GENERIC STRUCTURES AND CONTROL FUNCTIONS (A COMMENTARY ON EVANS'PREPRINT)

東海大学理学部数学科 米田郁生 (IKUO YONEDA)
DEPARTMENT OF MATHEMATICS, TOKAI UNIVERSITY

ABSTRACT. We survey the results in "Some remarks on generic structures" [E] written by Evans, and give some detailed proofs which are omitted in his note.

1. INTRODUCTION

In simplicity theory, Hrushovski's generic constructions yield various results. As in his ω -categorical stable pseudoplane, he constructed an ω -categorical, simple, rank one, non-locally modular theory by amalgamating finite graphs whose local rank is controlled by an increasing unbounded convex function. In [E1], Evans gave a sufficient condition on control functions for constructing ω -categorical simple generic structures. We review this in fifth section. In [E], Evans gave an ω -categorical non-simple generic structure by carefully setting a control function (In this note, sixth section). This non-simple generic structure has 3-strong order property. For any $n \geq 3$, n-strong order property was introduced by Shelah. (See [Sh] and third section in this note.) Strict order property implies n-strong order property, and n + 1-strong order property implies n-strong order property for any $n \geq 3$. Evans showed that generic structures given by control functions do not have 4-strong order property, we follow this result in fourth section.

In [P], Pourmahdian conjectured that generic stuructures without control function, so-called (\mathbf{K}_0 , <)-generic structure, will be non-simple. In [P], Pourmahdina considered a natural expansioned inductive (incomplete) theory T_{nat} of a universal theory T_0 only axiomatizing that any finite substructure has non-zero positive local rank. Pourmahdian showed that T_{nat} is a Robinson theory and its universal domain is simple as a structure, and T_{nat} does not have model companion. (Natural expansioned structure of (\mathbf{K}_0 , <)-generic structure is an existentially closed model of T_{nat} .) Evans gave an example of (\mathbf{K}_0 , <)-generic structure having strict order property, we discuss this issue in second section.

Date: August 1, 2005.

I would like to thank David M. Evans for his permission to submit this note.

This note is organized as follows.

Section 2: We will follow the proof that $Th(M_0)$ has strict order property, where M_0 is $(\mathbf{K}_0, <)$ -generic structure with one ternary relation.

Section 3: Review of [Sh].

Section 4: We will follow the proof that $Th(M_f)$ does not have SOP_4 , where M_f is a $(\mathbf{K}_f, <)$ -generic structure and \mathbf{K}_f is the class of finite graph A satisfying with $\delta(A) \geq f(|A|)$ and control function f is a convex increasing unbounded function from \mathbb{N} to \mathbb{R} .

Section 5: Review of [E].

Section 6: We will follow the proof that for some control function f, Th (M_f) has SOP₃, where $\delta(*) = 2|*| - e(*)$.

Section 7,8: Long appendices for Section 6, which are omitted in [E1].

2. Th(M_0) has SOP. (Definable correspondence between graphs AND TERNARY HYPERGRAPHS)

Let \Re be a ternary relation. For finte ternary-hypergraph \mathfrak{A} , we define the predimension as follows.

$$\delta(\mathfrak{A}) = |\mathfrak{A}| - |\mathfrak{R}^{\mathfrak{A}}|$$

For finite $\mathfrak{A} \subseteq \mathfrak{B}$ we define a partial order < as follows

$$\mathfrak{A} < \mathfrak{B} \Leftrightarrow \delta(\mathfrak{X}) > \delta(\mathfrak{A})(\mathfrak{A} \subset \forall \mathfrak{X} \subseteq \mathfrak{B}).$$

For possibly infinite $\mathfrak{A} \subseteq \mathfrak{B}$ we define

$$\mathfrak{A}<\mathfrak{B}\Leftrightarrow\mathfrak{X}\cap A<\mathfrak{X}(\forall\mathfrak{X}\subset_{\omega}\mathfrak{B}).$$

Note that $\mathfrak{A} < \mathfrak{A}$. For possibly infinite $\mathfrak{A} \subseteq \mathfrak{B}$, there exists the <-closure $\operatorname{cl}_{\mathfrak{B}}(\mathfrak{A})$ of \mathfrak{A} in \mathfrak{B} . K_0 is the class of finite 3-hypergraphs defined by

$$\mathfrak{A} \in \mathbf{K}_0 \Leftrightarrow \emptyset < \mathfrak{A}$$

 $\overline{\mathbf{K}_0}$ is the class of 3-hypergraphs whose finite sub-hypergraph is all in \mathbf{K}_0 . M_0 denotes the $(\mathbf{K}_0, <)$ -generic structure.

Notation 2.1. Let (A, R) be a graph, where R is the binary relation for the graph. We define the following ternary graph $(\mathfrak{H}_A, \mathfrak{R})$.

- $\mathfrak{H}_A = A \cup R^A \cup \{x_A, y_A\}$, where x_A, y_A are new elements. $(\mathfrak{R})^{\mathfrak{H}_A} = \{(x_A, y_A, a) : a \in A\} \cup \{(a, b, (a, b)) : (a, b) \in R^A\}$

 $(\mathfrak{H}_A,\mathfrak{R})$ is definable in (A,R) with two new constants.

Lemma 2.2. Let (A, R) be a graph. Then

- (1) $\mathfrak{H}_A \in \overline{\mathbf{K}_0}$.
- (2) $\mathfrak{H}_A = \operatorname{cl}_{\mathfrak{H}_A}(x_A, y_A)$.

Proof. Let $\mathfrak{X} \subset_{\omega} \mathfrak{H}_A$, and let $V(\mathfrak{X})$ be the vertex set of \mathfrak{X} . Then $V(\mathfrak{X}) \subseteq$ $A \cup R^A \cup \{x_A, y_A\}$ follows. If $x_A, y_A \in \mathfrak{X}$, then $\delta(\mathfrak{X}) = |V(\mathfrak{X})| - (|V(\mathfrak{X})|)$ $|R^A| + |V(\mathfrak{X}) \cap A| > 0$, since $V(\mathfrak{X}) = \{x_A, y_A\} \cup (V(\mathfrak{X}) \cap R^A) \cup (V(\mathfrak{X}) \cap A)$. Otherwise, $\delta(\mathfrak{X}) = |V(\mathfrak{X})| - (|V(\mathfrak{X}) \cap R^A|) > 0$, since $|V(\mathfrak{X}) \cap R^A| > 0$ implies $|V(\mathfrak{X}) \cap A| > 0.$

Let $c \in A$. Then $\delta(c/x_A, y_A) = 0$. So, if $c \notin \operatorname{cl}_{\mathfrak{H}_A}(x_A, y_A)$, then 0 < c $\delta(c/\operatorname{cl}_{\mathfrak{H}_A}(x_A,y_A)) \leq \delta(c/x_A,y_A) = 0$, a contradiction. Next, let $c = (a,b) \in$ R^A . Then $\delta(c/a,b)=0$. By the above argument, we see $c\in \mathrm{cl}_{\mathfrak{H}_A}(a,b)$. As $a, b \in \operatorname{cl}_{\mathfrak{H}_A}(x_A, y_A)$, we see that $c \in \operatorname{cl}_{\mathfrak{H}_A}(x_A, y_A)$.

Next, for any symmetric 3-hypergraph having at least two vertices, we construct a graph as follows.

Notation 2.3. Let $(\mathfrak{A},\mathfrak{R})$ be a symmetric 3-hypergraph having at least two vertices. Fix two vertices $a, b \in \mathfrak{A}$. We define the following graph $G_{(\mathfrak{A}, a, b)} =$ $(G_{\mathfrak{A}}, R)$ as follows.

- $\begin{array}{l} \bullet \ \ G_{\mathfrak{A}} = \{c \in \mathfrak{A} : \mathfrak{A} \models \mathfrak{R}(c,a,b)\} \\ \bullet \ \ R^{G_{\mathfrak{A}}} = \{(c,d) \in \mathfrak{A}^2 : \mathfrak{A} \models \mathfrak{R}(c,a,b) \land \mathfrak{R}(d,a,b) \land \exists x \mathfrak{R}(x,c,d)\} \end{array}$

 $G_{(\mathfrak{A},a,b)}=(G_{\mathfrak{A}},R)$ is definable in $(\mathfrak{A},\mathfrak{R})$ with parameters $a,b\in\mathfrak{A}$.

(1) $\mathfrak{A} \not\simeq \mathfrak{H}_{G_{(\mathfrak{A},a,b)}}$, where $a,b \in \mathfrak{A}$. (If $\mathfrak{A} \models \neg \mathfrak{R}(d,a,b), d$ will not appear in the righthand.)

(2) $A \simeq G_{(\mathfrak{H}_A, x_A, y_A)}$.

Proof. Clearly, $G_{\mathfrak{H}_A} = A$ and $R^{G_{\mathfrak{H}_A}} = R^A$, as desired.

Lemma 2.5. Let $(\mathfrak{A}, \mathfrak{R})$ be a symmetric 3-hypergraph having at least two vertices. Then

- $(1) \ a,b \not\in G_{\mathfrak{A}} \subseteq \operatorname{cl}_{\mathfrak{A}}(a,b)$
- (2) If $(c,d) \in R^{\mathfrak{A}}$, then $\mathfrak{R}^{\operatorname{cl}_{\mathfrak{A}}(a,b)} \models \exists x \mathfrak{R}(x,c,d)$
- (3) If $\mathfrak{A} < \mathfrak{B}$, then $G_{(\mathfrak{A},a,b)} = G_{(\mathfrak{B},a,b)}$

Proof. If $\mathfrak{A} \models \mathfrak{R}(c,a,b)$, then $c \in cl_{\mathfrak{A}}(a,b)$. (1),(2) follow. If $\mathfrak{A} < \mathfrak{B}$, then $\operatorname{cl}_{\mathfrak{A}}(a,b) = \operatorname{cl}_{\mathfrak{B}}(a,b)$. So, (3) follows.

Notation 2.6. Let φ be a sentence in the language of graphs with binary relation symbol $R(x_1, x_2)$. We construct a fourmula σ_{φ} having free variable y, z in the the language of 3-hypergraphs with ternary relation symbol $\Re(x_1, x_2, x_3)$ as follows.

- Replace all atomic subformulas $R(x_1, x_2)$ by $\Re(x_1, y, z) \wedge \Re(x_2, y, z) \wedge$ $\exists w \Re(w,y,z)$
- Replace $\forall x(\psi(\bar{x})), \exists x(\psi(\bar{x}))$ by $\forall x(\Re(x,y,z) \to \psi(\bar{x})), \exists x(\Re(x,y,z) \land x) \in \mathbb{R}$ $\psi(\bar{x})$).

Remark 2.7. Let $(\mathfrak{A},\mathfrak{R}) \in \overline{\mathbf{K}_0}$, $a,b \in \mathfrak{A}$ and φ be a sentence in the language of graphs. Then

$$G_{(\mathfrak{A},a,b)}\models \varphi \Leftrightarrow \mathfrak{A}\models \psi_{\varphi}(a,b)$$

The above remark follows from "REDUCTION THEOREM", a (non-onto) map from $G_{(\mathfrak{A},a,b)}$ to \mathfrak{A} , and the way of replacement of quantifiers. Reduction theorem needs a onto map, but our ψ_{φ} 's quatifiers are bounded in $\mathfrak{R}(*,a,b)$. So we need not a onto map, here.

Fact 2.8. Let M be an L-structure, and N be an L'-structure. Suppose that

- there exists a partial onto map f from M^n to N (for some $n < \omega$)
- for every positive atomic L-formula θ , there exists an L'-formula ψ_{θ} such that $M \models \theta(\bar{a}) \Leftrightarrow N \models \psi_{\theta}(f(\bar{a}))$

THEN, by induction on the complexity of formulas, for every L-formula φ , there exists an L'-formula ψ_{φ} such that $M \models \varphi(\bar{a}) \Leftrightarrow N \models \psi_{\varphi}(f(\bar{a}))$

Lemma 2.9. Let φ be a sentence in the language of graphs. THEN, "there exists a finite graph $A \models \varphi$ " iff $M_0 \models \exists yz\psi_{\varphi}(y,z)$.

Proof. (\Rightarrow): We may assume that $\mathfrak{H}_A < M_0$. So, by Remark 2.4, $A \simeq G_{(\mathfrak{H}_0,x_A,y_A)} \simeq G_{(M_0,x_A,y_A)}$. Therefore, $M_0 \models \psi_{\varphi}(x_A,y_A)$. (\Leftarrow): $G_{(M_0,a,b)} \models \varphi$ and $G_{(M_0,a,b)} \subseteq \operatorname{cl}_{M_0}(a,b) \subset_{\omega} M_0$

Proposition 2.10. Let φ be a sentence in the language of graphs. Suppose that φ has arbitralily large finite model. Then there exists an infinite model, definable in some model of $\operatorname{Th}(M_0)$.

Proof. By our assumption, for any $n < \omega$, there exists a finite graph A_n such that $A_n \models \varphi$ and $|A_n| \geq n$. As $A_n \simeq G_{(\mathfrak{H}_{A_n}, x_{A_n}, y_{A_n})}$ (by Remark 2.4) and $\omega > |\mathfrak{H}_{A_n}| \geq |A_n| \geq n$, for any $n < \omega$,

$$\mathfrak{H}_{A_n} \models \psi_{\varphi}(x_A, y_A) \wedge |\mathfrak{R}^{\mathfrak{H}_{A_n}}(*, x_A, y_A)| \geq n.$$

As M_0 is $(\mathbf{K}_0, <)$ -generic, there exists $\mathfrak{H}_{A_n} \simeq \mathfrak{A} < M_0$. Since $G_{(\mathfrak{H}_{A_n}, x_{A_n}, y_{A_n})} \simeq G_{(\mathfrak{A}, a, b)} = G_{(M, a, b)}$, where $x_A y_A \mapsto ab$,

$$\operatorname{Th}(M_0) \vdash \exists yz\psi_{\varphi}(y,z) \land |\mathfrak{R}(*,y,z)| \geq n.$$

By compactness, there exist infinite $M \models \operatorname{Th}(M_0)$ and $a', b' \in M$ such that $G_{(M,a',b')} \models \varphi$, where $G_{(M,a',b')}$ is definable in M.

Theorem 2.11. Th(M_0) has strict order property.

Proof. Let A_n be the graph as follows;

- Vertices: $\{b_i : i < n\} \cup \{c_i : i < n\}$
- Edges: $\{(b_i, c_j) : 0 \le i < j < n\}$

Let $a_i = (b_i, c_i)$, and $\varphi(xy, zw) \equiv R(x, y) \land R(z, w) \land R(x, w) \land \neg R(x, z) \land \neg R(y, w) \land \neg R(y, z)$. Then $A_n \models \varphi(a_i, a_j) \Leftrightarrow i < j < n$.

By Lemma 2.9, we can find a linear (uniformly definable) ordering of arbitraily finite length in M_0 . By compactness, we see that $Th(M_0)$ has the strict order property.

3. REVIEW OF STRONG ORDER PROPERTY

This section consists of Shelah's results in [Sh].

Definition 3.1. A complete theory T has n-strong order property, denoted SOP_n if there exists a formula $\varphi(x,y)$ (lh(x) = lh(y)) and a sequence $(a_i : i < \omega)$ in some model N of T such that

- (1) $N \models \varphi(a_i, a_j)$ for $i < j < \omega$
- (2) there is no n- φ -loops;

$$N \models \neg \exists x_0, x_1, \dots x_{n-1} \varphi(x_0, x_1) \land \varphi(x_1, x_2) \land \dots \land \varphi(x_{n-2}, x_{n-1})$$

Fact 3.2. (1) SOP implies SOP_n .

- (2) SOP_{n+1} implies SOP_n .
- (3) If T has SOP₃, then T has the tree property.

Proof. (1): By way of contradiction, suppose that T has SOP and $NSOP_n$. So, there exist $\varphi(x,y)$, $N \models T$ and $(a_i : i < \omega) \subset N$ such that $\forall x(\varphi(x,a_i) \rightarrow \varphi(x,a_j)) \land \exists x(\neg \varphi(x,a_i) \land \varphi(x,a_j))$ for $i < j < \omega$. Let $\psi(x_0,x_1) = \forall x(\varphi(x,x_0) \rightarrow \varphi(x,x_1)) \land \exists x(\neg \varphi(x,x_0) \land \varphi(x,x_0))$. As T has $NSOP_n$, there exists n- ψ -loop, but it is impossible.

(2): Let $\varphi(x, y)$, a model M, and $(a_i : i < \omega) \in M$ be witness for SOP_{n+1} . We may assume that $(a_i : i < \omega)$ is indiscernible. We divide the arugument into two cases, whether

$$M \models \exists x_0, \dots x_{n-1} [x_0 = a_1 \land x_{n-1} = a_0 \land \bigwedge_{i,j < n, k \equiv l+1 \pmod{n}} \varphi(x_i, x_j)$$

or not.

• The case that $M \models \exists x_0, \dots x_{n-1} [x_0 = a_1 \land x_{n-1} = a_0 \land \bigwedge_{i,j < n,k \equiv l+1 \pmod{n}} \varphi(x_i,x_j)]$

As $a_1 \equiv_{a_0} a_2$, we have $M \models \exists x_0, \dots x_{n-1} [x_0 = a_2 \land x_{n-1} = a_0 \land \bigwedge_{i,j < n,k \equiv l+1 \pmod{n}} \varphi(x_i, x_j)]$. Let $a_2, c_1, \dots c_{n-2}, a_0$ be the witness for $x_0, \dots x_{n-1}$. By the way, $M \models \varphi(a_1, a_2) \land \varphi(a_0, a_1)$, so $a_1, a_2, c_1, \dots c_{n-2}, a_0$ is an (n+1)- φ -loop, a contradiction.

• The case that $M \not\models \exists x_0, \dots x_{n-1} [x_0 = a_1 \land x_{n-1} = a_0 \land \bigwedge_{i,j < n,k \equiv l+1 \pmod{n}} \varphi(x_i, x_j)]$

Put $\psi(x,y) \equiv \varphi(x,y) \land \neg \exists x_0, \dots x_{n-1} [x_0 = x \land x_1 = y] \land \bigwedge_{i,j < n,k \equiv l+1 \pmod{n}} \varphi(x_i,x_j)$ Then $M \models \psi(a_i,a_i) (i < j < \omega)$, and n- ψ -loops never exist. (3): Let $\kappa = \operatorname{cf}(\kappa) > |T|$ and $\lambda > \kappa$ be such that $\operatorname{cf}(\lambda) = \kappa$ and " $\mu < \lambda$ implies

(3): Let $\kappa = \operatorname{cl}(\kappa) > |T|$ and $\lambda > \kappa$ be such that $\operatorname{cl}(\lambda) = \kappa$ and " $\mu < \lambda$ implies $2^{\mu} < \lambda$ " (strongly limit singular cardinal of cofinality κ). Put $J = {}^{\kappa}\lambda$ and

 $I \subset J$ be such that $\eta \in I$ iff $\eta(i) = 0$ for every $i < \kappa$ large enough.

Let $\varphi(x,y)$ be the witnee for SOP₃. By compactness, there exist a sequence $(a_n : \eta \in I)$ in some model M shch that $M \models \varphi(a_n, a_\nu)$ for any $\eta < \nu$.

The lexicographic order on I is as usual; if i is the least such that $\eta|i=\nu|i$, then $\eta(i)=\nu(i)$.

We may assume that M is κ^+ -saturated, and $|M| \geq \lambda$. Fix an $\eta \in {}^{\kappa}(\lambda \setminus \{0\}) \setminus I$. We will define a_{η} as follows.

Put $p_{\eta} = \{ \varphi(a_{(\eta|i)\mathbf{0}_{[i,\kappa)}}, x) \land \varphi(a_{(\eta|i,\eta(i)+1)\mathbf{0}_{(i,\kappa)}}, x) : i < \kappa \}.$

Note that $(\eta|i)0_{[i,\kappa)}$, $(\eta|i,\eta(i)+1)0_{(i,\kappa)} \in I$, and

 $a_{(\eta|i\eta(i))0_{(i,\kappa)}} \models \varphi(a_{(\eta|i)0_{[i,\kappa)}}, x) \land \varphi(a_{(\eta|i\eta(i)+1)0_{[i,\kappa)}}, x).$

As M is κ^+ -saturated, there exists a realization of p_{η} in M, say a_{η} .

Claim. If $\eta_1 \neq \eta_2 \in {}^{\kappa}(\lambda \setminus \{0\})$, then $p_{\eta_1} \cup p_{\eta_2}$ is inconsitent.

Suppose that $\eta_1 < \eta_2$. Then there exists $i < \kappa$ such that $\eta_1 | i = \eta_2 | i, \eta_1(i) < \eta_2(i)$. Take $\nu < \rho \in I$ be with $\eta_1 < \nu < \rho < \eta_2$ as follows.

 $\eta_1|i=\eta_2|i=
u|i=
ho|i,
u(i)=\eta_1(i)+1,
otag(i)=
u_2(i),
u(j)=0 (j>i),
otag(i+1)=
u_2(i+1),
otag(j)=0 (j>i+1).$

As $\varphi(x, a_{\nu}) \in p_{\eta_1}, \varphi(x, a_{\rho}) \in p_{\eta_2}$, and $M \models \varphi(a_{\nu}, a_{\rho})$, if we found the realization of $p_{\eta_1} \cup p_{\eta_2}$, say c, then c, a_{ν}, a_{ρ} would be the 3- φ -loop, a contradiction.

We also have $|p_{\eta}| = \kappa$, $|\bigcup \{\text{Dom}(p_{\eta}) : \eta \in {}^{\kappa}(\lambda \setminus \{0\})\}| \leq \lambda$ (as $\bigcup \{\text{Dom}(p_{\eta}) : \eta \in {}^{\kappa}(\lambda \setminus \{0\})\} \subseteq \{a_{\nu} : \nu \in I\}$)

By 7.7(3) and 7.6(2) on p.141 of Shelah's 2nd editon book, $\lambda = \lambda^{<\kappa} > 2^{|T|}$ (by cf(λ) = $\kappa < \lambda$) and $\kappa > |T|$ imply that T has the tree property.

It is conjectured that SOP₄ is a good dividing line for existence of universal models, i.e. if T does not have SOP₄, it will have universal models of cardinality $\lambda > |T|$ (Shelah showed that if T is simple and $\lambda > |T|$, then there exists universal models of cardinality λ^{++} . As the above, simplicity implies NSOP₃.)

4. Th (M_f) does not have SOP_4

Let δ be a local rank on relational finite structures such that $\delta(A/B) \leq \delta(A/A \cap B)$, where $\delta(A/B) = \delta(AB) - \delta(B)$. Let $f: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ be upper unbounded and monotone increasing. Let $\mathbf{K}_f = \{A \in \mathbf{K}_0 : \delta(X) \geq f(|X|) (\forall X \subseteq A)\}$ and $\beta(X) = \min\{\delta(X/A) : A < X \in \mathbf{K}_0, A \neq X, |X| \leq x\}$.

Fact 4.1. Suppose that

$$f'(x) \le \frac{\beta(x)}{x}$$
.

Then \mathbf{K}_f is closed under free amalgamation, so $(\mathbf{K}_f, <)$ -generic M_f exists, $\mathrm{cl} = \mathrm{acl}$ in M_f and $\mathrm{Th}(M_f)$ is ω -categorical. (ω -categoricity follows from $|\mathrm{cl}(*)| \leq f^{-1}(\delta(*))$ for finite graphs.)

Proof. Let $A < B_1, B_2 \in \mathbf{K}_f$ and let $C = B_1 \otimes_A B_2$. We need to show that if $X \subseteq C$, then $\delta(X) \ge f(|X|)$. We may assume that X < C, because $\delta(X) \ge \delta(\operatorname{cl}(X))$ and $f(|\operatorname{cl}(X)|) \ge f(|X|)$.

Let $X_i = X \cap B_i (i = 1, 2)$ and let $X_0 = X \cap A$. Suppose that

$$\frac{\delta(X_1) - \delta(X_0)}{|X_1| - |X_0|} \le \frac{\delta(X) - \delta(X_0)}{|X| - |X_0|} \le \frac{\delta(X_2) - \delta(X_0)}{|X_2| - |X_0|}.$$

As $X_0 < X_1$, $\beta(|X_1|) \le \delta(X_1/X_0)$. Therefore $\frac{\delta(X_1) - \delta(X_0)}{|X_1| - |X_0|} \ge \frac{\beta(|X_1|)}{|X_1|} \ge$

 $f'(|X_1|)$. So, the line between $(|X_0|, \delta(X_0))$ and $(|X_1|, \delta(X_1))$ lies above f. As f' is decreasing and $\delta(X_1) \geq f(|X_1|)$, $\delta(X) \geq f(|X|)$ follows.

Let $d(A) = \delta(\operatorname{cl}(A))$, and $d(a/A) = \delta(\operatorname{cl}(aA)/\operatorname{cl}(A))$. For possibly infinite B, let $d(a/B) = \inf\{d(a/B_0) : B_0 \subset_{\omega} B\}$.

Fact 4.2. Let \mathcal{M} be a relational structure having δ -rank. Let $a, A, B \subset_{\omega} \mathcal{M}$. Suppose that $A < B < \mathcal{M}$ and $\operatorname{cl}(aA) \subset_{\omega} \mathcal{M}$. Then $\operatorname{d}(a/B) = \operatorname{d}(a/A)$ iff $\operatorname{cl}(aA) \cap B = A, \operatorname{cl}(aA)B = \operatorname{cl}(aA) \otimes_A B$ and $\operatorname{d}(aB) = \delta(\operatorname{cl}(aA)B)$ (i.e. $\operatorname{cl}(aA)B \leq \operatorname{cl}(aB)$).

Proof. As $A < \operatorname{cl}(aA) \cap B$ or $A = \operatorname{cl}(aA) \cap B$, we have $\delta(A) \le \delta(\operatorname{cl}(A) \cap B)$. So, $\delta(\operatorname{cl}(aA)/\operatorname{cl}(aA) \cap B) \le \delta(\operatorname{cl}(aA)/A)$. Therefore

$$d(a/B) \leq \delta(\operatorname{cl}(aA)/B) \leq \delta(\operatorname{cl}(aA)/\operatorname{cl}(aA) \cap B) \leq \delta(\operatorname{cl}(aA)/A) = d(a/A).$$

Now we can see the conclusion.

By Fact 4.2, for $a, b, A \subset_{\omega} \mathcal{M}_{!}$

$$d(a/Ab) = d(a/A) \Leftrightarrow d(b/Aa) = d(b/A).$$

 $(\text{By } d(a/Ab) = d(a/A) \Leftrightarrow \text{``cl}(aA) \cap \text{cl}(bA) = \text{cl}(A), \text{cl}(aA) \text{cl}(bA) = cl(aA) \otimes_{\text{cl}(A)} \text{cl}(bA) \leq \text{cl}(abA)$ ".)

From now on, we assume that the control function f saitsfies " $f'(x) \leq \frac{\beta(x)}{x}$ ". Let $\overline{\mathbf{K}_f}$ be the class of possibly infinite structures whose finite substructures are all in \mathbf{K}_f . Let $T_f = \{ \forall \overline{x} \neg \mathrm{Diag}_A(\overline{X}) : \delta(A) < f(|A|), |A| < \omega \}$. Then $M \models T_f \Leftrightarrow M \in \overline{\mathbf{K}_f}$. Let \mathcal{M} be a big model of M_f . Note that if $A \subset_{\omega} \mathcal{M}$, then $A \in \mathbf{K}_f$.

Proposition 4.3. Suppose that, in \mathcal{M} , if $A = \operatorname{acl}(A)$, d(a/A) = d(a/Ab), $\operatorname{acl}(aA) \cap \operatorname{acl}(bA) = A$, then there exists $A_0 \subset_{\omega} A$ such that $d(a/A_0b) = d(a/A_0)$. THEN Th(M_f) has NSOP₄.

Proof. Let $(a_i : i < \omega)$ be an infinite indiscernible sequence in \mathcal{M} . Put $p(x_0x_1) = \operatorname{tp}(a_0a_1)$. We will show that

$$p(x_0x_1) \cup p(x_1, x_2) \cup p(x_2x_3) \cup p(x_3x_0)$$

is consistent.

Claim. There exists $B \subset_{\omega} \mathcal{M}$ such that $(a_i : i < \omega)$ is B-indiscernible, and $d(a_2/Ba_0a_1) = d(a_2/Ba_1) = d(a_2/B)$. (Then $a_2 \equiv_{a_0} a_1$, $d(a_2/Ba_0a_1) = d(a_2/Ba_2)$ follows.)

Extend $(a_i: i < \omega)$ to $(a_i: i < \mathbb{Z})$. As $(a_i: i \ge 0)$ is indiscernible over $(a_i: i < 0)$, $(a_i: i \ge 0)$ is indiscernible over $\operatorname{acl}(a_i: i < 0) =: A_0$. As $a_{< i} \equiv_{a_i} a_{< 0}$, we see that $d(a_i/A_0a_{< i}) = d(a_i/A_0)$.

By extending $(a_i : i \ge 0)$ over A_0 and applying Erdos-Rado Theorem, we may assume that $\operatorname{acl}(A_0a_k) \cap \operatorname{acl}(A_0a_ia_j) =: C$ is constant for any i < j < k, and $(a_i : i \ge 0)$ is indiscernible over C.

Now, by our assumption, take $B \subset_{\omega} C$ such that $d(a_2/Ba_0a_1) = d(a_2/B)$, as desired. The claim is proven.

As $d(a_2/Ba_0a_1) = d(a_2/B)$, we have

$$\operatorname{cl}(a_2B)\operatorname{cl}(a_0a_1B) = \operatorname{cl}(a_2B) \otimes_{\operatorname{cl}(B)} \operatorname{cl}(a_0a_1B) \le \operatorname{cl}(a_0a_1a_2B).$$

As $cl(a_0a_1a_2B) \in \mathbf{K}_f$, we may assume that

$$\operatorname{cl}(a_0 a_1 a_2 B) < M_f.$$

So, we can work inside M_f (i.e. we have $a_0, a_1, a_2, B \subset_{\omega} M_f$ such that (a_0, a_1, a_2) is B-indiscernible and $d_{M_f}(a_2/Ba_0a_1) = d_{M_f}(a_2/B)$.)

Let $C_{i,j} = \operatorname{cl}(a_i a_j B)$, $C_i = \operatorname{cl}(a_i B)$. By $d(a_2/B a_0 a_1) = d(a_2/B a_1)$ and Fact 4.2, we see that $C := C_{0,1} C_{1,2} = C_{0,1} \otimes_{C_1} C_{1,2}$. And $C_{0,1} \cap C_{0,2} = C_0$ and $C_{1,2} \cap C_{0,2} = C_2$ follow by $d(a_2/B a_0 a_1) = d(a_2/B a_1)$, $d(a_1/B a_0 a_2) = d(a_1/B a_2)$ and Fact 4.2. So we have

$$C \cap C_{0,2} = C_0 C_2 = C_0 \otimes_B C_2 < C.$$

Let $f: C_0C_2 \to C_2C_0$ be an isomorphism over B sending a_0a_2 to a_2a_0 , and let $g: C_0C_2 \to C$ be the inclusion map. Put $g' = g \circ f$. As \mathbf{K}_f is closed under free amalgamation, there exist $D \in K_f$ and $h, h': C \to D$ such that $h \circ g|C_0C_2 = h' \circ g'|C_0C_2$ and $D = h(C) \otimes_{h \circ g(C_0C_2)} h'(C)$. We may assume that $D < M_f$. Put $a'_0 = h \circ g(a_0), a'_1 = h(a_1), a'_2 = h' \circ g'(a_2), a'_3 = h'(a_1)$.

Claim. $a'_0a'_1, a'_1a'_2, a'_2a'_3, a'_3a'_0 \models p = \operatorname{tp}(a_0a_1)$. (This proposition is proven.)

Note that

$$h(a_0a_1) = a_0'a_1', h(a_1a_2) = a_1'a_2', h'(a_0a_1) = (h' \circ g'(a_2))a_3' = a_2'a_3',$$

$$h'(a_1a_2) = a_3'(h' \circ g'(a_0)) = a_3'(h \circ g(a_0)) = a_3'h(a_0) = a_3'a_0'.$$

On the other hand,

$$h(C_{0,1}), h(C_{1,2}) < h(C) < D < M_f,$$

 $h'(C_{0,1}), h'(C_{1,2}) < h'(C) < D < M_f.$

Put $B' = h \circ g(B) = h' \circ g'(B)$. Then

$$h(\mathrm{cl}(a_0a_1B))=h(C_{0,1})=\mathrm{cl}(a_0'a_1'B'), h(\mathrm{cl}(a_1a_2B))=h(C_{1,2})=\mathrm{cl}(a_1'a_2'B'),$$

$$h'(\operatorname{cl}(a_0a_1B))=h'(C_{0,1})=\operatorname{cl}(a_2'a_3'B'), h(\operatorname{cl}(a_1a_2B))=h(C_{1,2})=\operatorname{cl}(a_3'a_0'B').$$

By genericity of M_f , we see that

$$\operatorname{cl}(a_0a_1B) \equiv \operatorname{cl}(a_1a_2B) \equiv \operatorname{cl}(a_0'a_1'B') \equiv \operatorname{cl}(a_1'a_2'B') \equiv \operatorname{cl}(a_2'a_3'B') \equiv \operatorname{cl}(a_3'a_0'B').$$

Remark 4.4. Suppose that for any $a, A \subset \mathcal{M}$, there exists $A_o \subset_{\omega} A$ such that $d(a/A) = d(a/A_0)$. Then the assumption of Proposition 4.3 holds.

Proof. Take
$$A_0, A_1 \subset_{\omega} A$$
 such that $d(a/Ab) = d(a/A_0b)$ and $d(a/A) = d(a/A_1)$. Then $d(a/A_0A_1) = d(a/A_0A_1b)$.

5. Review of Evans' paper on simple ω -categorical generic structures

Let δ be a local rank on relational finite structures such that $\delta(A/B) \leq \delta(A/A \cap B)$, where $\delta(A/B) = \delta(AB) - \delta(B)$. Let $f: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ be upper unbounded, monotone increasing, convex (f'(x) is monotone decreasing) and $f'(x) \leq \frac{\beta(x)}{x}$, where $\beta(x) = \min\{1, \delta(X/A) : A < X \in \mathbf{K}_0, A \neq X, |X| \leq x\}$. Let $\mathbf{K}_f = \{A \in \mathbf{K}_0 : \delta(X) \geq f(|X|) (\forall X \subseteq A)\}$.

The following fact is Corollary 2.20 of [E1].

Fact 5.1. Let M_f be $(\mathbf{K}_f, <)$ -generic. And suppose the condition on \mathcal{M} (big model of $\operatorname{Th}(M_f)$) as in Proposition 4.3. Furthermore, suppose the following.

- (1) (d-extension property in \mathcal{M})
 Let $A \subset B \subset \mathcal{M}$ be algebraically closed and $c \subset_{\omega} \mathcal{M}$. Then there exists $c' \subset_{\omega} \mathcal{M}$ such that $\operatorname{tp}(c/A) = \operatorname{tp}(c'/A)$, d(c'/B) = d(c/A) and $\operatorname{acl}(c'A) \cap B = A$.
- (2) (Independence theorem over finite closed sets in M_f)
 Let $A, B_1, B_2 < M_f$ be finite such that $B_1 \cap B_2 = A$ and $d(B_1/B_2) = d(B_1/A)$. Suppose that $c_1, c_2 \subset_{\omega} M_f$, $\operatorname{tp}(c_1/A) = \operatorname{tp}(c_2/A)$ and $d(c_i/B) = d(c_i/A)$. then there exists $c \subset_{\omega} M_f$ such that $\operatorname{tp}(c/B_i) = \operatorname{tp}(c_i/B_i)$ and $d(c/B_1B_2) = d(c/A)$.

THEN Th(M_f) is simple and " $c \downarrow_A B \Leftrightarrow d(c/B) = d(c/A)$ and $acl(cA) \cap B = A$, for A, B algebraically closed in \mathcal{M} ".

We give the proof of the following lemma. (Theorem 3.6 of [E1])

Lemma 5.2. Supose that d-extension property over finite closed sets in M and $f(3x) \leq f(x) + \beta(x)$. Then the independence theorem over finite closed sets holds in M_f .

Proof. Let c_i, B_i, A be as in Fact 5.1. Then $\operatorname{acl}(c_1 A) \simeq_A \operatorname{acl}(c_2 A)$. Put $E_{12} = \operatorname{acl}(B_1B_2), E_{13} = \operatorname{acl}(c_1B_1), E_{23} = \operatorname{acl}(c_2B_2).$ By considering free amalgamation and copies, we may assume that

 $B_1 = E_{12} \cap E_{13}, B_2 = E_{12} \cap E_{23}, B_3 := E_{13} \cap E_{23} = \operatorname{acl}(c_i A),$ $B_1 \cap B_2 \cap B_3 = A$, B_1, B_2, B_3 are d-independent over A, $E_{ij}E_{jk} = E_{ij} \otimes_{B_i} E_{jk}$. Let $E = E_{12}E_{13}E_{23}$. We need to show that A < E and $E \in \mathbf{K}_f$.

Claim. A < E.

By Fact 4.2, $B_iB_j \leq E_{ij}$. As $E = E_{ij} \otimes_{B_iB_j} E_{ik}E_{jk}$, $E_{ik}E_{jk} \leq E$ follows. We also have $E_{ik}E_{jk} = E_{ik} \otimes_{B_k} E_{jk}$ and $B_k < E_{jk}$, $E_{ik} < E_{ik}E_{jk}$ follows. Thus $E_{ik} < E$. As $A < B_i < E_{ik}$, A < E follows.

Claim. $E \in \mathbf{K}_f$.

We have $E = E_{ij} \otimes_{B_iB_i} E_{ik} E_{jk}$, but we do not have $B_i B_j < E_{ij}, E_{ik} E_{jk}$. So we can not conclude this claim by using Fact 4.1.

We need to show $\delta(D) \leq f(|D|)$ for any D < E as in Fact 4.1. Put $D_{ij} = D \cap E_{ij}$ and $d_{ij} = \delta(D_{ij})$. Suppose that d_{12} is the largest of these.

As $E_{12}E_{23} \in \mathbf{K}_f$, we may assume that $D \neq D_{12}D_{23}$. Put $D^1 = D_{12}D_{13}$. As $E_{12}E_{13} \leq E$, we see that $D^1 \leq D$. As $D^1 = D_{12} \otimes_{D \cap B_1} D_{13}$ and $D \cap B_1 < D_{13}$,

$$\delta(D^1) = d_{12} + \delta(D_{13}/D \cap B_1) \ge d_{12} + \beta(|D_{13}|).$$

As $d_{13} \le d_{12}$, $|D_{13}| \le f^{-1}(d_{13}) \le f^{-1}(d_{12})$.

So, as β is monotone decreasing, $d_{12} \leq \delta(D^1) - \beta(|D_{13}|) \leq \delta(D^1) - \beta(f^{-1}(d_{12}))$.

By our assumption on f

 $(f(3x) \le f(x) + \beta(x), \text{ so } 3f^{-1}(x) \le f^{-1}(x + \beta(f^{-1}(x))),$

$$3f^{-1}(d_{12}) = f^{-1}(d_{12} + \beta(f^{-1}(d_{12}))).$$

So, $3f^{-1}(d_{12}) \leq f^{-1}(\delta(D^1))$. As $|D| \leq \sum_{ij} |D_{ij}| \leq \sum_{ij} f^{-1}(d_{ij}) \leq 3f^{-1}(d_{12})$ and $\delta(D^1) \leq \delta(D)$, we see that

$$|D| \le f^{-1}(\delta(D)).$$

6. Th (M_f) has SOP₃ for some f

We work with undirected graphs, and $\delta(A) = 2|A| - e(A)$. Note that $\beta(x) = 1$. The control function $f: \mathbb{R}^{\geq 0} \to \mathbb{R}^{\geq 0}$ is an upper unbounded, monotone increasing satisfying the following five conditions;

(F1):
$$f(0) = 0, f(2) = 2, f(4) = 3, f(8) = 4 < f(10) < 4\frac{1}{2} < f(12) < 5 < f(14) < 5\frac{1}{3} < f(16) < f(18) \le 6.$$

(F2):
$$2f'(2n) \le \frac{1}{n} \text{ for } n \ge 7$$

(F3):
$$f(\frac{k^2}{2}) \le k \text{ if } k \ge 6$$

(F4):
$$f(3n) \le f(n) + 1$$
 for $n \ge 10$.

(F5):
$$f(10) + 1 \ge f(14), f(12) + 1 \ge f(16)$$
.

Let $f_1(x) = f(2x)$. So, $f'_1(x) = 2f'(2x)$ and F2: $f'_1(n) \le \frac{1}{n}$ for $n \ge 7$. We consider K_{f_1} .

Remark 6.1. (1) $\delta(3\text{-cycle}) = 6 - 3 = 3 = f(4) < f(6) = f_1(3)$, so 3-cycle does not belong to K_{f_1} . $\delta(4\text{-cycle}) = 8 - 4 = 4 = f(8) = f_1(4)$, so 4-cycle belongs to K_{f_1} .

- (2) The graph does not belong to \mathbf{K}_{f_1} , because its δ -rank= 14 $9 = 5 < f(14) = f_1(7)$.
- (3) (F1) and (F2) give the free amalgamation property of $(\mathbf{K}_{f_1}, <)$.
- (4) (F1) and (F3) are needed to show that the graphs $G(A_n, B_n, x_0)$ belong to \mathbf{K}_{f_1} . (Lemma 6.4.)
- (5) (F4) is needed to show Subclaim 2 in the proof of Lemma 6.7. Lemma 6.7 ensures that the important graphs E_n can be closedly embedded into M_{f_1} and the graphs E_n will give the witness formula for SOP_3 .
- (6) (F1), (F2) and (F5) are needed to show Lemma 6.6. (Lemma 6.6 gives a very important key to get Lemma 6.7.)

By the graphs $E_n < M_{f_1}(n \in \omega)$, we will give a formula $\varphi(x, y)$ and infinite sequence $(a_i)_{i < \omega}$ in M_{f_1} such that $M_{f_1} \models \varphi(a_i, a_j)$ whenever i < j. But if there were a 3- φ -loop in some model N of $\operatorname{Th}(M_{f_1})$, then N would have the

graph as in (2) of Remark 6.1. As any finite graph of N belongs to \mathbf{K}_{f_1} , so SOP_3 follows.

Lemma 6.2. \mathbf{K}_{f_1} has the free amalgamation property.

Proof. Let $A < B_1, B_2 \in \mathbf{K}_f$ and let $C = B_1 \otimes_A B_2$. We need to show that if $X \subseteq C$, then $\delta(X) \geq f_1(|X|)$. We may assume that X < C, because $\delta(X) \geq \delta(\operatorname{cl}(X))$ and $f_1(|\operatorname{cl}(X)|) \geq f_1(|X|)$.

Let $X_i = X \cap B_i (i = 1, 2)$ and let $X_0 = X \cap A$. Suppose that

$$\frac{\delta(X_1) - \delta(X_0)}{|X_1| - |X_0|} \le \frac{\delta(X) - \delta(X_0)}{|X_1| - |X_0|} \le \frac{\delta(X_2) - \delta(X_0)}{|X_2| - |X_0|}, |X_1| \ge 7.$$

As $X_0 < X_1$, $\beta(|X_1|) \le \delta(X_1/X_0)$. So, by (F2), $\frac{\delta(X_1) - \delta(X_0)}{|X_1| - |X_0|} \ge \frac{1}{|X_1|} \ge f_1'(|X_1|)$. So, the line between $(|X_0|, \delta(X_0))$ and $(|X_1|, \delta(X_1))$ lies above f_1 . As f_1' is decreasing and $\delta(X_1) \ge f_1(|X_1|)$, $\delta(X) \ge f_1(|X|)$ follows. In Appendix 1, we give the proof when $|X_1| \le 6$.

Notation 6.3. Consider the following graphs $G(A_n, B_n, x_0)$ for each $n < \omega$.

- Vertex set: $A_n \cup B_n \cup \{x_0\} \cup \{z_{ij} : 0 \le i < j \le n\}$, where $A_n = \{a_i : 0 \le i \le n\}$, $B_n = \{b_i : 0 \le i \le n\}$.
- Edges: $R(x_0, a_i)$, $R(x_0, b_i)$ for $0 \le i \le n$ and $R(z_{ij}, a_i)$, $R(z_{ij}, b_j)$ for $0 \le i < j \le n$.

Lemma 6.4. (1) $G(A_n, B_n, x_0) \in \mathbf{K}_{f_1}$

- (2) $x_0 A_n < G(A_n, B_n, x_0)$
- (3) $d(A_n/B_n) = d(A_n/x_0)$, where $d(*) = d_{G(A_n,B_n,x_0)}(*)$.

Proof. Put $G = G(A_n, B_n, x_0)$, $A = A_n$, $B = B_n$, $Z = \{z_{ij} : 0 \le i < j \le n\}$. (1): It suffices to show that if X < G, then $\delta(X) \ge f_1(|X|)$. It is clear in case of |X| = 1. If $|X| \ge 2$, then $x_0 \in X$. (If $x_0 \ne a, b \in X$, then $\delta(x_0/ab) = 0$, so $x_0 \in \operatorname{cl}_G(ab) \subset X$.)

Claim. $a_i, b_j \in X \Leftrightarrow z_{ij} \in X$.

This claim follows from $\delta(z_{ij}/a_ib_j)=\delta(a_i/x_0z_{ij})=\delta(b_j/x_0z_{ij})=0$ and X< G.

Put $X_A = X \cap A_n, X_B = X \cap B, X_Z = X \cap Z$ and $m = |X_A| + |X_B|$. By claim, we see that $\delta(X_Z/x_0X_AX_B) = 0$, so we have

$$\delta(X) = \delta(x_0 X_A X_B) = 2(m+1) - m = m+2 =: k \dagger$$

As $|X_Z| \le |X_A||X_B| \le |X_A|(m - |X_A|) = (\frac{m}{2})^2 - (|X_A| - \frac{m}{2})^2 \le (\frac{m}{2})^2$, we have

$$|X| \le 1 + m + (\frac{m}{2})^2 = (1 + \frac{m}{2})^2 = \frac{k^2}{4}$$

If $k \ge 6$, by (F3), $\delta(X) = k \ge f(\frac{k^2}{2}) = f_1(\frac{k^2}{4}) \ge f_1(|X|)$, as desired. If $k \le 5$, then $|X_A| + |X_B| \le 3$. If $|X_A| = 3$, then $X_Z = \emptyset$ and $\delta(X) = 2 \cdot 4 - 4 = 4 = f_1(4)$.

If $|X_A|=2, |X_B|=1$, then $\delta(X)\geq \left\{\begin{array}{l} 2\cdot 5-5=5>f_1(6)>f_1(5)\\ 2\cdot 4-3=5>f_1(6)>f_1(5) \end{array}\right.$ If $|X_A|=2, |X_B|=0$, then $X_Z=\emptyset$ and $\delta(X)=2\cdot 3-2=4=f(8)>f(6)=f_1(3)$. If $|X_A|=1, |X_B|=0$, then $X_Z=\emptyset$ and $\delta(X)=2\cdot 2-1=3=f(4)=f_1(2)$. By symmetry, we see that $X\in \mathbf{K}_{f_1}$.

(2):Let $x_0A \subset X \subseteq G$. We show that $\delta(X/x_0A) > 0$. We may assume X < G. By \dagger we have

$$\delta(X/x_0A) = \delta(x_0X_AX_B/x_0A) = \delta(X_B/x_0A) = \delta(X_B/x_0) = 2|X_B| - |X_B| > 0.$$

(3): It is clear that $\operatorname{cl}_G(x_0) = x_0, \operatorname{cl}_G(x_0A) = x_0A, \operatorname{cl}_G(x_0B) = x_0B$, and $\delta(A/Bx_0) = \delta(A/x_0)$. We also have $x_0AB \leq \operatorname{cl}_G(x_0AB) = G$, because $\delta(Z'/x_0AB) = \sum_{z \in Z'} \delta(z/x_0AB) = 0$. So, by Fact 4.2, we are done.

Notation 6.5. Suppose that $C_n = \{c_i : 0 \le i \le n\}$ and $C_n \cap A_n B_n = \emptyset$. Let E_n be the free amalgam of $G(A_n, B_n, x_0), G(B_n, C_n, x_0)$ and $G(C_n, A_n, x_0)$. i.e.

Edges = edges of $G(A_n, B_n, x_0)$, $G(B_n, C_n, x_0)$ and $G(C_n, A_n, x_0)$, only. In particular, we have $G(A_n, B_n, x_0)G(B_n, C_n, x_0) = G(A_n, B_n, x_0) \otimes_{B_n x_0} G(B_n, C_n, x_0)$, $G(B_n, C_n, x_0)G(C_n, A_n, x_0) = G(B_n, C_n, x_0) \otimes_{C_n x_0} G(C_n, A_n, x_0)$ and $G(C_n, A_n, x_0)G(A_n, B_n, x_0) = G(C_n, A_n, x_0) \otimes_{A_n x_0} G(A_n, B_n, x_0)$.

Lemma 6.6. Suppose that $A, B, C \in \mathbf{K}_{f_1}$, $|A|, |B|, |C| \leq 4$. Suppose that $A \cap B < A, B, A \cap C < A, C$ and $B \cap C < B, C, A$ and $AB = A \otimes_{A \cap B} B, AC = A \otimes_{A \cap C} C, BC = B \otimes_{B \cap C} C$. Put $X = A \cap B \cap C, Z = A \setminus (B \cup C), W = B \setminus (A \cup C), U = C \setminus (A \cup B)$. Suppose that $D = ABC \notin \mathbf{K}_{f_1}$

Then D is isomorphic to x, where $a \in A \cap C, b \in A \cap B, c \in B \cap C, x \in X, z \in Z, w \in W, u \in U$.

Proof. See Appendix 2. As $A \cap B < A$, if $c \in A \setminus (A \cap B)$, there is no $a,b \in A \cap B$ such that $R(a,c) \wedge R(b,c)$. This easy fact is important for the proof. (F1),(F2) and (F5) are also needed.

Lemma 6.7. (1) $E_n \in \mathbf{K}_{f_1}$ (2) $E_n < E_{n+1}$, so we may assume $E_n < E_{n+1} < M_{f_1}$ for any $n < \omega$.

Proof. (1): Let $D \subseteq E_n$ and $D_{AB} = D \cap G(A_n, B_n, x_0), D_{BC} = D \cap G(B_n, C_n, x_0), D_{CA} = D \cap G(B_n, C_n, x_0)$ $D \cap G(C_n, A_n, x_0)$ and $D_A = D \cap x_0 A_n, D_B = D \cap x_0 B_n, D_C = D \cap x_0 C_n$. By way of contradiction, suppose that $\delta(D) < f_1(|D|)$.

Claim. $|D_{AB}|, |D_{BC}|, |D_{CA}| \leq 4$.

Suppose that $\delta(D_{BC}), \delta(D_{CA}) \leq \delta(D_{AB}) =: d_{AB}$. Put $D' = D_{AB}D_{CA}$. By Fact 6.2, $G(A_n, B_n, x_0)G(C_n, A_n, x_0) \in \mathbf{K}_{f_1}$. So we have $D' \neq D$. As $E_n =$ $G(A_n, B_n, x_0)G(C_n, A_n, x_0) \otimes_{B_nC_nx_0} G(B_n, C_n, x_0)$ and $B_nC_nx_0 \leq G(B_n, C_n, x_0)$ by (3) of Lemma 6.4, we see

$$D' \leq D$$
.

As $x_0A_n < G(C_n, A_n, x_0)$ (so $D_A < D_{CA}$) and $D' = D_{AB} \otimes_{D_A} D_{CA}$, so

$$\delta(D') \ge d_{AB} + 1.$$

Subclaim 1: $f^{-1}(d_{AB}+1) < 3f^{-1}(d_{AB})$.

Note that $f^{-1}(d_{AB}) \geq f^{-1}(\delta(D_{**})) \geq 2|D_{**}|$. Suppose that this subclaim does not hold, then we have

$$f^{-1}(d_{AB}+1) \ge 3f^{-1}(d_{AB}) \ge 2(|D_{AB}|+|D_{BC}|+|D_{CA}|) \ge 2|D|.$$

So, we have $\delta(D) \geq \delta(D') \geq d_{AB} + 1 \geq f_1(|D|)$, a contradiction. This subclaim is proven.

Subclaim 2: $d_{AB} < f(10)$.

Otherwise, we have $f^{-1}(d_{AB}) \geq 10$. Thus, by $((F4): f(3n) \leq f(n)+1)$, we have $3f^{-1}(d_{AB}) \leq f^{-1}(f(f^{-1}(d_{AB}))+1) = f^{-1}(d_{AB}+1)$, this contradicts subclaim 1. Subclaim 2 is proven.

As $\delta(D_{**}) \leq d_{AB} < f(10)$, and $D_{**} \in \mathbf{K}_{f_1}$, we see the claim.

By this claim and Lemma 6.6, we have the following graph , where $a \in D_A, b \in D_B, c \in D_C, z \in D_{AB} \setminus D_A D_B, w \in D_{BC} \setminus D_B D_C, u \in \check{D}_{CA} \setminus D_A D_C.$ But this is impossible by definition of E_n .

(2): Let $V = \{z_{i,n+1}, w_{i,n+1}, u_{i,n+1} : 0 \le i \le n\}$ be the vertices of $E_{n+1} \setminus (E_n \cup E_n)$ $\{a_{n+1}, b_{n+1}, c_{n+1}\}\)$. Then

$$E_{n+1} = E_n \cup \{a_{n+1}, b_{n+1}, c_{n+1}\} \cup V.$$

Let $X \subseteq \{a_{n+1}, b_{n+1}, c_{n+1}\} \cup V$. Then $e(X, E_n) = |X|$, so $\delta(X/E_n) = \delta(X) - |X| = |X| - e(X)$. If $X \cap V = \emptyset$ or $X \cap \{a_{n+1}, b_{n+1}, c_{n+1}\} = \emptyset$, then e(X) = 0. Otherwise, $e(X) = |X \cap V| < |X|$, as desired.

Theorem 6.8. $Th(M_{f_1})$ has SOP_3 .

Proof. Let $\varphi(x_1y_1z_1, x_2y_2z_2) \equiv \bigwedge_{i=1,2} (R(x_0, x_i) \wedge R(x_0, y_i) \wedge R(x_0, z_i)) \wedge \exists z, w, u(R(x_1, z) \wedge R(z, y_2) \wedge R(y_1, w) \wedge R(w, z_2) \wedge R(z_1, u) \wedge R(u, x_2)).$ Let a_n, b_n, c_n be as in E_n $(n < \omega)$, and put $d_n = a_n b_n c_n$. Then $M_{f_1} \models \varphi(d_i, d_j)$ for $i < j < \omega$.

By way of contradiction, suppose that there exist $N \models \operatorname{Th}(M_{f_1})$ and $d'_0, d'_1, d'_2 \in N$ such that $N \models \varphi(d'_0, d'_1) \land \varphi(d'_1, d'_2) \land \varphi(d'_2, d'_0)$. Let $d'_i = a'_i b'_i c'_i$.

Now we have $v_{i_1}^{i_2}$ in N. But any substructure of N is in \mathbf{K}_{f_1} , a contradiction.

7. APPENDIX 1 (FREE AP OF \mathbf{K}_{f_1})

We show Lemma 6.2, when $|X_1| \leq 6$ and

$$\frac{\delta(X_1) - \delta(X_0)}{|X_1| - |X_0|} \le \frac{\delta(X) - \delta(X_0)}{|X| - |X_0|} \le \frac{\delta(X_2) - \delta(X_0)}{|X_2| - |X_0|}.$$

By assumption and $|X|-|X_1|=|X_2|-|X_0|$, $\delta(X_2/X_0)\geq \delta(X_1/X_0)\frac{|X|-|X_1|}{|X_1|-|X_0|}$ follows.

Remark 7.1. (1) $\delta(X) \ge \delta(X_1) + \delta(X_1/X_0) \frac{|X| - |X_1|}{|X_1| - |X_0|}$.

- (2) $f'(x) (\leq \frac{1}{14})$ is decreasing for $x \geq 14$ by (F2).
- (3) $e(X_1 \setminus X_0^{14}, X_0) \le |X_1 \setminus X_0|$ by $X_0 < X_1$. So we have $\delta(X_1/X_0) \ge |X_1 \setminus X_0| e(X_1 \setminus X_0)$.
- (4) X_0, X_1, X_2 do not contain 3-cycles, since they belong to \mathbf{K}_{f_1} .

Proof. (3):
$$\delta(X_1/X_0) = \delta(X_1 \setminus X_0) - e(X_1 \setminus X_0, X_0) \ge \delta(X_1 \setminus X_0) - |X_1 \setminus X_0| = |X_1 \setminus X_0| - e(X_1 \setminus X_0).$$

Now we check $\delta(X) \ge f(2|X|)$ for each case on the size of $X_1 \setminus X_0$, X_0 . Recall (F1): f(0) = 0, f(2) = 2, f(4) = 3, $f(8) = 4 < f(10) < 4\frac{1}{2} < f(12) < 5 < f(14) < 5\frac{1}{3}$.

The case that
$$|X_1 \setminus X_0| = 1$$

• $|X_1 \setminus X_0| = 1, |X_0| = 0$
 $\delta(X) \ge 2 + 2 \frac{|X| - 1}{1} = 2|X| \ge f(2|X|).$

(By $\delta(X_1) = \delta(X_1/X_0) = 2$ and $2x \ge f(2x)$ for $x \ge 2$)

• $|X_1 \setminus X_0| = 1, |X_0| = 1$
 $\delta(X) \ge (4-1) + (2-1) \frac{|X| - 2}{1} = 1 + |X| \ge f(2|X|).$

(By $1 + x \ge f(2x)$ and $\delta(X_1) \ge 4 - 1, \delta(X_1/X_0) \ge 2 - 1.$)

• $|X_1 \setminus X_0| = 1, |X_0| = 2$
 $\delta(X) \ge (6-2) + 1 \frac{|X| - 3}{1} = 1 + |X| \ge f(2|X|).$

(By $\delta(X_1) \ge 6 - 2, \delta(X_1/X_0) \ge 2 - 1$ and $1 + x \ge f(2x)$)

• $|X_1 \setminus X_0| = 1, |X_0| = 3$
 $\delta(X) \ge (8 - 3) + 1 \frac{|X| - 4}{1} = 1 + |X| \ge f(2|X|).$

(By $\delta(X_1) \ge 8 - 3, \delta(X_1/X_0) \ge 2 - 1$ and $1 + x \ge f(2x)$)

• $|X_1 \setminus X_0| = 1, |X_0| = 4$
 $\delta(X) \ge (10 - 5) + 1 \frac{|X| - 5}{1} = 1 + |X| \ge f(2|X|).$

(By $\delta(X_1) \ge 10 - 5, \delta(X_1/X_0) \ge 2 - 1$ and $x \ge f(2x)$ if $x \ge 6$.)

• $|X_1 \setminus X_0| = 1, |X_0| = 5$
 $\delta(X) \ge (12 - 6) + 1 \frac{|X| - 6}{1} = |X| \ge f(2|X|).$

(By $\delta(X_1) \ge 12 - 6, \delta(X_1/X_0) \ge 2 - 1$ and $x \ge f(2x)$ if $x \ge 6$.)

The case that $|X_1 \setminus X_0| = 2$

• $|X_1 \setminus X_0| = 2, |X_0| = 0$
 $\delta(X) \ge 3 + 3 \frac{|X| - 1}{1} \ge f(2|X|).$

(By $\delta(X_1) = \delta(X_1/X_0) \ge 3$ and $3x + 2 \ge f(2x).$)

• $|X_1 \setminus X_0| = 2, |X_0| = 1$
 $\delta(X) \ge 4 + 2 \frac{|X| - 3}{2} \ge f(2|X|).$

(By $\delta(X_1) \ge 6 - 2, \delta(X_1/X_0) \ge 3 - 1$ and $x + 1 \ge f(2x).$)

• $|X_1 \setminus X_0| = 2, |X_0| = 2$
 $\delta(X) \ge 4 + 1 \frac{|X| - 3}{2} \ge f(2|X|).$

(As $\delta(X_1) \ge 8 - 4$, $\delta(X_1/X_0) \ge 3 - 2$ and $4 + \frac{x - 4}{2} \ge f(2x)$ if $x \ge 5$.)

$$\bullet |X_1 \setminus X_0| = 2, |X_0| = 3$$

$$\delta(X) \ge 5 + 1 \frac{|X| - 5}{2} \ge f(2|X|).$$

$$(\operatorname{As} \delta(X_1) \ge 10 - 5, \delta(X_1/X_0) \ge 3 - 2 \text{ and } 5 + \frac{x - 5}{2} \ge f(2x) \text{ if } x \ge 6.)$$

$$\bullet |X_1 \setminus X_0| = 2, |X_0| = 4$$

$$\delta(X) \ge 5 + 1 \frac{|X| - 6}{2} \ge f(2|X|).$$

$$(\operatorname{As} \delta(X_1) \ge 12 - 7, \delta(X_1/X_0) \ge 3 - 2 \text{ and } 5 + \frac{x - 6}{2} \ge f(2x) \text{ if } x \ge 7.)$$

$$The \text{ case that } |X_1 \setminus X_0| = 3$$

$$\bullet |X_1 \setminus X_0| = 3, |X_0| = 0$$

$$\delta(X) \ge 4 + 4 \frac{|X| - 3}{3} \ge f(2|X|).$$

$$(\operatorname{As} \delta(X_1) = \delta(X_1/X_0) \ge 6 - 2 \text{ and } 4 + 4 \frac{x - 3}{3} \ge f(2x) \text{ if } x \ge 4.)$$

$$\bullet |X_1 \setminus X_0| = 3, |X_0| = 1$$

$$\delta(X) \ge 5 + 3 \frac{|X| - 4}{3} \ge f(2|X|).$$

$$(\operatorname{As} \delta(X_1) \ge 8 - 3, \delta(X_1/X_0) \ge 4 - 1 \text{ and } 5 + 3 \frac{x - 4}{3} = x + 1 \ge f(2x) \text{ if } x \ge 5.)$$

$$\bullet |X_1 \setminus X_0| = 3, |X_0| = 2$$

$$\delta(X) \ge 5 + 2 \frac{|X| - 5}{3} \ge f(2|X|).$$

$$(\operatorname{As} \delta(X_1) \ge 10 - 5, \delta(X_1/X_0) \ge 4 - 2 \text{ and } 5 + 2 \frac{x - 5}{3} \ge f(2x) \text{ if } x \ge 6.)$$

$$\bullet |X_1 \setminus X_0| = 3, |X_0| = 3$$

$$\delta(X) \ge 5 + 1 \frac{|X| - 6}{3} \ge f(2|X|).$$

$$(\operatorname{As} \delta(X_1) \ge 12 - 7, \delta(X_1/X_0) \ge 4 - 3 \text{ and } 5 + 1 \frac{x - 6}{3} \ge f(2x) \text{ if } x \ge 7.)$$

The case that
$$|X_1 \setminus X_0| = 4$$

$$\bullet \ |X_1\setminus X_0|=4, |X_0|=0$$

$$\delta(X) \ge 4 + 4 \frac{|X| - 4}{4} \ge f(2|X|).$$

(As
$$\delta(X_1) = \delta(X_1/X_0) \ge 8 - 4$$
 and $4 + 4\frac{x-4}{4} = x \ge f(2x)$ if $x \ge 5$.)

•
$$|X_1 \setminus X_0| = 4, |X_0| = 1$$

$$\delta(X) \ge 5 + 3 \frac{|X| - 5}{4} \ge f(2|X|).$$

$$(\text{As } \delta(X_1) \ge 10 - 5, \ \delta(X_1/X_0) \ge 4 - 1 \text{ and } 5 + 3 \frac{x - 5}{4} \ge f(2x) \text{ if } x \ge 6.)$$

$$\bullet |X_1 \setminus X_0| = 4, |X_0| = 2$$

$$\delta(X) \ge 5 + 2 \frac{|X| - 6}{4} \ge f(2|X|).$$

$$(\text{As } \delta(X_1) \ge 12 - 7, \ \delta(X_1/X_0) \ge 4 - 2 \text{ and } 5 + \frac{x - 6}{2} \ge f(2x) \text{ if } x \ge 7.)$$

The case that $|X_1 \setminus X_0| = 5$

•
$$|X_1 \setminus X_0| = 5, |X_0| = 0$$

$$\delta(X) \ge 5 + 5 \frac{|X| - 5}{5} = |X| \ge f(2|X|).$$
(As $\delta(X_t) = \delta(X_t/X_0) \ge 10 - 5$ and $x \ge f(2x)$ if $x \ge 10 - 5$

(As
$$\delta(X_1) = \delta(X_1^0/X_0) \ge 10 - 5$$
 and $x \ge f(2x)$ if $x \ge 6$.)

•
$$|X_1 \setminus X_0| = 5, |X_0| = 1$$

$$\delta(X) \ge 5 + 3\frac{|X| - 6}{5} \ge f(2|X|).$$

(As
$$\delta(X_1) \ge 12 - 7$$
, $\delta(X_1/X_0) \ge 5 - 2$ and $5 + 3\frac{x - 6}{5} \ge f(2x)$ if $x \ge 7$.)

The case that $|X_1 \setminus X_0| = 6$

•
$$|X_1 \setminus X_0| = 6, |X_0| = 0$$

$$\delta(X) \ge f(12) + f(12) \frac{|X| - 6}{6} = f(12)|X| \ge f(2|X|).$$
(As $\delta(X_1) = \delta(X_1/X_0) \ge f(12)$ and $f(12)|X| > 4|X| \ge f(2x)$ if $x \ge 7$.)

8. Appendix 2 (The proof of Lemma 6.6)

We show the following.

Lemma 6.6 Suppose that $A, B, C \in \mathbf{K}_{f_1}$, $|A|, |B|, |C| \leq 4$. And suppose that $A \cap B < A, B, A \cap C < A, C \text{ and } B \cap C < B, C, \text{ and } AB = A \otimes_{A \cap B} B, AC =$ $A \otimes_{A \cap C} C, BC = B \otimes_{B \cap C} C.$ Put $X = A \cap B \cap C, Z = A \setminus (B \cup C), W =$ $B \setminus (A \cup C), U = C \setminus (A \cup B).$

If $D = ABC \notin \mathbf{K}_{f_1}$, then D is isomorphic to \emptyset , where $a \in A \cap C, b \in A$ $A \cap B, c \in B \cap C, x \in X, z \in Z, w \in W, u \in U.$

Proof. We use the following easy fact: If X < Y, $c \in Y \setminus X$, $a, b \in X$, then $R(a,c) \wedge R(b,c)$ does not hold.

Clearly, D = BCZ.

We may assume that $Z, W, U \neq \emptyset$, since, for example, if $Z = \emptyset$, then $D = B \otimes_{B \cap C} C \in \mathbf{K}_{f_1}$ by free AP. As $|A|, |B|, |C| \leq 4$, we have $|A \cap C| \leq 3$.

a, a' denote elements of $A \cap C$, b, b' denote elements of $A \cap B$, c, c' denote elements of $B \cap C$, z, z' denote elements of Z, w, w', w'' denote elements of W, u, u' denote elements of U and x, x' denote elements of X.

We check each case on the size of $|A \cap C|$.

The case that $|A \cap C| = 3$

We have $6 \le |D| \le 9$. As $|A| \le 4$, |Z| = 1 and $A \cap B \setminus X = \emptyset$ follow. So, we have $\delta(Z/BC) \ge 1$. Thus $\delta(D) = \delta(BC) + \delta(Z/BC) \ge f(2|D|-2) + 1 \ge f(2|D|)$.

The case that $|A \cap C| = 2$

• $|(A \cap C) \setminus X| = 2$ (i.e. $X = \emptyset$.)

Suppose that |Z| = 2. So, $6 \le |D| \le 10$.

As $A \cap B = \emptyset$, $\delta(Z/BC) \ge 3 - 2$ follows. So, $\delta(D) \ge \delta(BC) + 1 \ge f(2|D| - 4) + 1 \ge f(2|D|)$ by (F5), $f(8) + 1 = 5 \ge f(12)$, $f(14) + 1 \ge 6 \ge f(18)$ and (F2).

Suppose that |Z| = 1, so $|A \cap B| \le 1$.

If $A \cap B = \emptyset$, then $5 \le |D| \le 9$, $\delta(Z/BC) \ge 2 - 1$ follows. So, $\delta(D) \ge \delta(BC) + 1 \ge f(2|D| - 2) + 1 \ge f(2|D|)$.

If $|A \cap B| = 1$, then $6 \le |D| \le 9$.

If |D| = 6, then D = aa'zbwu. Then $\delta(D) = 12 - 5 = 7 \ge f(12)$.

If |D| = 7, then D = aa'zbwuu', aa'zbwuu' or aa'zbww'u, because $Z, W, U \neq \emptyset$. Then $\delta(D) \geq 14 - 7 = 7 \geq f(14)$.

If |D| = 8, then D = aa'zbww'uu' or aa'zbww'cu, because $Z, W, U \neq \emptyset$. Then $\delta(D) > 16 - 9 = 7 > f(16)$.

If |D| = 9, then D = aa'zbww'w''uu', because $Z, W, U \neq \emptyset$. Then $\delta(D) \geq 18 - 9 = 9 \geq f(18)$.

• $|(A \cap C) \setminus X| = |X| = 1$.

Suppose that $|A \cap B \setminus X| = 0$. Then $\delta(Z/BC) \ge 1$. So, $\delta(D) \ge f(2|D| - 2|Z|) + 1$.

If |Z|=1, then $5 \le |D| \le 8$, so $f(2|D|-2)+1 \ge f(2|D|)$ holds. If |Z|=2, then $6 \le |D| \le 9$. $f(2|D|-4)+1 \ge f(2|D|)$ holds for |D|=6,9. $(f(8)+1=5 \ge f(12))$ and $f(14)+1 \ge 6 \ge f(18)$. For |D|=7, D=xazz'wcu, xazz'wuu' or xazz'ww'u and then $\delta(D) \ge 14-8 \ge f(14)$ holds. For |D|=8, D=xazz'ww'cu or xazz'ww'uu' and then $\delta(D) \ge 16-10 \ge f(16)$ holds.

Suppose that $|A \cap B \setminus X| = 1$. Then $6 \le |D| \le 8$. If |D| = 6, then D = xazbwu and $\delta(D) \ge 12 - 6 \ge f(12)$. If |D| = 7, then D = xazbwuu', xazbww'u or xazbwcu. If the former two cases hold, then $\delta(D) \ge 14 - 8 \ge f(14)$.

In the latter case, D is $\frac{d}{dt}$ if and only if $\delta(D) = 14 - 9 < f(14)$. If |D| = 8, then D = xazbww'uu' and $\delta(D) \ge 16 - 10 \ge f(16)$.

•
$$|(A \cap C) \setminus X| = 0, |X| = 2$$

We have $5 \le |D| \le 8$.

If |D| = 5, then D = xx'zwu and $\delta(D) \ge 10 - 4 \ge f(10)$.

If |D| = 6, then D = xx'zz'wu, xx'zbwu, xx'zww'u, xx'zwcu or xx'zwuu' and $\delta(D) \ge 12 - 7 \ge f(12)$.

If |D| = 7, then D = xx'zz'ww'u, xx'zbwuu', xx'zww'uu', xx'zz'wcu, xx'zz'wuu', xx'zbwuu' or xx'zww'uu'.

If $D \neq xx'zz'wcu, xx'zbwuu'$, then $\delta(D) \geq 14 - 8 \geq f(14)$. And we have

 $\delta(D)=14-9 < f(14)$ if and only if D is the present of the contract of $B\cap C$ is an ever happens, because $B\cap C < B$ and $A\cap B < B$, so w does not have two edges to $B\cap C$, also to $A\cap B$. If |D|=8, then D=xx'zz'ww'uu' and $\delta(D)=16-10\geq f(16)$.

The case that $|A \cap C| = 1$

•
$$|(A \cap C) \setminus X| = 1$$
 ($|X| = 0$)

By symmetry, we may assume $|A \cap B|, |B \cap C| \leq 1$.

Suppose that $|A \cap B|, |B \cap C| = 1$. Then $6 \le |D| \le 9$. If |D| = 6, $\delta(D) \ge 12 - 6 \ge f(12)$. If |D| = 7, $\delta(D) \ge 14 - 7 \ge f(14)$. If |D| = 8, $\delta(D) \ge 16 - 8 \ge f(16)$. If |D| = 9, $\delta(D) \ge 18 - 9 \ge f(18)$. Suppose that $|A \cap B| = 0$ or $|B \cap C| = 1$. By symmetry, we assume that $|A \cap B| = 0$. Then $AC \cap B = B \cap C$. By assumption on $A, B, C, B \cap C < C < AC$ and $AC = A \otimes_{A \cap C} C \in \mathbf{K}_{f_1}$ by free AP. As $B \cap C < AC, B$ and $D = AC \otimes_{A \cap C} B$, we have $D \in \mathbf{K}_{f_1}$ by free AP.

• $|(A \cap C) \setminus X| = 0$ and |X| = 1.

As we have shown tha case that $|A \cap C| = 2, 3$, by symmetry, we may assume that D = XZWU. (i.e. $|(A \cap B) \setminus X| = 0$ and $|(B \cap C) \setminus X| = 0$) As $X < XZW = XZ \otimes_X XW \in \mathbf{K}_{f_1}$ and $X < XU \in K_{f_1}$, we have $D = XZW \otimes_X XZ \in \mathbf{K}_{f_1}$ by free AP.

The case that $|A \cap C| = 0$

As we have shown tha case that $|A \cap C| = 1, 2, 3$, by symmetry, we may assume that D = ZWU. (i.e. $|A \cap B| = 0$ and $|B \cap C| = 0$.) By free AP, we see $D \in \mathbf{K}_{f_1}$.

REFERENCES

- [E] D.M.Evans, Some remarks on generic structures, preprint, July 2003 (working draft)
- [E1] D.M.Evans, ℵ₀-categorical structures with a predimensions, Annals of Pure and Applied Logic 120 (2003) 157-186.
- [P] M.Pourmahdian, Smooth classes without AC and Robinson theories, The Journal of Symbolic Logic 67 (2002) 1274-1294.
- [Sh] S.Shelah, Toward classifying unstable theories, Annals of Pure and Applied Logic 80 (1996) 229-255.

E-mail address: ikuo.yoneda@s3.dion.ne.jp