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GENERIC STRUCTURES AND CONTROL FUNCTIONS
(A COMMENTARY ON EVANS’PREPRINT )

FHEAE R EFH KEME (IKUO YONEDA)
DEPARTMENT OF MATHEMATICS, TOKAI UNIVERSITY

ABSTRACT. We survey the results in ”Some remarks on generic structures”
[E] written by Evans, and give some detailed proofs which are omitted in
kis note.

1. INTRODUCTION

In simplicity theory, Hrushovski’s generic constructions yield various results.
As in his w-categorical stable pseudoplane, he constructed an w-categorical,
simple, rank one, non-locally modular theory by amalgamating finite graphs
whose local rank is controlled by an increasing unbounded convex function.
In [E1], Evans gave a sufficient condition on control functions for constructing
w-categorical simple generic structures. We review this in fifth section. In
[E], Evans gave an w-categorical non-simple generic structure by carefully set-
ting a control function (In this note, sixth section). This non-simple generic
structure has 3-strong order property. For any n > 3, n-strong order property
was introduced by Shelah. (See [Sh] and third section in this note.) Strict
order property implies n-strong oder property, and n + l-strong order prop-
erty implies n-strong order property for any n > 3. Evans showed that generic
structures given by control functions do not have 4-strong order property, we
follow this result in fourth section.

In [P], Pourmahdian conjectured that generic stuructures without control func-
tion, so-called (Kjp, <)-generic structure, will be non-simple. In [P}, Pourmah-
dina considered a natural expansioned inductive (incomplete) theory T, of 2
universal theory Tp only axiomatizing that any finite substructure has non-zero
positive local rank. Pourmahdian showed that T3, is a Robinson theory and
its universal domain is simple as a structure, and 7,,,: does not have model
companion. {Natural expansioned structure of (Ko, <)-generic structure is an
existentially closed model of T,,,;.) Evans gave an example of (Kg, <)-generic
structure having strict order property, we discuss this issue in second section.
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This note is organized as follows.
Section 2: We will follow the proof that Th(Ap) has strict order property,
- where Mjy is (Kg, <)-generic structure with one ternary relation.
Section 3: Review of [Sh].
Section 4: We will follow the proof that Th(A/f) does not have SOP,, where Al
is a (Kj, <)-generic structure and Ky is the class of finite graph A satisfying
with §(A) > f(|A]) and control function f is a convex increasing unbounded
function from N to R.
Section 5: Review of [E].
Section 6: We will follow the proof that for some control function f, Th(A{)
has SOP3, where §(x) = 2| | — e().
Section 7,8: Long appendices for Section 6, which are omitted in [E1].

2. Th(Aly) HAS SOP. (DEFINABLE CORRESPONDENCE BETWEEN GRAPHS
' AND TERNARY HYPERGRAPHS)

Let R be a ternary relation. For finte ternary-hypergraph 2%, we define the
predimension as follows.

5(20) — 20 — %]
For finite A C B we define a partial order < as follows
A< B & 6(X) > 5A(ACVXCB).
For possibly infinite % C B we define
A<B e XNA<XVX C, B).

Note that U < A. For possibly infinite 2 C 9B, there exists the <-closure
cle () of A in B. K is the class of finite 3-hypergraphs defined by

Q‘EKQ<:>®<91

K, is the class of 3-hypergraphs whose finite sub-hypergraph is all in K.
My denotes the (Ko, <)-generic structure.

Notation 2.1. Let (A, R) be a graph, where R is the binary relation for the
graph. We define the following ternary graph ($4,R).
e 94 = AURAU {z4,ya}, where z4,y4 are new elements.
o (R)%4 = {(z4,ya,0) 1 a € A}U {(a,b, (a,b)) : {a,b) € R}
(H4,R) is definable in (A, R) with two new constants.
Lemma 2.2. Let (A, R) be a graph. Then

(1) %4 € Ko.
(2> Na = CIYJA(IA;yA)-
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Proof. Let X C,, 94, and let V(X) be the vertex set of X. Then V(%) C
AURA U {x4,ys} follows. If z4,y4 € X, then §(X) = [V(X)| - (JV(X) N
RA| + V() N AJ) > 0, since V(%) = {24,514} U (V(Z) 0 R4 U (V(X) N 4).
Otherwise, §(X) = {V(%)[ — ([V(X) N R4]) > 0, since |V(X) N R*| > 0 implies
V(x)n Al > 0.

Let ¢ € A. Then 8(c/za,ya) = 0. So, if ¢ & clg,(za,y4), then 0 <
5(c/clg (T a,ya)) < 6(c/za,ya) = 0, a contradiction. Next, let ¢ = (a,b) €
RA. Then d(c/a,b) = 0. By the above argument, we see ¢ € clg,(a,b). As
a,b € clg,(za,y4), We see that ¢ € cly,(T4,Y4) O

Next, for any symmetric 3-hypergraph having at least two vertices, we con-
struct a graph as follows.

Notation 2.3. Let (2A,R) be a symmetric 3-hypergraph having at least two
vertices. Fix two vertices a,b € 2. We define the following graph Gaap =
(Gay, R) as follows.
o Gg = {ceU: AE=R(c,a,b)}
o RC = {(c,d) € A : A = R(c,a,b) AR(d, a,b) A FzR(z,c,d)}
Gaapy = (Ga, R) is definable in (A, 2) with parameters a,b € 2.

Remark 2.4. (1) A# Hg,, ,, Where a,b € A (fA = -NR(d, a,b), d will
not appear in the righthand.)
(2) A G(S’JA,EA,'QA)'

Proof. Clearly, Gg, = A and R%s4 = R4, as desired.

Lemma 2.5. Let (A, R) be a symmetric 3-hypergraph having at least two ver-
tices. Then

(1) a,b & Gy C cly(a,b)

(2) If (c,d) € R, then \=(Y = 32M(x, ¢, d)

(3) If A < B, then G(Ql,a,b) = G(g,ﬂ,b)

Proof. If & = R(c,a,b), then ¢ € cla(a,d). (1),(2) follow. If A < B, then
cla(a,b) = clm(a, b). So, (3) follows. O

Notation 2.6. Let ¢ be a sentence in the language of graphs with binary
relation symbol R(zy, z2). We construct a fourmula o, having free vari-
able y, z in the the language of 3-hypergraphs with ternary relation
symbol R(z1, z2, z3) as follows.

e Replace all atomic subformulas B(z1,z2) by R(z1,y, 2} AR(22,y, 2) A
JuwR(w,y, 2)

* Replace Va(y(z)), 3c(y(2)) by Va(R(z,y,2) = ¢(2)), Je(R(z,4,2) A
¥(z)).



Remark 2.7. Let (A, R) € Ky, a,b € 2 and ¢ be a sentence in the language
of graphs. Then

G(Ql,a,b) }: SD < 2[ *: w‘ﬁ(a’ b)

The above remark follows from “REDUCTION THEOREM” , a (non-onto)
map from G to 2, and the way of replacement of quantifiers. Reduction
theorem needs a onto map, but our ¢,’s quatifiers are bounded in fR(x, a, b).
So we need not a onto map, here.

Fact 2.8. Let M be an L-structure, and N be an L'-structure. Suppose that

e there ezxists a partial onto map f from AM™ to N (for somen < w)
e for every positive atomic L-formula 0, there ezists an L'-formula 1,

such that M = 6(G) © N | ¢(f(a))
THEN, by induction on the complezity of formulas, for every L-formula o,
there ezists an L'-formula v, such that M |= ¢(a) & N = ¢,(f(a))
Lemma 2.9. Let ¢ be a sentence in the language of graphs. THEN, “there
ezists a finite graph A = ¢” iff My = 3yz,(y, 2).

Proof. (=): We may assume that $4 < Mp. So, by Remark 2.4, A =~

Goazaya) ™ GMozaya)- Lherefore, Moy = Yo(Ta,ya)
(<) Go,apy = ¢ and Gar,aby C clagla, b) Cu Mo O

Proposition 2.10. Let ¢ be a sentence in the language of graphs. Suppose
that p has arbitralily large finite model. Then there ezists an infinite model,
definable in some model of Th(Al).

Proof. By our assumption, for any n < w, there exists a finite graph A,, such
that A, |= ¢ and |4,] = n. As Ay ~ Gs, 24,44, ( by Remark 2.4) and
w > 94,| > |An| = n, for any n < w,

f)A,, }: T//¢($A>ZI.4) A |9{QA’1 (*7 T4, yA)} 2 .

As My is (Ko, <)-generic, there exists $4, ~ A < My. Since Gg, 24 ya,) =~
Gauapy = Gaap), Where Tay4 — ab,

Th(Mo) F Sy2tip(y, 2) A [R5, 4, 2)| = 1.
By compactness, there exist infinite A/ = Th(Ay) and o/, € M such that
Gu,arpy = @, where Gr,qa ) 18 definable in A O
Theorem 2.11. Th(Aly) has strict order property.

Proof. Let A, be the graph as follows;
e Vertices: {b; : i <n}U{¢:i<n}
e Edges: {(bi,¢;): 0<i<j<n}
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Let a; = (b, c;), and p(zy, 2w) = R(z,y) A R(z,w) A R(z,w) A —=R(z,z) A
~R(y,w) A ~R(y,z). Then A, |= ¢(ai,0;) &1 <j <n

By Lemma 2.9, we can find a linear (uniformly definable) ordering of arbi-
traily finite length in A%. By compactness, we see that Th(Al) has the strict
order property. O

3. REVIEW OF STRONG ORDER PROPERTY
This section consists of Shelah’s results in [Sh}.

Definition 3.1. A complete theory T has n-strong order property, denoted
SOP,, if there exists a formula ¢(z,y) (Ih(z) = Ih(y)) and a sequence (a; : @ <
w) in some model N of T such that

(1) N = ¢las,a5) fori < j <w

(2) there is no n-p-loops;

N l: —'35':07 5 I wn—l‘p(m(h 3;1) A (p(mla 1172) ANV (ID(:CT’L-—zv :Un——l)
Fact 8.2. (1) SOP implies SOP,,.

(2) SOP,,,; tmplies SOP,,.
(3) If T has SOPs, then T has the tree property.

Proof. (1): By way of contradiction, suppose that T has SOP and NSOP,.
So, there exist (z,y), N l= T and (a; : i <w) C N such that Vz(p(z,a;) —
o(z,a;)) ATz (—p(@, a;)Ap(, a;)) fori < j <w. Let p{zg, 1) = Va(p(z, o) —
o(z, 1)) A Jz(—~p(z, o) Ap(z, o). As T has NSOP,, there exists n-i)-loop,
but it is impossible.

(2): Let o(z,y), a model M, and (a; : ¢ < w) € M be witness for SOPn,1. We
may assume that (a; : i < w) is indiscernible. We divide the arugument into
two cases, whether

M | 3zg, .. Ta—1f®o = a1 A Ty = a0 A /\ e(zs, z5)
i,j<n,k=l+1(modn)
or not.
e The case that M |= 3z, ... Tn-1[Zo = QAT = a’o/\/\z’,j<n,kzl+1(modn) o(z;, ;)]
Asa; =,, ag, we have M = 31q, . .. Tnoa[To = 02ALa—1 = QAN jen ks 1(modn) P(Fi )]-

Let ag, ¢4, ... Cn2, ag be the witness for g, ... T,-;. By the way, Al E plag, ag)A
o(ag, ay), 80 ay,a9,C1, ... Cag,s G Is an (n + 1)-p-loop, a contradiction.
o The case that A [~ 3zq, ... Tu-1[To = a1ATn-1 = QAN ; <n k=t 1(modn) oz, )]
Put ¢(z,y) = (@, y) A=, . .. Tn-1[To = TAZY = YA, cn ki1 (modn) £(Fi> T5)
Then M k= 9(a;,a;)(i < j <w), and n-p-loops never exist.
(3): Let & = cf(s) > |T] and A > & be such that cf(A) = x and “u < A implies
2% < X" (strongly limit singular cardinal of cofinality ). Put J = "X and
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I C-J be such that n € I iff n(z) = 0 for every i < k large enough. ‘

Let ¢(z,y) be the witnee for SOP3;. By compactness, there exist a sequence
(ay : m € I) in some model A shch that A = ¢(ay, a,) for any n < v.

The lexicographic order on I is as usual; if 4 is the least such that n|i = v|i,
then 7(z) = v(i). _

We may assume that Al is kx*-saturated, and [Af]| > A. Fixann € *(A\{0})\1.
We will define a,, as follows.

Put py = {@(a1i04.0)» T) A @Galime) 1000y T) 1 1 < K}

Note that (n|¢)0 x), (n]é, 7(2) + 1)0x) € I, and

Unlin@)0) = PLANNO g E) A P(BatinGi) 10 L)-

As M is kT -saturated, there exists a realization of p, in A, say a,,.

Claim. If n; # n2 € *(A\ {0}), then p,, Up,, is inconsitent.

Suppose that m; < 1. Then there exists ¢ < k such that m i = nali, ;(7) <
na(i). Take v < p € T be with 71 < v < p < 15 as follows.
mli =mali = v|i = pli, v(3) = m(d) + 1, p(3) = 12(3), v(j) = 0(j > @), p(i+ 1) =
(i + 1),p(j) = 0(j > i+ 1).
As p(z,a,) € py,, ¢z, a,) € Pyy,and M = ¢(ay, a,), if we found the realization
of Py, U pn,, say ¢, then c,a,, a, would be the 3-p-loop, a contradiction.

We also have |p,| = &, | | {Dom(p,) : 7 € "(A\ {0} }] < X (as U{Dom(p,) :
ne“A\{0D} C {a, : v € 1))

By 7.7(3) and 7.6(2) on p.141 of Shelah’s 2nd editon book, A = A<* > 2171
(by cf(A) = < A) and & > |T| imply that T" has the tree property. O

It is conjectured that SOPy is a good dividing line for existence of universal
models, i.e. if T does not have SOP4, it will have universal models of car-
dinality A > |T| (Shelah showed that if T' is simple and A > |T'|, then there
exists universal models of cardinality ATt. As the above, simplicity implies
NSOP;3.)

4. Th{Al;) DOES NOT HAVE SOP,

Let & be a local rank on relational finite structures such that §(A/B) <
8(A/AN B), where §(A/B) = 6(AB) — 6(B). Let f: RZ® — R’ be upper un-
bounded and monotone increasing. Let Ky = {A € Ko : 6(X) > f(IX[)(VX C
A)} and B(z) = min{d(X/A) : A < X € Ko, A # X,|X| < z}.

Fact 4.1. Suppose that
A=)

= .

fi(z) <
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Then K; is closed under free amalgamation, so (K, <)-generic My ezists,
cl = acl in M; and Th(M;) is w-categorical. (w-categoricity follows from

el{x)] < f*l(d‘(*)) for finite graphs.)

Proof. Let A < By,By € K; and let C = B; ®4 Ba. We need to show
that if X C C, then 6(X) > f(|X]). We may assume that X < C, because
§(X) > 9(cl(X)) and f(|cl(X)]) = F(IX]).

Let X; = X N B;(i = 1,2) and let Xp = X N A. Suppose that

8(X1) — 6(Xo) _ 8(X) — 8(Xo) _ 9(Xa) — §(Xo)
Xl =Xl 7 X[ = [Xol T [ Xa] — [ Xol '
As Xp < X1, B(X1|) < 8(X1/Xo). Therefore O(I))?l)] :T)((i(f()) 2 ﬂ?';illl) 2

f'(1X1]). So, the line between (| Xol, 8(Xo)) and (|X1],8{X1)) lies above f. As
f''is decreasing and 6(X;) > f(|X1|), 6(X) > f(]X]) follows. O

Let d(A) = &(cl(A)), and d(a/A) = &(cl{aA)/cl(A)). For possibly infinite
B, let d(a/B) = inf{d(a/By) : Bs C., B}.
Fact 4.2. Let M be a relational structure having §-rank. Let a, A, B C, M.
Suppose that A < B < M and cl{ad) C, M. Then d(a/B) = d(a/A)
iff cl(ad) N B = A,cl(aA)B = cl(aA) ®4 B and d(aB) = d(cl{ad)B) (i.e.
cl{aA)B < cl(aB)).

Proof. As A < cl(aA) N B or A = cl{aA) N B, we have §(4) < d(cl(A) N B).
So, d(cl{ad)/cl(aA) N B) < 8(cl{aA)/A). Therefore

d(a/B) < 6(cl(ad)/B) < é(cl(aA)/cl(ad) N B) < d(cl(aA)/A) = d(a/A).
Now we can see the conclusion. Cl

By Fact 4.2, for a,b, A C, M,

d(a/Ab) = d(a/A) & d(b/Aa) = d(b/A).

(By d{a/Ab) = d(a/A) & “cl(aA)Ncl(bA) = cl(A), cl(aA)cl(bA) = cl{aA)Bqa)
cl(bA) < cl{abA)”.)

From now on, we assume that the control function f saitsfies
@y, IB(I)

fi(z) < —

substructures are all in K;. Let Ty = {Vz-Diag,{X) : 6(4) < f(|4]),]4] <
w}. Then M |=T; & M € K;. Let M be a big model of M;. Note that if
AC, M, then A € Ky.

Proposition 4.3. Suppose that, in M, if A = acl(A), d(a/A) = d(a/Ab),
acl(ad) N acl(bA) = A, then there exists Ao C., A such that d(a/Agb) =
d{a/Ag). THEN Th(M;) has NSOP,.

». Let K/ be the class of possibly infinite structures whose finite
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Proof. Let (a; : 4 < w) be an infinite indiscernible sequence in M. Put
p(zoz1) = tp(aga;). We will show that

p(zor1) U p(z1, 22) U p(2923) U p(23T0)

is consistent.

Claim. There exists B C, M such that (a; : i < w) is B-indiscernible,
and d(as/Baga,) = d{az/Bay) = d(azs/B). (Then ay =,, a1, d(az/Baga;) =
d(az/Bay) follows.)

Extend (a; : 4 < w) to (a; : ¢ < Z). As {(a; : i > 0) is indiscernible over
(a; : 4 < 0), (g; : © > 0) is indiscernible over acl(a; : i < 0) =: Ag. As
Qi =4 <o, We see that d{a;/Aoac,;) = d(a;/Ao).

By extending (a; : 7 > 0) over Ay and applying Erdos-Rado Theorem, we
may assume that acl(Agax) N acl(Apaia;) =: C is constant for any 1 < j < k,
and (g; : i > 0) is indiscernible over C. ’

Now, by our assumption, take B C, C such that d(as/Bapa:) = d(aa/B),
as desired. The claim is proven.

As d(ay/Bagay) = d(ag/B), we have
cl{az B)cl(apay B) = cl{azB) ®qz) cl(aoa1 B) < cl{aparazB).
As cl{apaa2B) € Ky, we may assume that
cl{apaiazB) < M.

So, we can work inside Af;.(i.e. we have ag, a1, a9, B C,, A such that {(ag, a1, a2}
is B-indiscernible and dy, (as/Bagay) = du, (az/B).)

Let C;; = cl(a;a;B), C; = cl{a;B). By d(ag/Baga:) = d(az/Ba;) and Fact
4.2, we see that C = C1C12 = Cy1 ®c, Ci2- And Gy N Coy = Cp and
Cy12NCoz = C, follow by d{ay/Baga,) = d(ay/Bas), d(a,/Bagas) = d(a,/Bay)
and Fact 4.2. So we have

CnNCpr = CoCy = Co®p Cy < C.

Let f : CoCy — CyCy be an isomorphism over B sending agay to azap, and
let g : CoCs — C be the inclusion map. Put ¢’ = go f. As Ky is closed
under free amalgamation, there exist D € K; and h,h' : C < D such that
hog|CoCa = h' 0 g'|CoCy and D = h(C) ®hog(cocy) ' (C). We may assume that
D < M;. Put gy = ho g(ag), 0 = h(a1),ah = h' o g'{az), ay = A'(ay).

Claim. aa},a;a, ahah, ajay |= p = tp(aeas). (This proposition is proven.)

Note that

h(agar) = agal, h{aias) = djay, B'(aoar) = (I’ o g'(az))az = aya,

b (a1a2) = ay(h' o g'(ao)) = ay(h o g(ao)) = ash(ao) = azaq.
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On the other hand,
h(Co1), h(Ci2) < h(C) < D < My,
R (Con), R (Cra) < K(C) < D < M.
Put B =hog(B) =h og'(B). Then
 h(cl(aoay B)) = h(Co1) = cl(aha; B'), h(cl(aya2B)) = h(Cy) = cl(ajayB),
K (cl{agay B)) = K'(Coy) = cl(ahay B'), h{cl(aia2B)) = h(C1a) = cl{agapB’).
By genericity of Ay, we see that
cl{agay B) = cl(azaaB) = cl(apal B') = cl(a}ayB') = cl{ayaz B') = cl(dyagB').
O

Remark 4.4. Suppose that for any a, A C M, there exists A, C,, A such
that d(a/A) = d(a/Ao). Then the assumption of Proposition 4.3 holds.

Proof. Take Ag,A; C, A such that d(a/Ab) = d(a/Aob) and d(a/A) =
d(a/A;). Then d{a/AcA1) = d{a/AcArb). O

5. REVIEW OF EVANS’ PAPER ON SIMPLE w-CATEGORICAL GENERIC
STRUCTURES

Let § be a local rank on relational finite structures such that 6(A/B) <
8(A/AN B), where 6(A/B) = §(AB) — §(B). Let f:R2% — R2° be upper
unbounded, monotone increasing, convex (f’(z) is monotone decreasing) and

flz) < —ﬁ—(;ﬁ, where 3(z) = min{1,6(X/A): A < X € Ko, A # X,|X| < z}.

Let Ky = {A € Ko: 6(X) > (I X|)(¥X C 4)}.

The following fact is Corollary 2.20 of [E1].

Fact 5.1. Let M; be (K, <)-generic. And suppose the condition on M (big
model of Th(M;)) as in Proposition 4.3. Furthermore, suppose the following.
(1) (d-eztension property in M)
Let A ¢ B C M be algebraically closed and ¢ C, M. Then there
exists ¢ C, M such that tp(c/A) = tp(c'/A), d(¢'/B) = d(c/A) and
acl(dA)N B = A.
(2) (Independence theorem over finite closed sets in M)
Let A, By, By < My be finite such that By N By = A and d(B,/B;) =
d(Bi1/A). Suppose thatcy,cy Co My, tp(c1/A) = tp(ce/A) and d(c;/B) =
d(c;/A). then there ezists ¢ C, My such that tp(c/B;) = tp(ci/B;) and
d(c/ByBy) = d(c/A).
THEN Th(My) is simple and “c |, B < d(c/B) = d(c/A) and acl{cA)NB =
A, for A, B algebraically closed in M?”.



We give the proof of the following lemma.(Theorem 3.6 of [E1])

Lemma 5.2. Supose that d-extension property over finite closed sets in M
and f(3z) < f(z) + B(z). Then the independence theorem over finite closed
sets holds in Afy.

Proof. Let ¢;, B;, A be as in Fact 5.1. Then acl(c;4) =~4 acl(cyA4). Put

Eyy = acl(B; By), E13 = acl(c1 By), Eag = acl(cyBy). By considering free amal-

gamation and copies, we may assume that

Bi=E;yNE3, By =Fi3NEy, By := Ei3N Foz = acl(ciA),

BinBy;NBy = A, Bl, Bz, Bsg are d—independent over A, Ef,'jEjk = E,'j ®Bj Ejk.
Let E = Fy3E13F23. We need to show that A < F and E € K;.

Claim. A < E.

By Fact 4.2, B,;Bj < Eij. As F = Ez'j ®B;B; Ez‘kEjk7 EikEjk < FE follows.
We also have Ej Ej;, = Ei ®p, Ejx and By < Ej, By < EyEjx follows. Thus
Ey < E. As A < B; < Ey, A < E follows.

Claim. E € K;.

We have E = E;; ®p,,; EiEjx, but we do not have B;B; < Ej;, By Ej. So
we can not conclude this claim by using Fact 4.1.
We need to show 8{D) < f(|D|) for any D < E as in Fact 4.1.Put D;; = DNE;;
and d;; = 6(D;;). Suppose that dy, is the largest of these. ,
As EyFE»s € Ky, we may assume that D # DiaDys. Put D' = DiaDia. As
E1aEq3 < E, we see that D1 < D. As D' = Dy ®pnB, Di3 and DN By < Dys,

§(D') = dia + 8(D13/D N By) > dya + B(| Dazl)-
As di3 < dyg, |Dia| £ f~H{dis) < f~H{dwa).

So, as 4 is monotone decreasing, diy < 0(DY)—B(|D13]) < 8(DY)—B(f{d12))-

By our assumption on f

(f(3z) < f(2) + Bla), s0 3f M=) < f7H z + B H2)),

37N di2) = [N (dra + B (d12)))-

So, 3/~ (d12) < f7M(8(DY)). As|D| < Xy 1Dyl £ Xy 71 (dig) <37 (dwa)
and &(D?) < §(D), we see that

|D| < f7H(8(D)).
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6. Th(Al;) HAS SOP3 FOR SOME f

We work with undirected graphs, and 6(A) = 2|A|—e(A). Note that §(z) =
1. The control fuction f : R2® — R2? is an upper unbounded, monotone
increasing satisfying the following five conditions;

(F1): £(0) = 0, f(2) — 2, f(4) = 3, £(8) = 4 < £(10) < 4% < f(12) <5 <
£(14) < 5% < f(16) < f(18) < 6.

(F2): 2f'(2n) < % forn>7

k2
(F3): f(5) <kifk>6

(F4): f(3n) < f(n) +1for n > 10.
(FS): 7(10) + 1> 7(14), 7(12) + 1> F(16).

Let fi(z) = f(2z). So, fi(z) = 2f'(2z) and F2: fi(n) < % forn>T1.
We consider Ky,.

Remark 6.1. (1) 6(3-cycle)=6—3 =3 = f(4) < f(6) = f1(3), so 3-cycle
does not belong to Ky,. d(4-cycle)= 8 —4 = 4 = f(8) = f1(4), so
4-cycle belongs to K7y,.

(2) The graph z does not belong to Ky,, because its é-rank= 14 —
9=>5< f(14) = /(7).

(3) (F1) and (F2) give the free amalgamation property of (Ky,, <).

(4) (F1) and (F3) are needed to show that the graphs G(A,, By, z¢) belong
to Ky,. (Lemma 6.4.)

(5) (F4) is needed to show Subclaim 2 in the proof of Lemma 6.7. Lemma
6.7 ensures that the important graphs F, can be closedly embedded
into Aly, and the graphs E,, will give the witness formula for SOF;.

(6) (F1), (F2) and (F5) are needed to show Lemma 6.6. (Lemma 6.6 gives
a very important key to get Lemma 6.7.)

By the graphs E, < My, (n € w), we will give a formula o(z,y) and infinite

sequence (a;)i<w in My such that Ay = o(a;,a;) whenever 4 < j. But if
there were a 3--loop in some model N of Th(Aly) , then N would have the



graph as in (2) of Remark 6.1. As any finite graph of N belongs to Ky, so
SOP;3 follows.

Lemma 6.2. Ky, has the free amalgamation property.
Proof. Let A < By,B; € Ky and let C = B; ®4 B;. We need to show

that if X C C, then §(X) > fi(]X]|). We may assume that X < C, because -

6(X) 2 8(cl(X)) and fi(lel(X)]) > f(|X])-

Let X; = X N B;(¢ = 1,2) and let Xo = X N A. Suppose that
(X)) — 8(Xo) _ 8(X) = 8(Xo) _ 8(X3) — 6(Xo)

X1 = [ Xo| — 1X|—1Xol ~ |Xa|— |Xol Xl > 7.
§(X1) — 8(Xo) 1
As Xo < Xy, B(1X1]) € 8(X1/Xo). So, by (F2), X > X >

F1(]X1]). So, the line between (| Xo|, 6(Xo)) and (| X1|,d(X1)) lies above f1. As

fi is decreasing and 4(X1) > fi(|X1]), 0(X) = f1(|X]) follows. In Appendix -

1, we give the proof when | X;| < 6.
O

Notation 6.3. Consider the following graphs G(Ay, B, %o) for each n < w.
e Vertex set: A, UB,U {20} U{z; : 0<i<j<n}, where A, = {a;:
0<i<n},B,={b:0<i<n}
o Edges: R(zo,a;), R(zo,b;) for 0 < ¢ < n and R(zi, ai), R(z;,b;) for
0<i<ji<n.
Lemma 6.4. (1) G(An, Bn,20) € Ky,
(2) ToAn < G(An,Bn,CEQ)
(3) d(An/By) = d(An/z0), where d(x) = dg(a,,Bazo)(*)-
Proof. Put G = G(Ay, Bn, o), A= Ap, B =By, Z = {2;: 0<i<j<n}
(1): It suffices to show that if X < G, then §(X) > fi(|X[). It is clear in case
Cof |X| =1. If | X| > 2, then zo € X. (If o # a,b € X, then 6(zo/ab) = 0, so
zo € clg(ab) C X.)

Claim. az-,bj e X & Zy € X.

This claim follows from 8(z;/a;b;) = 6(ai/zoz;) = 0(bj/ze2i5) = 0 and
X <G

Put X4 = XN A, Xg = XNB,Xz = XN Zand m = |Xa| + |Xp|. By
claim, we see that §(Xz/zeX4Xp) = 0, so we have

8(X) =d(xoXaXp) =2(m+1)—m=m+2=k1

53



54

As [Xa| < [XallXal € [Xalom— 1Xal) = (50 = (1Xal = )7 < ()7, we

have

1
If k < 5, then [X4| + |Xg| < 3. If | Xa] = 3, then Xz = @ and §(X) =

2.-4—4=4=f(4).

- 5—5=25 6 1(9
If | X4| = 2,|Xg| = 1, then §(X) > 3,4_3:5;£§6gz£§5%
If | X4 = 2,|Xp| =0, then Xz =0 and §(X) =2-3—-2=4= f(8) > f(6) =
J1(3).
IfllXA} =1,|Xp| =0, then Xz =0 and 6(X) =2-2-1=3 = f(4) = f1(2).
By symmetry, we see that X € Ky,.

k2
X|<1+m+ (P =(1+5) =7
2 2
Itk > 6, by (F3), 6(X) = k > (%) = fi(7p) 2 1(1X]), as desired

(2):Let zA C X C G. We show that 6(X/zpA) > 0. We may assume
X < G. By { we have

(5(X/330A) = (5($0XAXB/$0A) = (5(XB/$0A) = O(XB/CE()) = 2|XB|-—1XB] > 0.

(3): It is clear that clg{zo) = Zo,clg(zeAd) = zoA, cle(zoB) = 7oB, and
8(A/Bzg) = 6(A/z0). We also have 19AB < clg(zoAB) = G, because
8(Z'/zgAB) = 3., e 0(2/z0AB) = 0. So, by Fact 4.2, we are done. O

Notation 6.5. Suppose that C, = {¢; : 0 < i< n} and C, N A, B, = 0.
Let E, be the free amalgam of G(An, By, Zo), G{Bn, Cn, o) and G(Ch, Ap, To).
ie.

Edges = edges of G(An, Bn,Ze), G(By, Cn, To) and G(Cy, Ay, Zo), only.

In particular, we have G(Aqn, Bn, 20)G(Bn, Cn, 20) = G(An, Bns 20)®B,c0G(Bn, Cn, o),

G(Bn, Cn, $0)G(Cn, Ana 330) - G(Bna Cnu $0) ®C’n$0 G(Cna Am CC()) and
G(Cn, A’Rv xO)G(Am Bm 330) - G(Gm Am «TO) ®A,.a:o G(An; Bm 330)-

Lemma 6.6. Suppose that A, B,C € Ky, |A],|B|,|C| £ 4. Suppose that
ANB < A B, ANC <A,Cand BNC < B,C, and AB = A®unp B, AC =
A®unc C,BC = B®pncC. Pt X = ANBNC,Z = A\(BUC),W =
B\(AUC),U=C\(AUB).
Suppose that D = ABC € Ky,

Then D is isomorphic to 1@, wherea € ANC,be ANB,c€ BNC,z €
X,z€ Z,we W,ueU.
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Proof. See Appendix 2. As ANB < A, if c € A\ (AN B), there is no
a,b € AN B such that R(a,c) A R(b,c). This easy fact is important for the
proof. (F1),(F2) and (F5) are also needed. a

Lemma 6.7. (1) B, € Ky
(2) En < Bpya, so we may assume B, < B,y < My, for anyn <w.

Proof. (1): Let D C E, and Dap = DNG(Ap, By, 20), Dpc = DNG(B,,, Cp,%0), Dca =
Dn G(Cn, Ay, :IZQ) and Dy = DN 2oA,,Dg = DNzeB,,Dec=D N zoC,,. By
way of contradiction, suppose that d(D) < fi(|D|).

Claim. lDABl, [DB(;*I, IDCAI S 4,

Suppose that §(Dge),8(Dca) < 6(Dag) =: dap. Put D' = DypDcy. By
Fact 6.2, G(A,, By, 2o)G(Cy, Anyzo) € Kyf. So we have D' # D. As E, =
G(An, Bn, 70)G(Ch, Any T0)®B,Cnzo G (Bn, Cn, zo) and B,Crze < G(By, Cn, o)
by (3) of Lemma 6.4, we see

D' < D.
As l‘gAn < G(CR,A/”,.’IJD) (SO Dy < DCA) and D' = Dyp D4 DCA: o]
(D) > dag + 1.

Subclaim 1: fwl(dAB + 1) < 3f—1(dAB).
Note that f~1{dag) > f~1(6(Dw)) > 2|D..|. Suppose that this subclaim does
not hold, then we have

fHdag + 1) > 3f*(dag) = 2(|Dag| + |Dec| + |Dcal) = 2|D|.

So, we have §(D) > 8(D') > dap+1 > fi1(|D]), a contradiction. This subclaim
is proven.

Subclaim 2: d4p < f(10).

Otherwise, we have f~1(dapg) > 10. Thus, by ((F4):f(3n) < f(n)+1), we have
3fYdap) < FYf(fYdag)) + 1) = f~'(dap + 1), this contradicts subclaim
1. Subclaim 2 is proven.

As 6(D,.) < dap < f(10), and D,, € Ky, , we see the claim.

- By this claim and Lemma 6.6, we have the following graph 1@ , Where
a€ Da,b€ Dp,c € Do,z € Dag\DaDp,w € Dpc\DgDc,u € Dea\DaDeg.
But this is impossible by definition of E,.

(2): Let V = {Zint1, Winy1, hins1 : 0 < @ < n} be the vertices of Enyq \ (B U
{an+1,bn+1,cn+1})- Then

En+1 =E, U {an+1s bn+17 Cn—H} uv.
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Let X C {@ni1,bn41,Cns1} UV, Then e(X, E,) = |X|, so 3(X/Ep) = §(X
]X} == lX' —_ e(X). If Xﬂ V = @ or X ﬂ {an+1, bn+1,cn+1} —_ m, thEH E(X) -
Otherwise, e(X) = |X NV| < | X], as desired.

Oe i

Theorem 6.8. Th(Ay,) has SOPs.

Proof. Let ¢(z1y121, Zaya22) = N\,_1 o(R(z0, 1) A R(z0, %) N R(zo, 2)) A
32, w, u(R{z1, 2) A R(2,52) A R(y1, w) A R(w, 22) A R{z1,u) A R(u, 22)).
Let @n,bn, ¢, be as in E, (n < w), and put dy, = anbncn.

Then Affl }: cp(dz,dj) for i < ] < Ww.

By way of contradiction, suppose that there exist N }= Th(}M},) and dy, d, dj €
N such that N = @(d), dy) A p(d), dy) A p(dh, dy). Let di = azbic;.

! /
o
Now we have @ in N.

But any substructure of N is in Ky, a contradiction. O

7. ApPENDIX 1 (FREE AP oF Kj,)

We show Lemma 6.2, when [X;]| < 6 and
3(X1) = 8(Xo) _ 8(X) — 6(Xo) 3(X3) — 8(Xo)

X=Xl = X=Xl © Xl =Xl
By assumption and | X|—|X;] = | Xa]—|Xo|, 6(X2/Xe) > 5<X1/X°)1"%{l;—%
follows.
Remark 7.1. (1) 6(X) > §(Xy) + 5(X1/X0)%.

1
(2) fl(z)(< TZ) is decreasing for = > 14 by (F2).
(3) e(X; \ Xo, Xo) < {X1\ Xo| by Xo < X;. So we have
6(X1/X0) 2 lX] \ X()’ - €(X1 \ Xg)

(4) Xy, X1, X3 do not contain 3-cycles, since they belong to Ky,.
Proof. (3): 6(X1/Xo) = 6(X:\ Xo) ~ (X1 \ Xo, Xo) 2 8(X1\ Xo) = | X1\ Xo| =
|X1\X0|*6(X1\Xg). ' U

Now we check d(X) > f(2|X]) for each case on the size of X; \ Xp, Xo.

Recall (F1): £(0) = 0, (2) = 2, f(4) = 3, /(8) = 4 < (10) < 4-12- < f(12) <

1
5 < f(14) < 55‘



The case that | X;\ Xp| =1
o [ X1\ Xo| =1,|X0] =0

(X)) > 2+ lell‘ L _ox) > f21x)).
(By 8(X1) = 8(X1/Xo) =2 and 2z > f(2z) for z > 2)
o [ X1\ Xo| =1,|Xo} =1

500 > (4= 1)+ - ) EE — 14 x1 > (21x))
(By 14+ 2 > f(2z) and c)(Xl) >4-1,6(X1/Xo) >2-1)
o [ X1\ Xo| =1,|Xo| =2

5002 62+ 125022 14 x> pepx),
(By 6(X1) >6—2,6(X./Xo) >2—1and 1+2 > f(2z))
® [Xl \Xol = 1,1Xoi =3

50 2 (8-3) + 1524 1 x> s@ix)),
(By 6(X1) >8—3,8(X;/Xo) >2—-1and 1 +z > f(2z))
o 1X1\ Xo| =1,|Xo0| =4

5) > (10-5)+ 1520 14 x> 2.
(By (‘)(Xl) Z 10— 5,(5(X1/X0> > 2—1andz > f(237) ifz > 6)
o X\ Xo = 1, 1X0|u-5
50) 2 (12-6) + 1520 = x> 1))
(By 0(X1) > 12 -6, O(Xl/Xg) >2—1land z> f(2z)ifz >6.)

The case that |X;\ Xo| =2
o | X1\ Xol _2 | Xo| =0

sx) > 3+3 5L S pax).

(By 8(X1) = 6(X1/Xo) > 3 and 3z + 2 > f(2z).)
o | X1\ Xof _2 | Xo| =1

5x) 24125225 sy,

(By 6(X;) > 6— 2 0(X1/Xo) >3 —1landz+12> f(2z).)
® |X1 \Xgi = 2, [X()l = 2

6(X) >4+ 1‘Xj2_ 1S rex).

—4
(As 8(X1) > 8 — 4,6(X;/Xo) > 3— 2 and 4 + % > f(2z) if z > 5.)
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o X\ Xo| =2, [Xo| = 3
5(X)25+1’X'2‘5

> f(21X1).
(As d(X;) > 10— 5,6(X1/X0) 23~2and 5+ w—;—é > f(2z) ifz > 6.)
L J IXI\X()l = 2,‘XO| =4
X|—6
2

5(X) > 541 > f(21X)).

-8 .
(As 6(X)) > 12— 7,8(X1/Xo) > 3—2and 5 + -mz— > f(2z) ifz > 7)

The case that | X; \ Xo| =3
o | X1\ Xo|=3,|X0]=0

5(X) > 4+4|X'3" 3

> f21X)).
(As 6(X;) = 6(X1/Xo) > 6—2 and 4-{4&%§ > fRz)yifz>4)

o X1\ Xo| =3, Xo| =1
5(X)>5+ 3'4{(1—3_—/é > £(2|X]).
(As 8(X)) > 8—3, 6(X1/Xo) > 4—1and 5 +3‘”—31é — 241> f(20) if
z>5.)

o |X1\ Xo| =3, | Xo| =2

5(x) 2 5+25L2% 5 fpx))
(As 8(X1) > 10— 5, 6(X1/Xo) > 4 — 2 and 5 + 23%—53 > f(22) if ¢ > 6.)
o X0\ Xo| = 3, [ Xo| = 3

X| -6

6x) 25 115205 joix)

-6
(As 8(X,) > 12~17,8(X1/Xo) >4 —3and 5+ 193_3_ > f2z)ifz>7.)

The case that |X; \ Xo| = 4
o | X1\ Xo|=4,|X¢|=0

XI=4 5 rax).

4
(As 6(Xy) = 6(X1/Xo) > 8 — 4 and 4+ 4"”%4 —2> f(22)if 5> 5)

o | X1\ Xo| =4,|Xo| =1

0(X)>4+4




3(X)>5+3

X255 s,

(As 6(X1) > 10 =5, 6(X1/Xo) > 4— 1 and 5+ 3‘234;5 > f(2z) if 2> 6.)
o [ X3\ Xo| =4, |Xo| =2

5(X) > 5+ 2[X‘4" %> reix).

(As 8(X1) > 12— 7, 8(X1/Xo) > 4 — 2 and 5+ %’6 > f(20) itz > 7)

The case that | X;\ Xo| =5
o [ X1\ Xo| =5,{Xo] =0

5(X) > 515570 2 x| > fax).

(As 6(X,) = 0(X1/Xe) > 10—5 and z > f(2z) if 2 > 6.)
o | X1\ Xo| = 5,[Xo| =1

§(X) > 5+ sl-)ﬁ:,)-_—--EE > F(21X)).

(As 6(X1) > 12— 7, 6(X1/Xo) > 5— 2 and 5+ 3“;;—9 > f(20) if 2 > 7)

The case that | X;\ Xo| =6
o | X1\ Xo|=6,|X0| =0

5X) 2 712) + 702) L0 = a2)1X] 2 52IX)).

(As 6(Xy) = 0(X1/Xo) = f(12) and f(12)|X] > 4|X| > f(2z) if 2 2 7.)
U

8. APPENDIX 2 (THE PROOF OF LEMMA 6.6)

We show the following.
Lemma 6.6 Suppose that A, B,C € Ky,, |A|,|B|,|C]| < 4. And suppose thaot
ANB< A B, ANC < A,Cand BNC < B,C, and AB = A®ans B, AC =
A®anc C,BC = B®pnc C. Pt X = ANBNC,Z = A\ (BUC),W =
B\ (AUC),U=C\(AUB).

If D=ABC ¢ Ky,, then D is isomorphic to 7@, wherea € ANC,b €
ANB,ce BNC,ze X,ze Zwe Wyue U.

Proof. We use the following easy fact: If X <Y, ceY \ X,a,b € X, then
R(a, c) A R(b,c) does not hold.
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. Clearly, D = BCZ.

We may assume that Z, W,U # {), since, for example, if Z = 0, then D =
B ®gpnc C € Ky, by free AP. As |A,|B|,|C| < 4, we have [ANC[ < 3.

a,a’ denote elements of AN C, b, denote elements of AN B, ¢, ¢ denote
elements of BN C, 2, 2’ denote elements of Z, w, w', w” denote elements of W,
u,u denote elements of U and z,z’ denote elements of X.

We check each case on the size of [ANC]|.
The case that [ANC| =3

We have 6 < |D| < 9. As |A4| < 4, |Z| =1and AN B\ X = { follow. So,
we have 8(Z/BC) > 1. Thus §(D) = 8(BC) +8(Z/BC) > f(2|D|-2)+ 1=
F2|D}).

The case that [ANC| =2

o [(ANC)\X| =2 (le. X =0.)
Suppose that |Z] = 2. So, 6 < |D| < 10.
As AN B =0, §(Z/BC) > 3~ 2 follows. So, (D) > §(BC) +1 > f(2|D] -
4) + 1> f(2|D]) by (F5),f(8) +1=52> f(12), f(14) + 1 = 6 > f(18) and
(F2).

Suppose that [Z]| =1,s0 [ANB| < L

If ANB =0, then 5 < |D| <9, §(Z/BC) > 2 -1 follows. So, 6(D) >
5(BC) +1> £(2ID| - 2) + 1 2 J2ID)).

If{ANB|=1,then 6 <[D| <9.
If |D| = 6, then D = aa'zbwu. Then §(D) =12-5=72> f(12).
If |[D| = 7, then D = ad/zbwuv/, aa’zbweu or aa’ zbww'u, because Z, W, U #49.
Then 6(D) > 14 —7="72> f(14).
If |D| = 8, then D = aa’zbww'uy’ or ad’ zbww'cu, because Z, W, U # 0. Then
§(D) > 16— 9 =7 > f(16).
If |D| = 9, then D = aa’2zbww'vw"un/, because Z, W,U # §. Then §(D) >
18 -9=9> f(18).

o [(ANCOI\X|=|X]|=1
Suppose that |AN B\ X| =0. Then §(Z/BC) > 1.
So, 8(D) > f(2|D| - 2|Z|) + 1.
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If [Z] =1, then 5 < |D| < 8,50 f(2|D] - 2) + 1> f(2|D|) holds.

If |Z] =2,then 6 < |D| < 9. f(2[D]|—4)+ 12> f(2|D]) holds for |D| = 6,9.
(f(8)+1=52> f(12) and f(14)+1 > 6 > f(18).) For |D| =7, D = zazz'wcu,
zazz'wuu' or zazz'ww'v and then (D) > 14 — 8 > f(14) holds. For |D| =8,
D = zazz'ww'cu or zazz'ww'uy' and then (D) > 16 — 10 > f(16) holds.

Suppose that [AN B\ X| =1. Then 6 < |D| < 8.
If |D| =6, then D = zazbwu and §(D) > 12 — 6 > f(12).
If |[D|] =7, then D = zazbwuy', zazbww'u or zazbwcu. If the former two
cases hold, then §(D) > 14 — 8 > f(14).

In the latter case, D is if and only if §(D) = 14 — 9 < f(14).
If |D| = 8, then D = zazbww'vu' and 6(D) > 16 — 10 > f(16).

¢ (ANC)\ X]=0,]X] =2

We have 5 < |D| < 8.

If |D| = 5, then D = z2’2wu and 6(D) > 10 — 4 > f(10).

If |D| = 6, then D = z2'z2'wu, zz'zbwu, r2’'2ww'y, z2'zweu or zz'zwun’ and
§(D) >12-7> f(12).

If |D| = 7, then D = 2@/'z2'ww'u, za'2zbwur, z2' zww'uy, 22’ 22/ weu, zr'22'wudd,
zz' 2bwun’ or zz' zwwud.

If D # za'22'weu, zo'zbwur, then §(D) > 14 — 8 > f(14). And we have

§(D) =14 -9 < f(14) if and only if D is "or . But this
never happens, because BN C < B and AN B < B, so w does not have two
edges to BN C, also to AN B.

If ID| =8, then D = za'z2'ww/ue and §(D) = 16 — 10 > f(16).

The case that IANC| =1

e (ANC)\ X|=1(X|=0)
By symmetry, we may assume |[ANB|,|BNC| < 1.

Suppose that |ANB|,|BNC|=1. Then 6 < |D| < 9.
If D] = 6, (D) > 12— 6 > f(12). It |D| =7, 8(D) > 14 -7 > f(14). If
\D| =8, §(D) > 16 — 8 > f(16). If |D] =9, 6(D) > 18 — 9 > f(18).
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Suppose that [ANB| =0or |[BNC| = 1.
By symmetry, we assume that |[A N B| = 0. Then ACN B = BnC. By
assumption on A, B,C, BNC < C < AC and AC = A®uanc C € Ky, by free
AP. As BN C < AC, B and D = AC ®anc B, we have D € Ky, by free AP.

o [(ANC)\ X|=0and |X|=1.
As we have shown tha case that |AN C| = 2,3, by symmetry, we may assume
that D = XZWU. (te. (ANB)\ X| = 0and |(BN CY\ X| = 0) As
X < XZW = XZ ®x XW € K;, and X < XU € Kp, we have D =
XZW @x X7 € Ky, by free AP. |

The case that [ANC|=0

As we have shown tha case that |A N C| = 1,2,3, by symmetry, we may
assume that D = ZWU. (i.e. |ANB| =0 and |[BNC| = 0.) By free AP, we
see D € Ky,. [
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