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Higher dimensional class field theory
(from a topological point of view)

Alexander Schmidt

January 26, 2005

The aim of class field theory is the description of the abelian etale coverings
of an arithmetic scheme in terms of its $\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{c}/\mathrm{g}\mathrm{e}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}$ invariants. This
talk will deal with global class field theory exclusively and therefore the term
arithmetic scheme will mean “scheme of finite type over $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathbb{Z})$

” here.

We start with a look at algebraic topology. Let $T$ be a (sufficiently good)

topological space and let $x\in T$ be a point. As is well known, there are two
descriptions of the fundamental group of $(T, x)$ :

1) (The “outer” description : $\pi_{1}(T, x)=$ Aut(F) , where $F$ is the fibre functor

$F$ : Cov $(T)$ Sets
$(T’arrow T)\pi$ $\mapsto$ $\pi^{-1}(x)$ .

If $\tilde{T}arrow T$ is a universal covering space of $T_{r}$ then $\pi_{1}(T, x)\cong \mathrm{A}\mathrm{u}\mathrm{t}(\tilde{T}/T)$ ,

the isomorphism being canonical up to inner automorphisms.

2) (The “inner” description :

$\pi_{1}(T, x)$ $=$ $[(S^{1}, *), (T, x)]$

$=$ loops modulo homotopy.

For a scheme $X$ with a geometric base point $\overline{x}arrow X$ , we have the etale fun-
darnental group $\pi_{1}(X,\overline{x})=\pi_{1}^{\mathrm{e}\mathrm{t}}$ ($X$ , r) , a profinite group which is defined by the
natural analogue of the outer description 1). It classifies finite etale coverings
of $X$ . The following problem occurs naturally:

Find an $‘\prime \mathrm{i}nner$
” description of $\pi_{1}$

$(X,\overline{x})$ , $i.e$ . a description in geomet$r\mathrm{i}c$

terms of the scheme $X$ .
So far, there seem $\mathrm{s}$ to be no idea to attack this problem. A naive approach is
lacking an appropriate object “$S^{1}"$ . The considerably weaker task of describing
the maximal abelian quotient of the fundamental group runs under the slogan
“class field theory. Among others, one technical advantage of considering only
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abelian coverings is that the maximal abelian quotient $\pi_{1}^{ab}$ ($X$ , r) of $\pi_{1}(X,\overline{x})$

is (canonically) independent of the chosen base point $\overline{x}$ , which will be omitted
from the notation from now on. The classical example of class field theory is

Artin-reciprocity; Let $k|\mathbb{Q}$ be a totally imaginary algebraic rvurnber field, $\mathcal{O}_{k}$

its ring of integers and $X=Spec(\mathcal{O}_{k})$ . Then there exists a natural isomorphism

of fifinite abelian groups
$rec:\mathrm{P}\mathrm{i}\mathrm{c}(X)\simarrow\pi_{1}^{ab}(X)$ .

Artin reciprocity is a particular case of “one-dimensional class field theory” ,

which was one of the major achievements of number theory in the first half
of the previous century. It describes the abelian extensions of number fields,
including the ramification and decom position behaviour of its prime ideals.

The question for a higher dimensional analogue of Artin-reciprocity occurs nat-
urally. There axe two related approaches to study the geometry of $X$ :

1. study vector bundles on $X$ ( $\Rightarrow$ if-theory)
2. study algebraic cycles on $X$ ( $\Rightarrow$ intersections theory, cycle groups).

Both approaches are related by the concept of motivic $(co)homology$, which is,
however, still not sufficiently developed in the case of schemes over a Dedekind
domain. For varieties over fields, a satisfying theory exists [VSF]. In the example
$X=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathcal{O}_{k})$ of Artin-reciprocity, we can interpret the group Pic(X) not only
as the group of isomorphism classes of line bundles on $X$ , but also as the group
$\mathrm{C}\mathrm{H}_{0}(X)$ of zero-cycles modulo rational equivalence and also as the first filtration
step $F_{0}K_{0}(X)$ of the Oth $K$-group of $X$ . The question occurs which of these
interpretations is the suitable one for a higher dimensional generalization of
class field theory.

1 Class field theory using Milnor K-groups

A first step towards a higher dimensional generalization of class field theory was
made by K. Kato in 1982. We recall the following concepts;

Higher dimensional local fields are defined by induction. A 0-dimensional local
field is a finite field. For $n\geq 1$ , an $n$-dimensional local field is a field which
is complete with respect to a discrete valuation and whose residue field is an
$(n-1)$-dimensional local field. One-dim ensional local fields are the usual locally

compact local fields.
If $R$ is a commutative ring with 1, the Milnor $K$ groups $K_{n}^{M}(R)$ , $n\geq 0$ , are
defined by

$K_{n}^{M}(R)$ $\otimes$ $a\otimes\cdots\otimes 1-a\otimes\ldots).$

If $R=k$ is a field, we have $K_{n}^{M}(k)=K_{n}(K)$ for $n\leq 2$ by Matsumoto’s theorem
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Theorem 1 (K. Kato, [K1]) If A is art $n$ -dimensional local field, then there
exists a natural reciprocity map

$rec:K_{n}^{M}(k)arrow G(k^{ab}|k)$ .

For any finite Galois extension $\ell|k$ , the reciprocity map induces an isomorphism

$K_{n}^{M}(k)/Norm_{l/k}(K_{n}^{M}(l))arrow G(\sim\ell|k)^{ab}$ .

Remark: The description of the norm groups is difficult (in dimension $\geq 3$), see
[K2].

The natural idea to describe the abelian extensions of an arbitrary regular
arithmetic scheme is to consider the various higher dimensional local fields at-
tached to it. Let $\overline{X}$ be a normal, connected scheme, projective and of finite
type over $\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathbb{Z})$ and let $X\subset\overline{X}$ be a non-em pty open regular subscheme.
Let $d=\dim(X)$ and assume for simplicity that $X(\mathbb{R})=\emptyset$ . We sheafify the
notion of Milnor $K$-groups in order to obtain the Milnor $K$-sheaf $\mathcal{K}_{d}^{M}(\mathcal{O}_{\overline{X}})$

on $\overline{X}$ . For a coherent ideal sheaf I $\subset \mathcal{O}_{\overline{X}}$ we have the closed immersion
$\mathrm{i}$ : $Y:=\otimes ec(\mathcal{O}_{\overline{X}}/\mathrm{I})arrow\overline{X}$ and we define the relative Milnor $K$-sheaf by

$\mathcal{K}_{d}^{M}(\mathcal{O}_{\overline{X}},\mathrm{I})=\mathrm{k}\mathrm{e}\mathrm{r}(\mathcal{K}_{d}^{M}(\mathcal{O}_{\overline{X}})arrow \mathrm{i}_{*}\mathcal{K}_{d}^{M}(\mathcal{O}_{Y}))$ .

Finally, recall the ‘completely decomposed’ $(\mathrm{c}.\mathrm{d}.)$ topology, a Grothendieck
topology which lies between Zariski and etale topology and which is often also
called Nisnevich topology (cf. [Ni]).

Theorem 2 (K. Kato and S. Saito, [KS2], see also [Ra]) Let $\overline{X}$ be a nor-
mal connected scheme, projective and offinite type over Spec(Z) and let $X\subseteq\overline{X}$

be a non-empty open regular subscheme. Let $d=\dim(X)$ cvncl assume (for
simplicity) that $X(\mathbb{R})=\emptyset$ . Then there exists a natural reciprocity map

$rec$ :
$\mathrm{I}_{\}X}=\mathcal{O}x\mathrm{I}\subseteq \mathcal{O}_{\overline{X}}\lim_{arrow}H_{c.d}^{d}.(\overline{X}, \mathcal{K}_{d}^{M}(\mathcal{O}_{\overline{X}}, \mathrm{I}))arrow\pi_{1}^{ab}(X)$

.

If $X$ is flat over $\mathbb{Z}$ , then $rec$ is an isomorphism. ij $X$ is a variety over a finite
field, then $rec$ is injective and $coker(rec)\cong\hat{\mathbb{Z}}/\mathbb{Z}$ .

This solves the problem of describing the abelianized fundamental group $\pi_{1}$ $(X)^{ab}$

in terms of geometric data attached to $X$ (if $X(\mathbb{R})\neq\emptyset$ , only a minor modifi-
cation is necessary). Unfortunately, the left hand side of the reciprocity map is
difficult to understand and, in particular, contains a cohomology group. It is
therefore desirable to find a more direct description
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2 Class field theory using algebraic cycles - the
compact case

Let us return to the topological considerations of the introduction and look
for an algebraic $S^{1}$ ’. The easiest example of an arithmetic scheme is a point
$\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathrm{F})$ , where $\mathrm{F}$ is a finite field. The fundamental group $\pi_{1}(\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathrm{F}))=$

$\mathrm{G}\mathrm{a}1(\overline{\mathrm{F}}|\mathrm{F})$ is isomorphic to $\hat{\mathbb{Z}}$ , a canonical generator is given by the Probenius
automorphism. Moreover, the higher etale homotopy groups (cf. [AM]) of
$\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathrm{F})$ vanish, $\mathrm{i}.\mathrm{e}.$ , we have

$\pi_{i}^{\mathrm{e}\mathrm{t}}(\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(\mathrm{F}))=\{$

$\hat{\mathbb{Z}}$ $i=1$ ,
0 $i\neq 1$

Therefore, from a homotopical point of view, finite fields can be considered
as ‘algebraic circles’. An arithm etic scheme contains many ‘loops’, namely its
closed points, and we can try to exhaust $\pi_{1}(X)^{ab}$ by such ‘loops’. Due to
the problem of base points, this method is only applicable to the abelianized
fundamental group.

Let $X$ be a connected arithmetic scheme and let $x\in X$ be a closed point. We
define $\mathrm{F}\mathrm{r}\mathrm{o}\mathrm{b}_{\mathrm{x}}$ $\in\pi_{1}^{ab}(X)$ as the image of Rob $\in \mathrm{G}\mathrm{a}1(\overline{k(x)}|k(x))$ $=\pi_{1}(x)^{ab}$ under
the natural map $\pi_{1}^{ab}(x)arrow\pi_{1}^{ab}(X)$ . Let $Z_{0}(X)$ be the group of zero-cycles on
$X$ , i.e. the free abelian group generated by the closed points of $X$ . We consider
the map

$r:Z_{0}(X)arrow\pi_{1}^{ab}(X)$ , $1_{x}\mapsto \mathrm{F}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{x}$ .

Theorem 3 (S. Lang, $\lfloor\lceil \mathrm{L}\mathrm{a}]$ ) If the reduced subschema ofX is no rmal, then $r$

has dense image.

This means that, under a mild technical restriction, we can exhaust $\pi_{1}(X)^{ab}$

by ‘algebraic loops’. Our next task is to find the appropriate homotopy relation
among these loops. That means to find elements in $\mathrm{k}\mathrm{e}\mathrm{r}(r)$ , and most preferably
a geometric description of these elements. Having found ‘many’ relations and
dividing them out, we can hope to obtain a map which ‘almost’ an isomorphism.
Note that the source of $r$ is a discrete group and that its target carries a nat-
ural compact topology. Thus we cannot expect to find an actual isomorphism
between a quotient of $Z_{0}(X)$ and $\pi_{1}^{ab}(X)$ , unless the abelianized fundamental
group is finite. In the general case, the map should induce an isomorphism on
profinite completions.

The task of finding the right equivalence relation on $Z_{0}(X)$ was first solved in
the case when $X$ is projective. More precisely, the required equivalence relation
in the compact case is nothing else but rational equivalence. The quotient of
$Z_{0}(X.)$ by this relation is called $\mathrm{C}\mathrm{H}_{0}(X)$ , the Chow group of zero-cycles on
$X$ . The next theorem was first proved by S. Bloch [B1] for smooth arithmetic
surfaces and then by K. Kato and S. Saito [KS1], [Sa] in the general case
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Theorem 4 (S. Bloch, K. Kato, S. Saito) Let $X$ be a regular, connected
and projective scheme over $\mathbb{Z}$ . Assume (for simplicity) thaf $X(\mathbb{R})=\emptyset$ . Then $r$

factors through rational equivalence, inducing a reciprocity map

$rec:\mathrm{C}\mathrm{H}_{0}(X)arrow\pi_{1}^{oeb}(X)$ .

If $X$ is flat over $\mathbb{Z}$ , then $rec$ is an isomorphism of finite abelian groups. if $X$

is a variety over a finite field, then $rec$ iS injective and coker(rec) $\cong\hat{\mathbb{Z}}/\mathbb{Z}$ .

Remark: The nontrivial cokernel in the geometric case occurs because the image
of $rec$ contains only integral powers of the global Erobenius automorphism in
$\mathrm{y}\mathrm{r}_{1}^{ab}(X)$ . We have degree maps $\mathrm{C}\mathrm{H}_{0}(X)$ $arrow \mathbb{Z}$ and $\pi_{1}^{ab}(X)arrow\hat{\mathbb{Z}}$ and $rec$ induces
an isomorphism of finite abelian groups recQ: ; $\mathrm{C}\mathrm{H}_{0}(X)^{0}arrow\sim\pi_{1}^{ab}(X)^{0}$ on the
degree-zero parts.

3 Class field theory using algebraic cycles - the
tame open case in positive characteristic

Obviously, one wants to extend the geometric approach of the last section to
the quasi-projective case. Let $\overline{X}$ be a regular, connected and projective scheme
over $\mathbb{Z}$ and let $X\subset\overline{X}$ be a non-empty open subscheme. We still have the
homomorphism with dense image $r:Z_{0}(X)arrow\pi_{1}^{ab}(X)$ , $1_{x}\mapsto \mathrm{F}\mathrm{r}\mathrm{o}\mathrm{b}_{\mathrm{x}}$ , of Then
rem 3 and we want to determine its kernel. In other words, we have to find an
appropriate equivalence relation on the group $Z_{0}(X)$ . This cannot be rational
equivalence by variance reasons: $\mathrm{C}\mathrm{H}_{0}$ becomes smaller for open subschemes and
$\pi_{1}^{ab}$ becomes bigger. More precisely, the commutative diagram

$\mathrm{C}\mathrm{H}_{0}’(X)\mathrm{C}\mathrm{H}_{0,f}(\overline{X})$

$rec_{\overline{X}}arrow$

$\pi_{1}^{ab}(X)\pi_{1}^{ab}(\overline{X})\uparrow$

destroys all hope for the existence of a natural map recx : $\mathrm{C}\mathrm{H}_{0}$ $(X)$ $arrow\pi_{1}^{ab}(X)$

which is ‘almost’ an isomorphism. Another problem is that ‘good’ cycle theories
are homotopy invariant (i.e. give the same result on a scheme $X$ and on the
affine line $\mathrm{A}_{X}^{1}$ over $X$ ). But this is not true for the abelianized fundamental
group (already the fundamental group of the affine line over an algebraically
closed field of positive characteristic is huge, $\mathrm{c}\mathrm{f}$ , [Ry] $)$ . As a first step towards
class field theory in the open case, we therefore restrict to the maximal tame
quotient $\pi_{1}^{ab}’{}^{t}(\overline{X},\overline{X}-X)$ , which is homotopy invariant. It classifies finite abelian
(possibly ramified) coverings of $\overline{X}$ which are etale over $X$ and have at most
tame ramification along the boundary $\overline{X}-X\mathrm{B}$ . This group only depends on the
scheme $X$ (see [S2]) and we will also use the shorter notation $\pi_{1}^{ab}’{}^{t}(X)$ for it.

We will deal with the case of smooth varieties over finite fields first. The
cycle theory we will need is the (abstract) singular homology defined by A.
Suslin [SV]. We recall its definition. Let $k$ be a field and let $\triangle$ . be the standar$\mathrm{d}$
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cosimplicial object in the category of smooth schemes over $k$ , i.e. $\triangle^{n}$ is the
$n$-dimensional simplex given as a subscheme in $\mathrm{A}_{k}^{n+1}=\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}(k[T_{0}, \ldots, T_{n}])$ by
the equation $\Sigma T_{i}=1$ and the simplicial structure is given by the obvious face
and degeneracy morphisms.

Let $X$ be a scheme of finite type over $k$ . Denote by $C_{n}(X)$ the free abelian
group generated by closed integral subschemes $Z\subset X\rangle\langle$ $\triangle^{n}$ such that the
projection $Zarrow\triangle^{n}$ is finite and surjective. One verifies immediately that,
if $Z$ is as above, then for each face map $\delta^{i}$ : $\triangle^{n-1}arrow\triangle^{n}$ each component
of $(\delta^{i})^{-1}(Z)$ $\subset X\cross$ $\triangle^{n-1}$ is finite and surjective over $\triangle^{n-1}$ and hence has the
‘correct’ dimension. So the cycle theoretic inverse image $(\delta^{i})^{*}(Z)$ is well-defined
and lies in $C_{n-1}(X)$ . This gives us face operators

$\partial_{i}=(\delta^{i})^{*}$ : $C_{n}(X)arrow C_{n-1}(X)$ .

The homology groups of the complex

$(C.(X), d)$ , $d= \sum(-1)^{i}\partial_{i}$

will be denoted by $H_{*}^{sing}(X, \mathbb{Z})$ and are called the (integral) singular homology
groups of $X$ . Singular homology is covariantly functorial in the scheme $X$ . By
definition, $H_{0}^{sing}(X,\mathbb{Z})$ is the quotient of $C_{0}(X)=Z_{0}(X)$ by some equivalence
relation. This equivalence relation is in general finer than rational equivalence.

Theorem 5 (A. S. &M. Spiefi, [SS]) Let $\overline{X}$ be a smooth connected variety
over a finite field and let $X\subset\overline{X}$ be a nonempty open subscheme. Then $r$ induces
a reciprocity map

$rec:H_{0}^{sing}(X, \mathbb{Z})arrow\pi_{1}^{ab}’{}^{t}(X)$ .

$rec$ is injective, $coker(rec)\cong\hat{\mathbb{Z}}/\mathbb{Z}$ and the induced map on the degree-zero par$rts$

$rec_{0}$ : $\mathrm{C}\mathrm{H}_{0}(X)^{0}arrow\pi_{1}^{ab}(\sim X)^{0}$ is an isomorphism of fifinite abelian groups.

Remarks: 1. If $\dim X=1$ , then (see [SV], Theorem 3.1) $H_{0}^{sing}(X, \mathbb{Z})$ is natu-
rally isomorphic to the relative Picard group Pic(X , $\overline{X}-X$). A straightforward
computation identifies this relative Picard group with the ray class group of
the function field $k(X)$ of $X$ with modulus $\iota \mathfrak{n}_{X}$ , where $\iota \mathfrak{n}x$ is the (square-free)

product of all primes of $\overline{X}-X$ . In this case, $rec$ is the reciprocity homomorphism

of the classical (one-dimensional) class field theory for global fields of positive
characteristic.
2. If $X=\overline{X}$ is projective, we have a natural isomorphism $H_{0}^{sing}(\overline{X}, \mathbb{Z})\cong$

$\mathrm{C}\mathrm{H}_{0}(\overline{X})$ . In this case, Theorem 5 is just a reformulation of the geometric case
of Theorem 4 (which we use in the proof).

3. The scheme $\overline{X}$ in the theorem occurs just for technical reasons. Its existence is
known in dimension $\leq 2$ and any kind of desingularization theorem in positive
characteristic would imply that the theorem holds for an arbitrary smooth,

quasiprojective and connected variety $X$ over a finite field
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4 Class field theory using algebraic cycles - the
tame open case in mixed characteristic

Now we want to obtain a similar result in mixed characteristics, For technical
reasons we restrict to the following situation:

$\overline{X}$ is a connected, regular scheme, flat and projective over $\mathbb{Z}$ , $D$ is $a$

divisor on $X-$ and $X=\overline{X}$ -supp(Dl. For simplicity, we assume that
$X(\mathbb{R})=\emptyset$ .

We have the following finiteness result:

Theorem 6 ([SI]) Under the given assumptions, $\pi_{1}^{ab}’{}^{t}(X)$ is finite.

Looking for an appropriate cycle theory, the first problem we are confronted with
is that Suslin’s singular homology is a relative construction. For flat schemes
over $\mathbb{Z}$ , it does not give the right cycle theory for class field theory. Some yoga
about the ‘field with one element’ suggests the following absolute version of
singular homology groups for arithmetic schemes (cf. [S2]). We put

$C_{n}(X)$ $=$ free abelian group on closed integral subschemes $Z\subset X\cross$ IS $\mathbb{Z}n$

such that the restriction of the projection $X\mathrm{X}i$ $\triangle_{\mathbb{Z}}^{n}arrow\triangle_{\mathbb{Z}}^{n}$ to $Z$

induces a finite morphism $Zarrow T\subset\triangle_{\mathbb{Z}}^{n}$ onto a closed integral
subscheme $T$ of codimension 1 in $\triangle_{\mathbb{Z}}^{n}$ which intersects all faces
$\triangle_{\mathbb{Z}}^{m}\subset$ $\triangle_{\mathbb{Z}}^{n}$ properly,

We obtain a complex $(C.(X\grave{)}, d)$ in the usual way and denote its homology
groups by $H_{k}^{sing}(X, \mathbb{Z})$ . We call these groups the (integral) singular homology
groups of $X$ . This name is justified because for varieties over finite lields these
groups coincide with those defined by Suslin. It turns out, however, that it is
rather difficult to verify even basic properties of this homology theory because
we are lacking good techniques of moving cycles in mixed characteristics. See
[S2] for partial results. Concerning class field theory, we first note that $C_{0}(X)$ is
nothing else but the group $Z_{0}(X)$ of zero-cycles on $X$ . The follow ing proposition
can be deduced from the one-dimensional case:

Proposition 7 The composite map

$Z_{0}(X)arrow\pi_{1}(rX)^{ab}arrow\pi_{1}^{ab}’{}^{t}(X)$

factors through $H_{0}^{sing}(X, \mathbb{Z})$ , thus defining a surjective reciprocity hornoraor-
phism

$rec$ : $H_{0}^{sing}(X, \mathbb{Z})arrow\pi_{1}^{ab}’{}^{t}(X)$ .

We conjecture that the reciprocity map $rec$ ; $H_{0}^{s\iota ng}(X, \mathbb{Z})arrow\pi_{1}^{ab}’{}^{t}(X)$ is an iso-
morphism. At present, we can prove this only if $X$ is projective or if $\dim X=1$ .
Therefore we change from singular homology to relative Chow groups, which
are easier to deal with by using techniques from $K$-theory. Their definition goes
as follow $\mathrm{s}$
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Let $G_{*}(X)$ denote the version of Quillen’s $K$-theory based on the category
of coherent sheaves. Recall [Qu] the usual Quillen spectral sequence for $X$

$E_{1}^{pq}(X)=\oplus K_{-p-q}(k(x))x\in X^{p}\Rightarrow G_{-p-q}(X)$ ,

which is associated to the filtration by codimension of support. If $d$ is the
dimension of $X$ , the Chow group of zero-cycles on $X$ and the term $E_{2}^{d,-d}$ of the
above spectral sequence are naturally isomorphic. One can (see $\lfloor\lceil \mathrm{S}3]$ ) construct
a similar spectral sequence

$E_{1}^{pq}(\overline{X}, D)\Rightarrow G_{-p-q}(\overline{X},$ $D^{\backslash }$,
converging to relative $G$-theory (the $E_{1}$ term are $K$-groups of certain cate-
gories) and we call $\mathrm{C}\mathrm{H}_{0}(\overline{X}, D):=E_{2}^{7}-d(d,\overline{X}, D)$ the relative Chow group of
0-cycles of $(\overline{X}, D)$ . One can show that $\mathrm{C}\mathrm{H}_{0}(\overline{X}, D)$ is a quotient of $Z_{0}(X)$ by
an equivalence relation which is (a priori) coarser than the relation defining $H_{0}$ .
More precisely, we have a natural surjection

$H_{0}^{sing}$ ($X$ , Z) $arrow \mathrm{C}\mathrm{H}_{0}(\overline{X}, D)$ ,

which we conjecture to be an isomorphism. A priori, it is even not obvious that
$\mathrm{C}\mathrm{H}_{0}(\overline{X}, D)$ only depends on the scheme $X$ , I.e. is independ ent of the particular
compactification $\overline{X}$ . This is, however, a consequence of the following theorem,
which is the main result of [S3] and provides tame class field theory in the mixed
characteristic case, at least under a mild technical restriction.

Theorem 8 ([S3]) Assume that the vertical irreducible components of $D$ are
normal schemes. Then the composite map $Z_{0}(X)$ $arrow\pi_{1}^{ab}(rX)$ $arrow\pi_{1}^{ab_{1}}{}^{t}(X)$ factors
through $\mathrm{C}\mathrm{H}_{0}(\overline{X}, D)$ and induces an isomorphism of finite ahelian groups

$rec$ : $\mathrm{C}\mathrm{H}_{0}(\overline{X}, D)$ $arrow\pi_{1}^{ab}’{}^{t}(\sim X)$ .

Remarks. 1. In many cases (e.g. if $X$ is semi-stable), the condition in the
theorem on the vertical components of $D$ is void. Furthermore, this condition
can be weakened (see [S3] Theorem $6.5\grave{)}$ .

2. if $D$ is zero, Theorem 8 reduces to Theorem 4 (which we use in the proof).

3. If $\dim X=1$ , then $\mathrm{C}\mathrm{H}_{0}(\overline{X}, D)$ is isomorphic to the ray class group of the
number field $k(X)$ with modulus $\iota \mathrm{n}_{D}$ where $\iota \mathfrak{n}_{D}$ is the (square-free) product of
the points in $D$ . In this case, $rec$ is the reciprocity homomorphism of classical
(one-dimensional) class field theory.

Because of the easier and more direct definition, we would prefer to replace
the relative Chow group in the above theorem by the Oth singular homology
group. On the other side, Theorem 8 is ‘better’ than the conjectured version
with singular homology since it detects more relations in $Z_{0}(X)$ . However, our
final goal is to show that relative Chow groups and singular homology coincide
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To shed some light on the relations on $Z_{0}(X)$ which define both groups, we
give their explicit descriptions below. Roughly speaking, the relations on $Z_{0}(X)$

defining $H_{0}^{sing}(X, \mathbb{Z})$ are generated by those of the form $d\mathrm{i}v(f)$ where the $/’ \mathrm{s}$

axe functions on curves on $X$ which are defined and $\equiv 1$ at the boundary. A
relation in the relative Chow group is given as a sum $d_{i\mathrm{V}}(fi)+\cdots+d\mathrm{i}v(f_{n})$ ,
where $f_{1}$ , $\ldots$ , $f_{n}$ are rational functions defined on curves on $X$ whose generalized
product exists and is 1 at every point of the boundary. The generalized product
a a point $y$ is defined if the zero and pole orders at $y$ add to zero (see below).

Let us make this precise. We start with singular homology. Let $C$ be an
integral scheme of finite type over $\mathbb{Z}$ and of (Krull)dimension 1. Then to every
rational function $f\neq 0$ on $C$ , we can attach the zero-cycle $d\mathrm{i}v(f)\in Z_{0}(C)$ (see

[Pa], $\mathrm{C}\mathrm{h}.\mathrm{I},1.2)$ . Let $\tilde{C}$ be the normalization of $C$ in its field of functions and
let $P(\tilde{C})$ the regular compactification of $\tilde{C}$ , $\mathrm{i}.\mathrm{e}$ . the uniquely determined regular
and connected scheme of dimension 1 which is proper over $\mathbb{Z}$ and which contains
$\tilde{C}$ as an open subscheme.

Theorem 9 ([S2]) The group $H_{0}^{sing}(X, \mathbb{Z})$ is the quotient of $Z_{0}(X)$ by the sub-
group generated by elements of the form $d\mathrm{i}v(f)$ , where

$\bullet$ $C$ is a closed integral curve on $X$ ,

$\bullet$ $f$ is a rational function on $C$ which, considered as a rational function on
$P(\tilde{C})$ , is defined $and\equiv 1$ at every point of $P(\tilde{C})-\tilde{C}$ .

Now we describe the relations defining the relative Chow group. We first de-
fine the generalized product of functions at a point. Let $y$ be a closed point
of $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(D)$ , $D_{i}$ an irreducible component of $D$ passing through $y$ and $\pi_{\dot{\mathfrak{g}}}$ a
uniformizer of $D_{i}$ near $y$ . Let $C=\overline{\{x\}}$ be an irreducible curve on $X$ (i.e.
$x\in X_{1})$ and let $f$ $\in k(x)$ ’ be a rational function on $C$ . We define the
‘value’ $f^{(i)}(y)\in k(y)^{\mathrm{x}}$ as follows: If $y\not\in\overline{C}$ , we put $f^{\langle i)}(y)=1$ . Other-
wise, $\pi_{\mathrm{i}}$ defines an element in $k(x)$ ’ and we put $f^{(i)}(y):=\delta(f\cup\pi_{i})$ , where
$\delta$ : $K_{2}(k(x))arrow k(y)x$ is the boundary map induced by the Quillen spectral of
$\overline{X}$ and $\cup$ : $k(x)^{\mathrm{x}}\mathrm{x}$ $k(x)$ $’arrow K_{2}(k(x))$ is the product map. The ‘value’ $f^{(i)}(y)$

depends on the choice of the uniformizer $\pi_{i}$ , unless $f$ is defined at $y$ , in which
case $f^{\langle i)}(y)=f(y)$ . If $C_{1}$ , $\ldots$ , $C_{s}$ are irreducible curves on $X$ and $f_{j}\in k(Cj)$ ’,
$j=1$ , $\ldots$ , $s$ , are rational functions, then a straightforward computation show $\mathrm{s}$

that the product
$f_{1}^{(i)}(y)\cdots$ $f_{s}^{(i)}(y)$ $\in k(y)^{\rangle(}$

is independent of the choice of $\pi_{i}$ if the sum of the zero and pole orders of the
$fj$ at $y$ is zero. In this case, we call $f_{1}^{(i)}(y)\cdots$ $f_{s}^{(i\rangle}(y)$ the generalized product of
the ‘value ’ $f_{j}^{(i)}(y)$ relative to $D_{i}$ . If ail $f_{j}$ are defined at $y$ , then the generalized
product is nothing else but the usual product of the values $fj(y)$ .

Let $D_{1}$ , $\ldots$ , $D_{r}$ be the irreducible components of $D$ and set $Y=\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(D)=$

$D_{1}\cup\cdots\cup D_{r}$ .
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Theorem 10 ([S3]) $\mathrm{C}\mathrm{H}_{0}(\overline{X}, D)$ is the quotient of $Z_{0}(X)$ by the image of the
group

$r$

$R_{X,D}=\mathrm{k}\mathrm{e}\mathrm{r}(\mathrm{d}\mathrm{f}\mathrm{k}\mathrm{e}\mathrm{r}(\oplus_{1}k(x)^{\chi}x\in Xarrow\oplus\phi \mathbb{Z})y\in Y_{0}arrow\oplus\psi\oplus k(z)’)i=1z\in(D_{i})_{0}$

under the divisor map $d\mathrm{i}v:\oplus_{x\in X_{1}}k(x)’arrow Z_{0}(X)$ . The map $\phi$ is the composite

$x\in X_{1}\oplus k(x)’\iota incl$ $x\in\overline{X}_{1}\oplus k(x)’arrow Z_{0}(\overline{X})prarrow Z_{0}(ojY)div$

and the map $\psi$ is given by the generalized product.

This shows that $\mathrm{C}\mathrm{H}_{0}(\overline{X}, D)$ is a quotient of $H_{0}^{sing}(X,\mathbb{Z})$ . If we could ‘move’ any
relation of the form $d\mathrm{i}v(f1\rangle+\cdots+d\mathrm{i}v(f_{n}), fj\in k(Cj)$

’ , to a relation of the form
$d\mathrm{i}v(f_{1}’)+\cdots+d\mathrm{i}v(f_{m}’)$ , $f_{j}’\in k(C_{j}’)$

’ such that $\overline{C}_{\mathrm{i}}’\cap\overline{C}_{j}’$ is disjoint to $Y=\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(D)$

for $\mathrm{i}\neq j$ , then each of the $d\mathrm{i}v(f_{j}’)$ , $j=1$ , . . . ’ $m$ , and hence also their sum, would

be a relation for $H_{0}^{sing}(X, \mathbb{Z})$ . This would imply that $\mathrm{C}\mathrm{H}_{0}(\overline{X}, D)=H_{0}^{sing}(X, \mathbb{Z})$ .

Unfortunately, at present, we have no such moving-technique available.
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