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Abstract

Ohya and Volovich have proposed a new quantum computation
model with chaotic amplification to solve the SAT problem, which
went beyond usual quantum algorithm. In this paper, we generalize
quantum Turing machine by rewriting usual quantum Turing machine
in terms of channel transformation. Moreover, we define some com-
putational classes of generalized quantum Turing machine and show
that we can treat the Ohya-Volovich (OV) SAT algorithm.

1 Introduction
The problem whether $\mathrm{N}\mathrm{P}$-complete problems can be $\mathrm{P}$ problem has been
considered as one of the most important problems in theory of computational
complexity. Various studies have been done for many years. Ohya and
Volovich $[1, 2]$ proposed a new quantum computation model with chaotic
amplification process to solve the SAT problem, which went beyond usual
quantum algorithm. This quantum chaos algorithm enabled to solve the
SAT problem in a polynomial time [1, 2, 3],

In this paper we generalize quantum Turing machine so that it enables
to describe non-unitary evolution of states, we show GQTM for the OV
SAT algorithm referring to the paper [9] and calculate the computational
complexity of GQTM for the OV SAT algorithm. This study is based on
mathematical studies of quantum communication channels $[4, 5]$ .
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2 Generalized Quantum Turing Machine

Classical Turing machine(TM or CTM) $M_{cl}$ is defined by a triplet $(Q, \Sigma, \delta)$ ,

where I is a finite alphabets with an identified blank symbol $\#$ , $Q$ is a
finite set of states (with an initial state $q_{0}$ and a set of final states $q_{f}$ ) and
6: $Q\mathrm{x}$ $\Sigmaarrow Q\mathrm{x}$ $\Sigma\chi$ $\{-1,0,1\}$ is a transition function. Note that {-1, 0, 1}
indicates moving direction of the tape head of $\mathrm{T}\mathrm{M}$ . The deterministic TM
has a deterministic transition function $\delta$ : $Q\mathrm{x}$

$\Sigmaarrow 2^{Q}\mathrm{x}\Sigma\cross$ $\{-1,0, 1\}$ ,
that is, $\delta$ is a non-branching map, in other words, the range of $\delta$ for each
$(q, a)\in Q\cross\Sigma$ is unique. A TM $M$ is called non-deterministic if it is not
deterministic.

In this section, we introduce a generalized quantum Turing machine
(GQTM), which contains QTM as a special case.

Definition 1 Usual Quantum Turing machine $M_{q}$ is defined by a quadruplet
$M_{q}=(Q, \Sigma, 7\{, U)$ , where $\mathcal{H}$ is a Hilbert space described below in (2.1)and
$U$ is a unitary operator on the space $\prime \mathcal{H}$ of the special form descibed beloeti in
(2.2).

Let $C$ $=Q\mathrm{x}\Sigma\cross$
$\mathbb{Z}$ be the set of all classical configurations of the Turing

machine $M_{d}$ , where $\mathbb{Z}$ is the set of all integers. It is a countable set and one
has

$?t$ $=\{\varphi|\varphi$ : $C arrow \mathbb{C};\sum_{C\in C}|\varphi(C)|^{2}<\infty\}$ . (2.1)

Since the configuration of TM can be written as $C=(q, A, \mathrm{i})$ one can
say that the set of functions $\{|q, A, \mathrm{i}>\}$ is a basis in the Hilbert space $\mathcal{H}$ .
Here $q\in Q$ , $\mathrm{i}\in \mathbb{Z}$ and $A$ is a function $A:\mathbb{Z}arrow\neq$ . We will call this basis the
computational basis.

By using the computational basis we now state the conditions to the
unitary operator $U$ . We denote the set $\Gamma\equiv\{1_{7}0, -1\}$ . One requires that

there is a fimction $\delta$ : $Q\mathrm{x}$
$\Sigma \mathrm{x}$ $Q\mathrm{x}$ $\Sigma\cross$ $\Gammaarrow \mathbb{C}$ which takes values in the field

of computable numbers $\mathbb{C}$ and such that the following relation is satisfied:

$U|q$ , $A$ ,
$\mathrm{i}\rangle=\sum_{p,b,\sigma}\delta(q, A(\mathrm{i}),p$

, $b$ , $\sigma)|p$ , $A_{\mathrm{i}}^{b}$ , $\mathrm{i}+\sigma\rangle$ . (2.2)
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Here the sum runs over the states $p\in Q$ , the symbols $b\in\Sigma$ and the
elements a $\in\Gamma$ . Actually this is a finite sum. The function $A_{l}^{b}$ : $\mathbb{Z}arrow\neq$ is
defined as

$A_{i}^{b}(j)=\{$

$b$ if $j=i$ ,
$A(j)$ if $j\neq i$ .

Note that if, for some integer $t\in \mathbb{N}\equiv\{1,2, \ldots\}$ , the quantum state
$U^{t}|q_{0}$ , $A$ , $0\rangle$ is a final quantum state, i.e. $||E_{Q}(q_{\Gamma\prec})U^{s}|q0$ , $A$ , $0\rangle||=1$ and
for any $s<t$ , $s\in \mathrm{N}$ one has $||E_{Q}(q_{F})U^{s}|q_{0}$ , $A$ , $0\rangle||=0$ , then one says that
the quan rum Turing machine halts with running time $t$ on input $A$ .

Now we define the generalized quantum Turing machine (GQTM ) by
using of a channel A (see below) instead of a unitary operator $U$ .

Definition 2 Generalized Quantum Turing machine $M_{gq}$ (GQTM) is de-

fined by a quadruplet $M_{gq}=(Q, \Sigma, \mathcal{H}, \Lambda)$ , where $Q$ and I are two alphabets,
7{ is a Hilbert space and A is a channel on the space of states on $\mathcal{H}$ of the
special form described below.

$Q$ and I are represented by a density operator on Hilbert space $\mathcal{H}_{Q}$ and
$\mathcal{H}_{\Sigma},\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{h}$ are spanned by canonical basis $\{|q\rangle: q\in Q\}$ and { $|a\rangle$ ;a $\in\Sigma$ } , re-
spectively. A tape configuration $A$ is a sequence of elements of I represented
by a density operator on Hilbert space $\mathcal{H}_{\Sigma}$ spanned by a canonical basis
$\{|A\rangle; A\in\Sigma^{*}\}$ , where $\Sigma^{*}$ is the set of sequences of alphabets in I. A posi-
tion of tape head is represented by a density operator on Hilbert space $\mathcal{H}_{Z}$

spanned by a canonical basis $\{|\mathrm{i}\rangle; \mathrm{i}\in \mathrm{Z}\}$ . Then a configuration $\rho$ of GQTM
$M_{gq}$ is described by a density operator on li $\equiv\prime H_{Q}\otimes 7\{_{\Sigma}\otimes \mathcal{H}z$ . Let 6 $(\mathcal{H})$

be the set of all density operator on Hilbert space H. A quantum transition
function A is given by a completely positive (CP) channel

A : $\mathfrak{S}(\mathcal{H})arrow \mathfrak{S}(\mathcal{H})$ .

For instance, given a configuration $\rho\equiv\sum_{k}\lambda_{k}|\psi_{k}\rangle$ $\langle$ $\psi_{k}|$ : where $\sum\lambda_{k}=$

$1$ , $\lambda_{k}\geq 0$ and $\psi_{k}=|q_{k}\rangle$ & $|A_{k}\rangle$ $\otimes|i_{k}\rangle$ $(q_{k}\in Q, A_{k}\in\Sigma^{*}, \mathrm{i}_{k}\in \mathrm{Z})$ is a

vector in a basis of $\mathcal{H}$ . This configuration changes to a new configuration $\rho’$

by one step transition as $\rho’=\Lambda(\rho)=\sum_{k}\mu_{k}|\psi_{k}\rangle\langle\psi_{k}|$ with $\sum\mu_{k}=1$ , $\mu_{k}\geq 0$ .

For any configuration $\rho$ , GQTM $M_{gq}$ is called UQTM $M_{uq}$ if the quantum
transition function $\delta$ of GQTM $M_{gq}$ is given by

$\Lambda_{\delta}(\rho)=U_{\delta}\rho U_{\delta}^{*}$ ,
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where $U_{\mathit{5}}$ is a unitary operator in $\mathcal{H}$ . Obviously $M_{uq}=M_{q}$ . Several studies
have been done on QTM whose transition function is represented by unitary
operator.

A transition of GQTM is regarded as a transition of amplitude of each
configuration vector. We categorize GQTMs by a property of CP channel A
as below.

Definition 3 A GQTM $M_{gq}$ is called unitary QTM (UQTM, i.e., usual
QTM), if all of quantum transition function A m M are unitary CP channel

For all configuration $\rho=\sum_{n}\lambda_{n}\rho_{n}(\Sigma_{n}\lambda_{n}=1, \lambda_{n}\geq 0)$ , a GQTM $M_{gq}$

is called LQTM $M_{lq}$ if A is affine ; A $( \sum_{n}\lambda_{n}\rho_{n})=\sum_{n}\lambda_{n}\mathrm{A}(\rho_{n})$ . Since a
measurement defined by $\Lambda_{M}p=\sum_{k}P_{k}\rho P_{k}$ with a PVM $\{P_{k}\}$ on $\mathcal{H}$ is a linear

CP channel, LQTM may include a measurement process.
For a more general channel the state change is expressed as

$\Lambda(|q, A(\mathrm{i})$ , $\mathrm{i}\rangle\langle q$ , A(i),
$\mathrm{i}|)=\sum_{b_{\mathrm{J})}p,\sigma p’,b’,\sigma’}\delta(q, A(i),p_{2}b,$

$\sigma,p’,$ $b’,$ $\sigma’)$

$|p$ , $A_{i}^{b}$ , $\mathrm{i}+\sigma\rangle\langle p_{\dot{J}}A_{i}^{b’}$ , $\mathrm{i}+\sigma|$

with some function $\delta(q, A(\mathrm{i})\rangle p$ , $b$ , $\sigma,p’$ , $b’$ , $\sigma’)$ such that the RHS of this rela-
tion is a state.

Thus we define two more classes of GQTM for non-unitary CP channels.

Definition 4 A GQTM $M_{gq}$ is called a linear $QTM(LQTM)$ if its quantum
transition function A is a linear quantum channel.

Unitary operator is linear, hence UQTM is a sub-class of LQTM. more
over, classical TM is a special class of LQTM,

Definition 5 A GQTM $M_{gq}$ is called non-linearQTM(NLQTM) if its quan-
tum transition function A contains non-linear CP channel

A chaos amplifier used in $[1, 2]$ is a non-linear CP channel, the details of
this channel and its application to the SAT problem will be discussed in the
sequel
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2.1 Computational class for GQTM

Given a GQTM $M_{gq}=(Q, \Sigma, \delta)$ and an input configuration $\rho_{0}=|v_{in}\rangle$ $\langle v_{in}|$ ,
$(|v_{in}\rangle=|q_{0}\rangle\otimes|T)$ $\otimes|0\rangle)$ , a computation process is described as the following
product of channels

$\Lambda_{1}0\cdots 0\Lambda_{t}(\rho_{0})=\rho_{f}\equiv|v_{f}\rangle\langle v_{f}|$

where $\mathrm{A}_{1}$ , $\cdots$ , $\Lambda_{t}$ are CP channels. Applying the CP channels to an initial
state, we obtain a final state $\rho_{J}$ and we measure this state by a projection
(or PVM)

$P_{f}=|q_{f}\rangle\langle q_{f}|\otimes I_{\Sigma}\otimes I_{Z}$ ,

where $I_{\Sigma}$ , $I_{Z}$ are identity operators on $7\{_{\Sigma}$ , $\mathcal{H}_{Z}$ , respectively. Let $p\geq 0$ be a
halting probability such that

$tr_{H\otimes\dagger t_{Z}}(\Sigma P_{f}p_{f})=p|q_{f}\rangle\langle q_{f}|$ .

Then, we define the acceptance (rejection) of GQTM and some classes of
languages.

Definition 6 Given GQTM $M_{gq}$ and a language $L$ , if there eists $t$ steps

when we obtain the configuration of acceptance (or rejection)by the proba-

bility $p$ , we say that the GQTM $M_{gq}$ accepts (or rejects)L by the probability
$p$ , and its computational complexity is $t$ .

Definition 7 A language $L$ is bounded quantum probability polynomial time
GQTM(BGQPP) if there is a polynomial time GQTM $M_{gq}$ which accepts $L$

with probability $p \geq\frac{1}{2}$ .

If NLQTM accepts the SAT OV algorithm in polynomial time with prob-

ability $p \geq\frac{1}{2}$ , then we may have the inclusion

$NP\underline{\subseteq}$ BGQPP,

where $NP$ is a language class that a deterministic Turing machine, which

recognize with some informations in polynomial time of input size exists
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3 SAT Problem

Let $X\equiv(\mathrm{X}1)\ldots$ , $x_{n}$ }, $n\in \mathrm{N}$ be aset. $x_{k}$ and its negation $xk(k=1, \ldots, n)$

are called literals Let $\overline{X}\equiv\{\overline{x_{1}}, \ldots, \overline{x_{n}}\}$ be a set, then the set of all literals
is denoted by $X’\equiv X\cup\overline{X}=\{x_{1)}$ . . . , $x_{n}$ , $\overline{x_{1}}$ , . , . , $\overline{x_{n}}\}$ . The set of all subsets
of $X’$ is denoted by $\mathcal{F}(X’)$ and an element $C\in \mathcal{F}(X’)$ is called a clause.
We take a truth assignment to all variables $x_{k}$ . If we can assign the truth
value to at least one element of $C$ , then $C$ is called satisfiable. When $C$ is
satisfiable, the truth value $t(C)$ of $C$ is regarded as true, otherwise, that of $C$

is false. Take the truth values as “true $rightarrow 1$ , false $<-\neq 0"$ . Then $C\mathrm{i}\mathrm{s}$ satisfiable
iff $t(C)=1$ .

Let $L=\{0, 1\}$ be a Boolean lattice with usual join $\vee$ and meet $\Lambda$ , and
$t(x)$ be the truth value of a literal $x$ in $X$ . Then the truth value of a
clause $C$ is written as $t(C) \equiv\bigvee_{x\in C}t(x)$ . Moreover the set $C$ of all clauses
$C_{\mathrm{i}}$ ($i=1$ , 2, $\cdots$ , m) is called satisfiable iff the meet of all truth values of $C_{\mathrm{i}}$

is 1; $t(C)$ $\equiv\Lambda_{j=1}^{m}t(C_{j})=1$ . Thus the SAT problem is written as follows:

Definition 8 SAT Problem: Given a Boolean set X $\equiv\{x_{1},$\cdots ,$x_{n}\}anda$

set C $=\{C_{17}\cdots, C_{m}\}$ of clauses, determine whether C is satisfiable or not.

4 SAT algorithm in GQTM
In this section, we construct a GQTM for the OV SAT algorithm. OV SAT
algorithm is a quantum algorithm with the chaos amplifier explained in the
paper [1, 2, 6]. The GQTM with the chaos amplifier belongs to NLQTM
because the chaos amplifier is represented by non-linear CP channel. The OV
algorithm runs from an initial state $p_{0}\equiv|v_{0}\rangle$ $\langle$ $v_{0}|$ to $\overline{\rho}_{k}$ through $\rho\equiv|vf\rangle$ $\langle vf|$ .
The computation from $\rho_{0}\equiv|v_{0}\rangle$ $\langle$ $v_{0}|$ to $\rho\equiv|v_{f}\rangle$ $\langle$ $n_{f}|$ is due to unitary channel
$\Lambda_{C}\equiv U_{C}\bullet$ $U_{C}$ , and that from $\rho\equiv|n_{f}\rangle$ $\langle$ $v_{f}|$ to $\overline{\rho}_{f}$ is due to a non-unitary
channel $\Lambda_{CA}^{k}\circ\Lambda_{I}$ , so that all computation can be done by $\mathrm{A}_{CA}^{k}\circ\Lambda_{I}\circ \mathrm{A}_{C}$ , which
is a completely positive, so the whole computation process is deterministic
(see [9]). It is a multi-track (actually 4 tracks) GQTM that represents this
whole computation process

A multi-track GQTM has some workspaces for calculation, whose tracks
are independent each other. This independence means that the TM can
operate only one track at one step and all tracks do not affect each other.
Let us explain our computation by a multi-track GQTM. The first track
stores the input data and the second track stores the value of literals. The
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third track is used for the computation of $t(C_{i})$ , $(\mathrm{i}=1, \cdots, m)$ described
by unitary operators. The fourth track is used for the computation of $t(C)$

denoting the result. The work of GQTM is represented by the following 8
steps:

$\bullet$ Step 1: Store the counter $c=0$ in ’back 1. Calculate $[ \frac{5}{4}(n-1)]+1$ ,
we take this value as the maximum value of the counter. Then, store
it in Track 4.

$\bullet$ Step 2: Calculate $c+1$ and store it in Track 4.

$\bullet$ Step 3: Apply the Hadamard transform to Track 2.

$\bullet$ Step 4: Calculate $t(C_{1})$ , $\cdots t(C_{m})$ and store them in hack 3.

$\bullet$ Step 5: Calculate $t(C)$ by using the value of the third track, and store
$t(C)$ in Track 4.

$\bullet$ Step 6: Empty the first, second and third Tracks.

$\bullet$ Step 7: Apply the chaos amplifier to the result state obtained up to
the step 6.

$\bullet$ Step 8: If $c=[ \frac{5}{4}(n-1)]+1$ or GQTM is in the final state, GQTM
halts. If GQTM is not in the final state, GQTM runs the step 2 to the
step 8 again.

The detail of this quantumum algorithm is explained in the paper [9].

4.1 Computational complexity of the SAT algorithm

We define the computational complexity of the OV SAT algorithm as the

product of $T_{Q}(U_{C}^{(n)})$ and $T_{CA}(n)$ where $T_{Q}(U_{C}^{(n)})$ is the complexity of uni-

ta$\mathrm{r}\mathrm{y}$ computation and $T_{C_{J}A}(n)$ is that of chaos amplification.
The following theorem is essentially discussed in [7, 2, 3].

Theorem 9 For a set of clauses $C$ and $n$ Boolean variables, the cornputa-

tional complexity of the $OV$ SAT algorithm including the chaos amplifier,

denoted by $T(C, n)$ , is obtained as follows.
$GQTM$ $(C, n)$ $=T_{Q}(U_{\mathrm{C}}^{(n)})T_{CA}(n)=\mathcal{O}$ (pol$y$

$(n)$ ) ,

where poly (n) denotes a polynomial of $n$ .
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The computational complexity of quantum computer is determined by
the total number of logical quantum gates. This inequality implies that the
computational complexity of SAT algorithm is bounded by $\mathcal{O}(n)$ for the size
of input $n$ while a classical algorithm is bounded by $\mathcal{O}$ $(2^{n})$ .
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