the inequality
$l(f(c)_{*})\leq K(f)\ell(c_{*})$ holds. Here $c_{*}$ and $f(c)_{*}$ are geodesies which are horno-
topic to $c$ and $f(c)$ , respectively.

Next we state conditions for limit sets to be empty.

Proposition 3.3 ([2]) Let $R$ be a Riemann surface, and $R’$ a subdomain of $R$

satisfying the lower ancl upper bound conditions. Suppose that $R’$ and $R-R’$ have
non-abelian fundamental groups. Let $G$ be the set of elements $[g]\in \mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$

such that $g(c)$ is homotopic to $c$ for all curves $c$ on $R-R’$ . Then $\Lambda(G)=\emptyset$ .
Proposition 3.4 ([2]) Let $R$ be a Riemann surface satisfying the lower and
upper bound conditions, and $G$ a subgroup of $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ satisfying the follorrying:
there eist compact subsets $C_{1}$ and $C_{2}$ on $R$ such that, for every [go] $\in G_{f}$

$g(C_{1})\cap$ $C_{2}\neq\emptyset$ for all quasiconformal maps $g$ in $[g_{\mathit{0}}]$ . Then $\Lambda(G)=\emptyset$ .

Using the results above, we give examples which show that limit sets of
Teichmiiller modular groups have different properties from those of Kleinian
groups.

For a Kleinian group $\Gamma$ , the limit set is coincident with the closure of the
set of all loxodromic fixed points for $\Gamma$ (see [6, Theorem 2.4]). Analogously to
this fact, in [1, Problem 1], we proposed the problem that the closure $\overline{\Lambda_{\varpi}(G)}$ of
$\Lambda_{\infty}(G)$ is coincident with $\Lambda(G)$ for a subgroup $G\subset \mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ . However, this is
not true, in general.

Example 3.5 There exist a Riemann surface $R$ such that $\Lambda_{\infty}(\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R))$ is a
proper subset of $\Lambda_{\infty}(\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R))$ . Indeed, let $R$ be a Riemann surface with only
one puncture such that it does not satisfy the lower bound condition. Then the
set of conformal automorphisms of $R$ consists of only finitely many elements,
and hence $\Lambda_{\varpi}(\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R))=\emptyset$ . On the other hand, $\Lambda(\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R))=T^{\neq}(R)$ by
Proposition 3.1.

For a normal subgroup $\Gamma’$ of a non-elementary Kleinian group $\Gamma$ , the limit
set $\Lambda(\Gamma’)$ of $\Gamma’$ is coincident with that of $\Gamma$ (see [6, Lemma 2.22]). However, for
normal subgroups of Teichmiiller modular groups, this is not true.

Example 3.6 There exists a Riemann surface $R$ and tvvo subgroups $G_{1}$ and
$G_{2}$ of $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ such that $G_{2}$ is a normal subgroup of $G_{1}$ , whereas the limit
sets $\Lambda(G_{1})$ and $\Lambda(G_{2})$ do not coincide.

Indeed, let $R$ be a Riemann surface that does not satisfy the lower bound
condition, and $R’$ a compact subset of $R$ with non-abelian fundamental group.
Let $G_{1}$ be the set of elements $[g]\in \mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ such that $g(R’)=R’$. Since $G_{1}$

contains the Dehn twists along simple closed geodesies on $R$ whose lengths tend
to 0, we have $\Lambda(G_{1})=\Lambda(\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R))=T\#(R)$ by the proof of Proposition 3.1.
On the other hand, let $G_{2}$ be the set of elements $[g]$ $\in G_{1}$ such that $g(c)$ is
homotopic to $\mathrm{c}$ for all curves $c$ on $R-R’$ . Then $G_{\mathit{2}}$ is a normal subgroup of $G_{1}$ .
However, $\Lambda(G_{2})=\emptyset$ by Proposition 3.1.
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As we mentioned in the previous section, for a Kleinian group $\Gamma$ and for the
limit set $\Lambda(\Gamma)$ of $\Gamma$ , the closure $\overline{\Gamma(p)}$ of the orbit $\Gamma(p)$ of a point $p\in\Lambda(\Gamma)$ under
the action of $\Gamma$ is coincident with $\Lambda(\Gamma)$ . However, it is not true in the case of
Teichmiiller modular groups.

Example 3,7 There exist a Riemann surface $R$, a subgroup $G\subset \mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$

and a point $p\in\Lambda(G)$ such that the orbit $G(p)$ of $p$ under the action of $G$ is a
proper subset of $\Lambda(G)$ .

For example, we consider a Riemann surface $R$ that does not satisfy the
lower bound condition. Let $\{c_{\tilde{l}}\}_{i=1}^{\infty}$ a family of mutually disjoint simple closed
geodesies on $R$ whose lengths tend to 0, and $\delta_{i}$ the Dehn twist along c$. Let $G$

be a subgroup of $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ that is the direct product of the infinite cyclic groups
$\langle\delta_{i}\rangle$ . Then, by the proof of Proposition 3.1, we see that $\Lambda(G)=\Lambda(\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R))=$

$T\#(R)$ . On the other hand, for any point $p\in\Lambda(G)$ , the complex structures of
accumulation points of $G(p)$ are the same as that of $p$. Indeed, there exists a
compact subset $C$ of $R$ such that every element $[g]$ of $G$ satisfies $g(C)\cap C\neq$

$\emptyset$ . Then we may assume that every sequence $\{g_{n}\}$ of distinct elements of $G$

converges to a quasiconformal automorphism $g$ of $R$, and we see that $g\in G$ (see
[4, Proposition 2] $)$ . Thus $[g_{n}](p)arrow[g](p)$ and $G(p)$ is closed, which means that
the complex structures of accumulation points of $G(p)$ are the same as that of
$p$. Hence, $G(p)$ is a proper subset of $T\#(R)=\Lambda(G)$ .

In Example 3.7, $G(p)$ is not discrete but it is closed, namely, $\overline{G(p)}=G(p)$ .
However, for a Riemann surface with the lower and upper bound conditions,
a different situation occurs. The following proposition was proved by using
Proposition 3.4.

Proposition 3.8 ([5]) Suppose that $R$ satisfies the lower and upper bound con-
ditions. Let $G$ be a subgroup of $\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ , and $p$ a point in $T^{\neq}(R)$ . If the orbit
$G(p)$ is not a discrete set in $T^{\neq}(R)_{l}$ then $\overline{G(p)}-G(p)\neq\emptyset$ .

In [3, Example 5], we constructed a Riemann surface $R$ such that it satisfies
the lower and upper bound conditions and the orbit $G(p\mathrm{o})$ of the base point $p_{0}$

of $T\#(R)$ is not discrete for $G=\mathrm{M}\mathrm{o}\mathrm{d}^{\#}(R)$ .
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