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Abstract: A correspondence $f$ is called a linear complementarity correspondence if it has a state-variable
representation, which can be reformulated as the linear complementarity problem, in other words, calculating

function values results in solving the associated linear complementarity problem, The paper formulates

the minimum-dimension state-variable representation problem, called the minimal realization problem, and

discusses the criterion for a given representation to be a minimal realization. Forthermore, in this argument,

the new concepts concerning redundancy in the state-variables will be given.

1 Introduct\’ion

Various studies on piecewise linear functions are known in the literature, and presented mainly

from practical point of view [6] [S]. In due course, however, the importance of a representation

for piecewise linear functions becomes widely recognized. In this paper, we characterize a piece-

wise linear function as a continuous and linear function on each polyhedron of some fifinite family

obtained by domain-partitioning (cf. [4] [9]). van Bokhoven et al. [8] introduced a state-variable

representation to model non-linear $\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}/\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{r}o\mathrm{n}\mathrm{i}\mathrm{c}$ circuits as a piecewise linear model. It $\mathrm{h}_{\mathfrak{B}}$

been shown that every piecewise linear function can be expressed in such a representation [5].

There are various analyses and modelling techniques done by using this representation [3] [8] since

their pioneering work. As we discuss briefly in Section 2 many questions are left unanswered at the

current stage of understanding of the state variable representation. In particular, we are intrigned

by the fact that the state-variable representation is not unique, and that infifinitely many choices

of the dimension of state-variables are possible. The objective of this paper is to explain a method

of finding a minimum-dimension state-variable representation, which we dub a minimal realization

problem, for every piecewise linear function.
The paper is constructed as follows: In Section 2, we explain the state-variable representation,

and propose the questions concerning the minimal realization problem. In Section 3, we formulate

the minimal realization problem, and report our investigation on the ULT-representation, the

notion of which will be introduced in Section 2. We will then propose criteria for a particular

representation to be a minimal realization. In Section 4, the conclusion will be briefly discussed.
Throughout this paper, $m$ and $n$ indicate positive integer. $A^{T}$ denotes the transposition of $\mathrm{a}$

matrix (or a vector) $A$ . The $\max$ operator is denoted by $\mathrm{V}$ , and for $x\in \mathbb{R}$ we write $x^{+}=x\vee 0$ .
The inner product of two vectors $x$ , $y\in \mathbb{R}^{n}$ is denoted by $\langle x, y\rangle$ . Unless otherwise noted, $k$ is $\mathrm{a}$

nonnegative integer. “Linear” should be read tffi “affiffiffine linear” in this paper.
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2 State-variable representation

Definition 1. (See [8]) The correspondence $f$ from $x$ $\in \mathbb{R}^{n}$ to $y\in \mathbb{R}^{m}$ is called a linear comple-
mentarity correspondence, an $\mathrm{L}\mathrm{C}\mathrm{C}$ for short, if there exist a nonnegative integer $k$ and matrices
$A\in \mathbb{R}^{m\mathrm{x}n}$ , $B\in \mathbb{R}^{m\mathrm{x}k}$ , $C\in \mathbb{R}^{k\cross n}$ , $D\in \mathbb{R}^{k\cross k}$ , and vectors $g\in \mathbb{R}^{m}$ , $h\in \mathbb{R}^{k}$ such that

$y=Ax+Bu+g$, (1)

$j=Cxx$ $+Du+h$ , (2)

$u$ , $j\geqq 0$ , $\langle u,j\rangle=0$ . (3)

The vectors $u$ and $j$ are called state-variables, and the equations (1)$-(3)$ are collectively called $\mathrm{a}$

state variable representation. We abbreviate the above representation as $(A,\mathrm{C})$ for $A=(A_{7}B,g)$

and $\mathrm{C}=(C,D, h)$ . By convention a state-variable representation with $k=0$ will be denoted by

$(A,g)$ .

Remark 1. Every linear function is an LCC having a representation (A, g).

In the state-variable representation, the problem of finding $y$ for each $x$ is reduced to a linear

complementarity problem (an $\mathrm{L}\mathrm{C}\mathrm{P}$ for short) by substituting $q(x)=Cx+h$ ; that is, in order to

calculate a function value, we must solve the $\mathrm{L}\mathrm{C}\mathrm{P}$ $(D,q(x))$ each $x$ . See the Appendix for the

definition of linear complementarity problem. Together with the $\mathrm{N}\mathrm{P}$-completeness of the $\mathrm{L}\mathrm{C}\mathrm{P}$ this

makes it computationally demanding to calculate correspondence values, van Bokhoven et al. have

proposed a method of transforming a state-variable representation into an “explicit representation”
with respect to $x$ , and overcome this diffiffifficulty. So far, the method is known to be applicable when

a P- or ULT-representation is considered, which are described in Defifinition 2 [1] [7]. We will not

discuss their method in detail here since it is not our main concern. But we note that the method

has a substantial role in proving Theorem 1 of this section.
Here, we will define the P- and ULT-representations. See the Appendix for the defifinition of P-

and ULT-matrices.

Definition 2. (cf. [1] [8]) (a) A state-variable representation is called a $P$-representafion if the

matrix $D$ in (2) is a $\mathrm{P}$-matrix. The family of LCC’s having a $\mathrm{P}$-representation is called Class $P$,

and denoted by $P$ .
(b) A state-variable representation is called a $ULT$-representation if the matrix $D$ in (2) is a ULT-

matrix. The family of LCC’s having a ULT-representation is calIed Class $ULT$, and denoted by
$\mathcal{U}\mathcal{L}\mathcal{T}$ .

Remark 2. By convention we will assume that $(A,g)$ is both a P- and ULT-representation, Thus,

every linear function belongs to both $P$ and $\mathcal{U}\mathcal{L}\mathcal{T}$ . In general, an $\mathrm{L}\mathrm{C}\mathrm{C}$ is a multi-valued function.

But, by Proposition A.l in Appendix, an LCC in Class $\mathrm{P}$ becomes a simgle-valued function. It is

clear by defifintion that $P$ $\subset \mathcal{U}\mathcal{L}\mathcal{T}$. In fact, Classes $\mathrm{P}$ and $\mathrm{U}\mathrm{L}\mathrm{T}$ coincide, that is, $P$ $=\mathcal{U}\mathcal{L}\mathcal{T}$ , as we

will explain below.

The following Theorem 1shows that Classes $\mathrm{P}$ and ULT are subclasses of the family of all

piecewise linear functions ($P\mathcal{W}\mathcal{L}$ for short).

Theorem 1. [1] [7] Every LCC having a P- or $ULT$-representation is a piecewise linear function.

Moreover, the following theorem has been established [10].

Theorem 2. Every piecwise linear $funct_{i}on$ has a $ULT$-representation
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Combining Theorem 1 and Theorem 2 together, we can claim

Colorrarly 1. P $=\mathcal{U}\mathcal{L}\mathcal{T}=P\mathcal{W}\mathcal{L}$ .

Next we will introduce the notion of the “derived” $\mathrm{L}\mathrm{C}\mathrm{P}$ , which is used in the rest of the paper,

Definition 3. Let $k$ be a positive integer, and let $C\in \mathbb{R}^{k\mathrm{x}n}$ , $D\in \mathbb{R}^{k\cross k}$ , $h\in \mathbb{R}^{k}$ be given. For

each $x\in \mathbb{R}^{n}$ , we define the $\mathrm{L}\mathrm{C}\mathrm{P}(D, q(x))$ , where $q(x)=Cx+h$ . We call this the derived $LCP$

from $(C_{7}Dh)\}$ .

In the rest of the section, we assume that $D$ is a P-matrix. Then the solution $u(x)$ and $j(x)$

to $(D, q(x))$ is uniquely determined for each $x\in \mathbb{R}^{n}$ . Thus, the correspondence $x-\neq u(x)$ and
$x$ $-+j(x)$ are single-valued functions. In addition, it has been shown that they are pieeewise linear

functions [11].
The following Lemma 1 is an immediate concequence of the fact that a solution to $(D, q(x))$

is nonnegative. It is used later in the proof of Theorem 3.

Lemma 1. Let $(D,q(x))$ be the derived $LCP$ from $(C, D, h)$ with a $P$-matrix $D$ , and let $u(x)=$

$(u_{p}(x))_{p=1}^{k}$ be the unique solution to $(D, q(x))$ . Then, for each $p=1,2$, $\ldots$ , $k$ , u(px) is a linear

function of $x$ if and only if up(x) is constant on $\mathbb{R}^{n}$ .
Every LCC has possibly many different state-variable representations. In fact, if an $\mathrm{L}\mathrm{C}\mathrm{C}$ has $\mathrm{a}$

state-variable representation for some $k$-dimensional state-variables, then it has a $k’$ -dimensional
representation for every $k’>k$ . This leads us to the following questions: (i) What is the minimum
dimension of state-variables ? (ii) How does one fifind a minimum-dimension representation to every
LCC ? We will report our investigation on these questions in the following Section 3.

3ULT-minimal realization

In this section, we shall reformulate two questions raised in the end of Section 2 more or less in $\mathrm{a}$

regorous manner, and introduce a minimal realization problem. In particular, we will cast it into

the ULT-representation, and propose several critaria for the $\mathrm{s}\mathrm{u}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{f}\mathrm{f}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{c}3^{r}$ of minimal realization.

3.1 Minimal realization problem

In this subsection, we will present the notion of minimal realization problem. Before introducing

the notion, we begin with several key notations. Here we will make it implicit that the $\mathrm{L}\mathrm{C}\mathrm{C}f$ of
interest has the range in $m$-dimensional space, and has the domain in n-dimensional space. For
positive integer $k$ , we define the classes $\mathrm{A}^{k}$ and $\mathbb{C}^{k}$ respectively by:

$\mathrm{A}^{k}=\{(A, B, g)|A\in \mathbb{R}^{m\mathrm{x}n}, B\in \mathbb{R}^{m\mathrm{x}k}, g\in \mathbb{R}^{m}\}$ ,
$\mathbb{C}^{k}=\{(C, D, h)|C\in \mathbb{R}^{k\mathrm{x}n}, D\in \mathbb{R}^{k\mathrm{x}k}, h\in \mathbb{R}^{k}\}$ .

Then we can define the class of all $/’ s$ having a representation with $k$-dimensional state-variables
by $\mathrm{S}^{k}=\mathrm{A}^{k}\mathrm{x}$ $\mathbb{C}^{k}$ . For the sake of convenience we set $\mathrm{S}^{0}=\{(A, g)|A\in \mathbb{R}^{m\mathrm{x}n}, g\in \mathbb{R}^{m}\}$ to express
the class of all the linear functions having $m$-dimensional range space. Then $\mathrm{S}$

$= \bigcup_{k\geqq\circ}\mathrm{S}^{k}$ gives

the class of all state-variable representations. Moreover, by $\mathrm{S}_{\mathrm{U}\mathrm{I}_{J}\mathrm{T}}^{k}$ we denote the class $\mathrm{S}^{k}$ with
$D’ \mathrm{s}$ restricted to ULT-matrices. Then $\mathrm{S}_{\mathrm{U}\mathrm{L}\mathrm{T}}$ $= \bigcup_{k\geqq 0}\mathrm{S}_{\mathrm{U}\mathrm{L}\mathrm{T}}^{k}$ similarly gives the class of all ULT-

representations. Note that $\mathrm{S}_{\mathrm{U}\mathrm{L}\mathrm{T}}^{0}=\mathrm{S}^{0}$ . Finally we define the subclass $\mathrm{S}(f)$ of $\mathrm{S}$ which represents $\mathrm{a}$

particular $f$ . In the same manner, by SuLT (f) we denote the class of all ULT-representations of $f$ .

Now let us explain the notion of minimal realization problem. First, we will introduce the
“realization dimension” of a representation in Defifinition 4.
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Definition 4. (i) Let $\mathrm{S}$ $\in \mathrm{S}$ , and let $k$ be a nonnegative integer. We call $k$ the realization dimension
of $\mathrm{S}$ if $\mathrm{S}$ $\in \mathrm{S}^{k}$ , denoted by $\dim(\mathrm{S})$ .
(ii) Let $f$ be an $\mathrm{L}\mathrm{C}\mathrm{C}_{\gamma}$ and let $\mathrm{S}\in \mathrm{S}(f)$ . Then $\mathrm{S}$ is called a minimal realization of $f$ if $\dim(\mathrm{S})\leq$

$\dim(\mathcal{T})$ for every $\mathcal{T}\in \mathrm{S}(f)$ .

Then the minimal realization problem will be described as follows.

Problem 1. The minimal realization problem associated with an LCC $f$ will be referred to the
following two problems:
(a) Decide whether or not a particular $\mathrm{S}$ $\in \mathrm{S}(f)$ is a minimal realization of $f$ ;
(b) find a minimal realization of $f$ if the above candidate 8 is not a minimal realization.

Since it will be diffiffifficult to solve $\mathrm{a}$ “general” problem, we will restrict our investigation to the
ULT-representation. In Defifinition 5, we give a ULT-minimal realization in the same manner to
Definition 4.

Definition 5. A representation S $\in \mathrm{S}\mathrm{u}\mathrm{L}\mathrm{T}(f)$ is called a $ULT$-minimal realization of f if $\dim(\mathrm{S})\leq$

$\dim(\mathcal{T})$ for every $\mathcal{T}\in \mathrm{S}\mathrm{u}\mathrm{L}\mathrm{T}(f)$ .

Then the $\mathrm{U}\mathrm{L}\mathrm{T}$-minimal realization problem will be defifined as follows.

Problem 2. The $ULT$-minimal realization problem associated with an $\mathrm{L}\mathrm{C}\mathrm{C}f$ will be referred to

the following two problems:
(a) Decide whether or not a particular $\mathrm{S}\in \mathrm{S}_{\mathrm{U}\mathrm{L}\mathrm{T}}(f)$ is a ULT-minimal-realization of $f$ ;

(b) find a ULT-minimal realization of $f$ if the above candidate $\mathrm{S}$ is not a $\mathrm{U}\mathrm{L}\mathrm{T}$-minimal realization

of $f$ .

In the following Subsection 3.2, we will discuss a criterion for a particular ULT-representation

to be a ULT-minimal realization. Since we discuss only ULT-representation for the rest of this

paper, we simply write “representation” and “minimal realization” for “ULT-representation” and

“ULT-minimal realization” , respectively.
The following $\mathrm{r}\mathrm{e}1\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}}\cong \mathrm{o}\mathrm{n}$

$\mathrm{S}$ will be used in Subsection 3.2.

Definition 6. Two state-variable representations S, $\mathcal{T}\in \mathrm{S}$ are said to be equivalent to each other,

denoted by S $\cong \mathcal{T}$ , if there exists an LCCf such that $\mathrm{S}_{7}\mathcal{T}\in \mathrm{S}(f)$ .

3.2 $\mathrm{U}\mathrm{L}\mathrm{T}rightarrow \mathrm{i}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{i}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}$

In the previous subsection, we have formulated the $\mathrm{U}\mathrm{L}\mathrm{T}$-minimal realization problem. In solving

the problem, one hopes to understand how to determine whether or not a given representation is

a minimal realization. In this subsection, we will discuss the criteria for a representation to be $\mathrm{a}$

minimal realization.
Before we turn to the actual criteria, it will be beneficial to discuss the following three examples.

These examples demonstrate that if the state-variable representation has redundancy in a certain

sense then such representation is not a minimal realization.

Example 1. Let $\mathrm{S}_{1}=(A_{1}, \mathrm{C}_{1})$ be a ULT-representation given by the following:

$A_{1}=(1 1)$ , $B_{1}=(0 1 0 1)$ , $C_{1}=\{$

-3
-4
4
6

$-6-8)128$
’

$D_{1}=(\begin{array}{llll}1 0 0 01 1 0 00 0 1 00 0 1 1\end{array})$ , $g_{1}=0$ , $h_{1}=(\begin{array}{l}0000\end{array})$ .
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Then we can establish the following relations among the state-variables $u_{i}(x)(i=1,2, 3,4)$ :

$\mathrm{u}\mathrm{i}(\mathrm{x})=3u_{2}(x)$ , $u_{3}(x)=2u_{4}(x)$ , $u_{4}(x)=-2x_{1}-4x_{2}+2u_{2}(x)$ .

Thus, the variables $u_{1}(xx)$ , us (x), $u_{4}(x)$ can be eliminated from $\mathrm{S}_{1}$ , and therfore, $\mathrm{S}_{1}$ becom es
equivarent to the following $\mathrm{U}\mathrm{L}\mathrm{T}$-representation $\mathrm{S}_{1}’$ :

$A_{1}’=(-1 -3)$ , $B_{1}’=3$ , $C_{1}’=(1 2)$ , $D_{1}’=1$ , $g_{1}’=0$ , $h_{1}’=0$ .

In the above sense, we say that the variables $u_{1}(x)$ , $u_{3}(x)$ , $u_{4}(x)$ are redundant.

Example 2. Let $\mathrm{S}_{2}=(A_{2},\mathrm{C}_{2})$ be a $\mathrm{U}\mathrm{L}\mathrm{T}$-representation given by the following:

$A_{2}=(1 1)$ , $B_{2}=(0 1)$ , $C_{2}=(\begin{array}{ll}1 22 1\end{array})7$ $D_{2}=(\begin{array}{ll}1 00 \mathrm{l}\end{array})$ , $g_{2}=0$ , $h_{2}=(\begin{array}{l}00\end{array})$ .

Then the state-variables $u_{1}(x)$ and $u_{2}(x)$ in this example do not have the same redundancy as in

Example 1. However, since the fifirst column of $B_{2}$ is equal to 0 and the function $u_{2}(x)$ is indepen-

dently calculated from $u_{1}(x)$ , the variable $u_{1}(x)$ is unnecessary. Thus $\mathrm{S}_{2}$ becomes equivarent to

the following lower dimensional ULT-representation $\mathrm{S}_{2}’$ :

$A_{2}’=(1 1)$ , $B_{2}’=1$ , $C_{2}’=(2 1)$ , $D_{2}’=1$ , $g_{2}’=0$ , $h_{2}’=0$ .

In the above sense, we say that $u_{1}(x)$ is redundant.

Example 3. Let $\mathrm{S}_{3}=(A_{3},\mathrm{C}_{3})\in \mathrm{S}_{\mathrm{U}\mathrm{L}\mathrm{T}}^{k}$ be given. Suppose there are a positive integer $k’<k$ ,
$\mathrm{C}_{3}’\in \mathbb{C}_{\mathrm{U}\mathrm{L}\mathrm{T}}^{k’}$ a $\mathrm{d}$ a matrix $E\in \mathbb{R}^{k\mathrm{x}k’}$ such that the solution $u(x)$ to the derived $\mathrm{L}\mathrm{C}\mathrm{P}$ from $\mathrm{C}_{3}$ can
be expressed as $u(x)=$ fftz’(z), where $u’(x)$ is the soiution to the derived $\mathrm{L}\mathrm{C}\mathrm{P}$ from $\mathrm{C}_{3}’$ . Then $\mathrm{S}_{3}$

becomes equivalent to the $\mathrm{U}\mathrm{L}\mathrm{T}$-representation $\mathrm{S}_{3}’=(A_{31}’\mathrm{C}_{3}’)\in \mathrm{S}_{\mathrm{U}\mathrm{L}\mathrm{T}}^{k’}$, where $A_{3}’=(A_{3,3\prime}BE.g_{3})$

for $A_{3}=(A_{3}, B_{3},g_{3})$ . In the above sense, we say that the state-variables $u(x)$ contain redundancy.

We will now discuss the criteria in detail. As demonstrated above, if the state-variables of $\mathrm{a}$

representation have redundancy, then the representation is not a minimal realization. Moreover,

it turn out that there exist the following causes of redundancy at least: (i) the existence of
dependence of the state-variables (Ex.l), (ii) the existence of unnecessary state-variables resulting

from acolumn of $B$ becoming 0 (Ex.2), (iii) the existence of another low dimensional state-

variables restoring original state-variables (Ex.3). Conversely, if a given representation is not $\mathrm{a}$

minimal realization, then the $\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{e}\sim \mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{s}$should have certain redundancy.
From the above argument, we expect that a minimal realization is characterized by the question

on whether or not there is redundancy in state-variables. Then, what kind of redundancy should
be $\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}^{9}$. This question has remained unsettled.

So far, we have investigated $\mathrm{U}\mathrm{L}\mathrm{T}$-reducibility generalizing the redundancy of (iii), and found
that the redundancy of (i) and $\mathrm{U}\mathrm{L}\mathrm{T}$-reducibility are equivalent. Here we will give a full account
of this investigation.

First, we will give a notion of ULT-reducibility generalizing the redundancy of (iii).

Definition 7. Let $\mathrm{C}$ $\in \mathbb{C}_{\mathrm{U}\mathrm{L}\mathrm{T}}^{k}$ . Then $\mathrm{C}$ is said to be $ULT$-reducible if there exists some $\mathrm{C}’\in \mathbb{C}_{\mathrm{U}\mathrm{L}\mathrm{T}}^{k’}$

with $k’<k$ such that every $A\in \mathrm{A}^{k}$ of arbitrary dimension $m$ of range space has a reduced
representation $(A’,\mathrm{C}’)$ equivalent to $(A,\mathrm{C})$ $\mathrm{r}_{\mathrm{i}.\mathrm{e}}\lfloor.$ , $(A, \mathrm{C})$ $\cong(A’,\mathrm{C}’)]$ . Here we include the special case
$k’=0$ in which $(A,\mathrm{C})$ can be found representing a linear function. If not ULT-reducible, it is said
to be $ULT$-irreducible
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$\mathrm{C}_{3}$ in Example3is $\mathrm{U}\mathrm{L}\mathrm{T}$-reducible. Moreover, by Theorem 3 below, $\mathrm{C}_{1}$ in Example 1 is also
ULT-reducible. On the other hand, C2 in Example 2 is ULT-irreducible.

The following Propsition 1 is an immediate concequence of Defifinition 5 and $\mathrm{D}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{l}\mathrm{o}\mathrm{n}|7$.
Propsition 1 shows that ULT-irreducibility of $\mathrm{C}$ is necessary for $\mathrm{U}\mathrm{L}\mathrm{T}$-minimal realization. Note
that Example 2 is a counterexample for the suffifficiency.

Proposition 1. If S $=(A_{7}\mathrm{C})$ $\in \mathrm{S}\mathrm{u}\mathrm{L}\mathrm{T}(f)$ is a $ULT$-minimal realization for f, then C is ULT-
irreducible.

The following Theorem3 shows that the redundancy of (i) and ULT-reducibility of $\mathrm{C}$ is equiv-
alent. The condition (S) in Theorem 3 characterizes a certain kind of dependency among the
components of the state-variables.

Theorem 3. Let $k$ be a positive integer. Then $C$ $\in \mathbb{C}_{\mathrm{U}\mathrm{L}\mathrm{T}}^{k}$ is $ULT$-reducible if and only if the

solution $u(x)$ to the derived $LCP$ from $C$ satisfies the following condition (S):

(S) For some $p=1,2$ , $\ldots$ , $k$ , there exist $\{\lambda_{i}\}_{i<p}\subseteq \mathbb{R}$ and a linear function $l_{p}$ : $\mathbb{R}^{n}\prec \mathbb{R}$ such thaf

$u_{p}(x)= \sum_{\iota<p}\lambda_{i}u_{i}(x)+l_{p}(x)$

$(\forall x\in \mathbb{R}^{n})$ .

Outline of the proof. Let $\mathrm{C}$
$\in \mathbb{C}_{\mathrm{U}\mathrm{L}\mathrm{T}}^{k}$ , and let $u(x)$ be the solution to its derived $\mathrm{L}\mathrm{C}\mathrm{P}$.

Sufficiency: If $p=1$ , then $u1(x)$ is linear, hence a constant $a\geqq 0$ by Lemma 1. Set $\mathrm{C}’=$

$(C’, D’, h’)\in \mathbb{C}_{\mathrm{U}\mathrm{L}\mathrm{T}}^{k’}$ , where $k’=k-1$ , $C’=(c_{2}^{T}$ , . . . , $c_{k}^{T})^{T}$ , $D’=(d_{i_{\rangle}j})_{i,j\neq 1}$ and $h’=(h_{i+1}+$

$ad_{i+1,1})_{\dot{x}=1}^{k’}$ for $C=(c_{1}^{T}$ , . . . , $c_{k}^{T})^{T}$ , $D=(d_{i,j})_{1\leqq i,j\leqq k}$ and $h=(h_{i})_{i=1}^{k}$ . For any $A\in \mathrm{A}^{k}$ , we can fifind
$A’\in \mathrm{A}^{k’}$ such that $(A, \mathrm{C})$ $\cong(A’, \mathrm{C}’)$ . In asimilar manner, we can construct such $C’$ , in the case of

$p>1$ . Therefore, $\mathrm{C}$ is ULT-reducible.
Necessity:Suppose $\mathrm{C}$ is ULT-reducible. Choose the dimension of range space as $m=k$ . Then

there exist a number $k’<k\mathrm{C}’$
}

$\in \mathbb{C}_{\mathrm{U}\mathrm{L}\mathrm{T}}^{k’}$ and $A’=(A’, B’, g’)\in \mathrm{A}^{k’}$ such that

$u(x)=B’u’(x)+l(x)$ $(\forall x\in \mathbb{R}^{n})$ ,

where $l(x)=A’x+g’$ , and $u’(x)$ is the solution to the derived $\mathrm{L}\mathrm{C}\mathrm{P}$ from $\mathrm{C}’$ . Since $k’<k$ , we

have a nonzero vector A 6 $\mathbb{R}^{k}$ such that $(B’)^{\overline{\mathit{1}}}\lambda=0$ , and hence $\lambda^{T}u(x)=\lambda^{T}l(x)$ . This implies

that $u(x$ } satisfies the condition (S). $\square$

4 Concluding remarks

This paper has introduced the ULT-minimal realization problem associated with the state-variable
representation and discussed the relation between the criteria for $\mathrm{U}\mathrm{L}\mathrm{T}$-minimal realization and

redundancy in the state variables. As a result of this $\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{g}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}_{7}$we have proposed the concept of

ULT-reducibility, which is one of the necessary conditions for $\mathrm{U}\mathrm{L}\mathrm{T}$-minimal realization. Moreover,

it has been shown that this characterizes the certain kinds of dependency among the state-variables.

However, there has been no efficient algorithms to check such a condition. A further study will

be needed to establish such an algorithm. Moreover, the question of what kinds of the criteria

will give the complete characterization for $\mathrm{U}\mathrm{L}\mathrm{T}$-minimal realization remains to be open. Such $\mathrm{a}$

characterization is to be investegated.
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A Appendix: The linear complementarity problem

Let $k$ be a positive integer.

Definition A.I. [2] Given a matrix D $\in \mathbb{R}^{k\cross k}$ and a vector q $\in \mathbb{R}^{k}$ , a linear complementarity

problem, LCP for short, is to fifind a pair of vectors u,j $\in \mathbb{R}^{k}$ such that

$j=Du$ $+q$, (4)

$u,j\geq 0$ , $\langle u,j\rangle=0$ (5)

or to show that no such pair exists. We denote the above problem by the pair $(D, q)$ . A pair $(u,j)$

satisfying (5) is called complementary, and the one satisfying (4) and (5) is called a solution to the
LCP $(D, q)$ .

Next, we will introduce the two matrices, in relation with a representation of piecewise linear

function.

Definition A.2. A square matrix is said to be:
(i) [2] $P$-matrix if all its principal minors are positive;
(ii) [7] unit lower triangular matrix, ULT-matrix for short, if it is a lower trianguler matrix and its
diagonal elements are all 1’ $\mathrm{s}$ .

Remark 3. Aprincipal minor is the dete rminant of a principal submatrix of $D$ , and a principal
submatrix is formed by deleting exactly the same members of rows and columns from the original
matrix. It is easy to see that every ULT-matrix is a P-matrix.

In general, the $\mathrm{L}\mathrm{C}\mathrm{P}$ does not necessarily have a solution. Even if it has a solution, generally it

is not necessarily unique. However, Proposition A.I below claims that a $\mathrm{P}$-matrix guarantees the
uniqueness of solution.

Proposition A.l. [2] A matrix D $\in \mathbb{R}^{k\cross k}$ is a P matrix if and only if the LCP(D, q) has $a$

unique solution for every q $\in \mathbb{R}^{k}$ .

By Proposition A. $\mathrm{I}$ , if $D$ is a $\mathrm{P}$-matrix, then the pair of vectors $u$ and $j$ satisfying (4) and (5)
is uniquely determined. In such a case, we often refer $u$ (or $j$ ) as ”the unique solution to $(D, q)”$ ,
without confusion.

Remark 4. When the matrix $D$ is nonsingular, we can defifine the $\mathrm{L}\mathrm{C}\mathrm{P}(D^{-1}, -D^{-1}q)$ for each
$q\in \mathbb{R}^{k}$ . Then $(u,j)$ is a solution to $(D, q)$ if and only if $(j, u)$ is a solution to $(D^{-1}, -D^{-1}q)$ .
Moreover, by Proposition A.1, if $D$ is a $\mathrm{P}$-matrix, then the unique solution to $(D, q)$ is also the
unique solution to $(D^{-1}, -D^{-1}q)$ . Thus, we obrain

Proposition A.2. The inverse of a $P$-matrix is also a P-matrix.
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