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Abstract

This study focuses on a mechanism to stabilize the growth modes of single-

walled carbon nanotube (SWNT) in the catalytic chemical vapor deposition (CVD)

method. On the basis of experimental and theoretical knowledge about SWNT

growth, we constructed a phenomenological model of SWNT growth as a reaction-

diffusion system. The reaction field was approximated as a one-dimensional ring,

which enables to deal with the mode of tube growth by numerical calculations.

Computer simulations showed that a reaction spot emerges with various dynamics,

depending on the value of parameters. These dynamics are interpreted in terms of

growth modes. For instance, the dynamics where a reaction spot rotates along the

ring is regarded as a helical growth mode, which may be relevant to chiral structure

of SWNT. Stability of these growth modes were discussed in connection with the

heat supply and the growth rate, and the diameter of catalyst.
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1 Introduction

Since the discovery of nanotubes by Iijima (1991), it has been revealed that a nan-

otube has various interesting properties. For instance, Single-Walled Carbon Nan-

otubes (SWNTs) exhibit either metallic or semiconducting behavior depending on

their structural characteristics such as helicity and diameter (Lieber 1998, Hu and

Odum 1999). It is very important to clarify the SWNT growth mechanism for its

industrial production with controlling its structural characteristics such as helicity

or diameter, etc. Among many factors to be considered, the most fundamental is

that the SWNT seems to grow stably with a high aspect ratio of more than a thou-$\cdot$

sand. This study focuses on such a mechanism to stabilize the growth modes of

SWNT in the catalytic chemical vapor deposition (CVD) method.

In line with experimental methods of NT production such as the arc discharge,

the laser oven, and the CVD method, researchers have hypothesized the SWNT

production process (Thess et al. 1996, Dai et al. 1996, Kiang and Goddard III

1996 Yudasaka et al. 1999, Kataura et al. 2000 Scott et al. 2001). These hypothe-

ses commonly claim that a SWNT grows after the nucleation, i.e., the formation

of the SWNT precursor, and metal catalysts are required for the growth. And the

growth is considered mainly in its two processes that are an inflow of material car-

bons to a reaction field and the transformation of carbons to the wall, although each

hypothesis supposes its own two processes. We believe that these two processes

are connected to a certain extent, refering to following arguments. The hypothesis

of SWNT growth in the CVD method (Dai et al. 1996) suggests that these two

processes, which occur on a metal particle, may connect to stabilize the surface

energy of the particle. Little (2003) claims that the NT growth is resulted from



3

the comlexly thermal cycle that connects the material carbon production with the

carbon transformation on a metal particle. From these knowledges, we consider

the steady growth process of SWNT in the CVD method to be “ the auto-catalyze

heat generation that induces both the material carbon inflow to the reaction field on

a metal particle and the carbon transformation into the SWNT”. Moreover, experi-

ments in the CVD method (Murakami et al. 2003) recently revealed that a SWNT

grows from a metal particle with the diameter similar to the particle. This strongly

suggests that a reaction field for the steady growth is a ring-like line around the

about middle of the metal particle, as shown in figure 1.

Figure 1: The model of a SWNT steady growth in the CVD method. The

reaction field for the steady growth is a line around the about middle of the

metal particle. $\alpha_{1}$ , $\beta_{1}$ , $\alpha_{2}$ , and $\beta_{2}$ are parameters used in (4).

In this paper, we describe this growth system as a reaction-diffusion system,

and in this modeling we approximate the reaction field as a one-dimensional ring
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of a continuum. Although numerical models of NT growth have been proposed

(Louchev 2002, Louchev et al. 2001, 2003), the growth has been modeled as the

elongation of a one-dimensional stick. That is, the mode of the tube growth has not

been theoretically dealed with. This study attains it by modeling a reaction field

as a one-dimensional ring. We believe that such a modeling may also lead to the

first step tow ards a theoretical solution of the formation process of SWNT lattice

structures .

The reaction field model as a ring will be relevant to SWNT growth process

hypothesized by some researchers, as mentioned as follows. In the scooter hypoth-

esis (Thess et al. 1996) it is supposed that a piece composed of an metal atom or

some ones rotates along the edge of SWNT tip to elongate its tube. In the polyyne

ring nucleus growth hypothesis (Kiang and Goddard III 1996, Kiang 2000), it is

supposed that the precursor of a SWNT is a carbon ring, and adding carbons along

the carbon ring, the growth is initiated.

Our model could generate a reaction spot where material carbons are trans-

formed into a SWNT, in a self-organized manner. Moreover, depending on the

parameter, the reaction spot could appear with various dynamics, such as a trav-

eling mode where a reaction spot rotates along the ring or a steady mode where

a reaction spot is formed uniformly along the ring. These dynamics could be in-

terpreted in terms of growth modes. For instance, it seems reasonable to suppose

that a traveling mode is the helical growth mode. The growth mode supposed in

the scooter hypothesis (Thess et al. 1996) may correspond to such a helical growth

mode. How a helical growth mode is stabilized is especially interesting in terms of

steady growth mode of SWNT because it seems to be difficult that the growth con-

tinues helically without changing with a high aspect ratio of more than a thousand
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In this paper, by use of our model we try to investigate the conditions that stabilize

a helical growth mode of SWNT.

This model can be pointed out to be advantageous in a point of calculation

cost, Even in use of usual personal computers, a calculation time does not take

one minute for checking that a dynamics of the reaction spot converges. This is in

contrast with molecular dynamics simulations (Maiti et al 1997, Maruyama and

Shibuta 2002, Shibuta and Maruyama 2003).

2 The SWNT growth model

The self-propagating high-temperature synthesis (SHS)(e.g., Munir and Anselmi-

Tamburini 1989, Ohyanagi et al., 1992) is well known as the auto-catalyze heat

generation system that self-organizes a reaction spot with various dynamics. In

conformity to the numerical model of the SHS (Nagayama et al. 2001), we con-

struct the phenomenological model of SWNT growth. Because the SWNT growth

structurally differ from the SHS in respect of a material inflow, we should recon-

sider the materials. Here, we define the carbon which flows in the reaction scaffold

as the material carbon. It will be adequate that the material carbons are not nec-

essarily in a similar state when they flow in the reaction scaffold. We assume that

the states of the material carbon can be roughly divided into two states. For being

transformed into SWNT, the one needs the heat generation and the another does

not need it. Where, we call the former carbon the carbon atom, the latter carbon

the active carbon. This mean that for being transformed into SWNT, the carbon

atom has to be activated through the heat generation and the active carbon is the

already activated carbon. From a chemical point of view, the reaction field can be
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illustrated as Fig. 2, and, if anything, it should be called the reaction scaffold.

$\mathrm{n}$

Figure 2: A reaction scaffold for the growth of SWNT,

Used the amount of activated carbons as the variable n, the numerial model of

the SWNT growth is presented ;

$\{$

$\frac{\partial T}{\partial t}=D\frac{\partial^{2}T}{\partial x^{2}}+\gamma_{t}(\tilde{n}-n)^{m}f(T)-\alpha_{1}(T-T_{e})$

$\pi\partial n=\gamma_{n}(\tilde{n}-n)^{m}f(T)-\mathrm{a}_{2}(n-n_{e})$

$x=[0, \pi\phi]$ , $T(0, t)=T(\pi\phi, t)$ , $n(0, t)=n(\pi\phi, t)$ ,

(1)
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where, the variables $T$ is the temparature, the activated carbon amount $n$ is

approx\’imated as a continuum; $t$ and $x$ are time and position, respectively, in the

reaction scaffold which is a one-dimensional ring ; $n\sim$ is a constant and denotes the

maximum occupation amount of carbons in position $x$ , and the value of this will

be determined by a sort of a metal catalysis : $\phi$ is the diameter, $\pi$ is the ratio of

the circumference of a circle to its diameter; $D$ is a diffusion constant, and $\wedge t$ , $\gamma_{n}$

are coefficients of the reaction rate. The parameter $\alpha_{1}$ is the dissipation rate of the

temparature, $T_{e}$ the environmental temparature, $\alpha_{2}$ the growth rate, $n_{e}$ the supply

amount of the active carbons (strictly, \^o ne). The value of these parameters will

be determined by a sort of a metal catalysis and material (e.g., hydrocarbon) gas

and the pressure of the gas etc. The reaction rate $f(T)$ is a function of temparature

$T$ , governed by the Arrhenius law, and is expressed as

$f(T)=\{\begin{array}{l}exp(-E/RT)T\geq T_{ig}0T<T_{ig}\end{array}$ (2)

by an activation energy $E$, the universal gas constant $R$ , and an reaction tem-

parature $T_{ig}$ .

We introduce dimensionless valiables defined by

$u=T/T_{ig}$ , $n/\tilde{n}=v$ , (3)

where, $u$ is called the nondimensional temparature, $v$ is the nondimensional

activated carbon amount approximated as a continuum, respectively. And (I –v)

expresses the vacant space occupied by the carbon atoms and catalyst. Assumed

$\gamma_{t}\tilde{n}^{m}/T_{ig}=\gamma_{n}\tilde{n}^{m-1}/T_{ig}=k$ and usd $m=3$ (see, discussion section), we deriv$\mathrm{e}$



8

the following normalized system from (1),

$\{\begin{array}{l}\frac{\partial u}{\partial \mathrm{f}}=D\frac{\partial^{2}u}{\partial x^{2}}+k(1-v)^{3}f(u)-\alpha_{1}(u-\beta_{1})\frac{\partial v}{\partial t}=k(1-v)^{3}f(u)-\alpha_{2}(v-\beta_{2})x=[0_{?}\pi\phi],u(0,t)=u(\pi\phi,t),v(0,t)=v(\pi\phi,\mathrm{f})\end{array}$ (4)

where, $\beta_{1}=T_{e}/T_{ig}$ , $\beta_{2}=n_{e}/\tilde{n},$ , and $f(u)$ is expressed as

$f(u)=\{\begin{array}{l}exp(-e/u),u\geq 10,u<1\end{array}$ (5)

by using the constants $e=E/(RT_{ig})$ .

From a viewpoint of the thermodynamics, the four parameters $\alpha[perp]$ , $\beta_{1}$ , $\alpha 2$ , and

$\beta_{2}$ can be regarded as follows (see, figure 1); $\alpha_{1}$ the dissipation rate of heat, $\alpha 1\beta_{1}$

the heat supply from the environment, $\infty$ a rate of growth, $\alpha_{2}\beta_{2}$ a supply rate of

the active carbons.

Since the activated (and active) carbons are immediately transformed into the

SWNT the activated carbon amount $v$ could be considered to be eqiuvalent to

the carbon amount transformed into a SWNT. Just then, it is found that this model

expresses the growth process supposed by us in section 1 as mentioned below. The

temparature $u$ is auto-catalytically produced through the NT synthesis (the second

term in the right side of the 1st equation in (4), i.e., $k(1-v)^{3}f(u)$ $)$ . As described

in the 2nd equation in (4), an increases of $v$ (the carbon amount transformed into

the SWNT) is induced by the synthesis, depending on the produced temparature $u$ .

Here, because (1-u) expresses the vacant space occupied by the carbon atoms and

catalyst in a position $x$ , a decrease of $v$ will mainly correspond to an inflow of the
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carbon atoms to a position $x$ . Actually, with NT growth, a series of transformed

carbons will be eliminated in succession from a position $x$ . This elimination effect

is described in the last term in the 2nd equation in (4), i.e., $-\mathrm{o}\mathrm{e}v$ , that causes $?$) to

decrease according to the growth amount $v$ in the position $x$ . Consequently also

again, an inflow of the carbon atoms is induced depending on the produced heat $u$ .

Thus, this model expresses the thermal cycle that induces both the carbon inflow

to the reation scaffold and the carbon transformation.

This model will be able to generate various dynamics of a reaction spot, such

as a traveling mode or a steady mode. As mentioned in introduction section, we

should investigate the stability of a traveling mode.

3 Simulation result

The initial condition was set up so that the the dynamics of traveling mode, where

a reaction spot travels along the ring, is always generated at the initial stage regard-

less of parameters (Appendix $\mathrm{B}$ ). By using the parameters $\alpha_{1\mathrm{y}}\beta_{1}$ , $\alpha_{2}$ , $\beta_{2}$ , and $\phi$ ,

the conditions to stabilize the dynamics were investigated Given the value of pa-

rameters and the initial condition, the simulation was continued until a dynamics

was stabilized.

First, $\beta_{1}$ , $\beta_{2}$ and $\phi$ were fixed to moderate values, and $\alpha_{1}$ , $\alpha_{2}$ were modulated.

Regardless of parameter values, the traveling mode always appeared in the initial

stage except when the heat generation did not occur. And depending on the combi-

nation of values of $\alpha_{1}$ and $\alpha_{2}$ , the traveling mode was stabilized, or was replaced

with other various dynamics, as shown in Fig. 3 and 4. In each dynamics appeared

here, $u$ and $v$ were always synchronized. Another traveling mode where the re
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action spot is larger and travels faster was also confirmed. We call this the fast

traveling mode. The future of other dynamics appeared here is as follows. In the

node mode, from or after the initial stage, the heat generation (a reaction spot) is

not generated and $v$ become uniformly static state (/%). In the focus mode, after

the initial stage, the traveling mode or the fast traveling mode is attenuated and $v$

converges to uniformly static state. In the oscillatory mode, after the initial stage,

$v$ oscillates uniformly on the ring. This phase diagram shows that the stabilization

of the traveling modes requires the value beyoud a certain value of both $\mathrm{q}$ and $\alpha_{2}$ ,

and is strongly affected by the ratio of $\alpha_{1}$ to $\alpha_{2}$ .

Second, fixed $\alpha_{1}$ to the about middle value $(\alpha_{1}=4.0)$ in the horizontal axis of

Fig. 3 the influence by $\beta_{1}$ to the dynamics was investigated ( $\alpha$ and $\phi$ were fixed

to the values similar to that in Fig. 3). As shown in Fig. $5\mathrm{a}$ , the traveling modes

are stabilized within the narrow range of $\beta_{1}$ (the heat supply). This result suggests

that large areas of the traveling modes in Fig. 3 is supported by the moderate value

of $\beta_{1}$ .

Third, fixed again $\alpha_{1}$ to the same value (ai $=4.0$), the influence by $\beta_{2}$ was

investigated ( $\mathcal{B}_{1}$ and $\phi$ were fixed to the values similar to that in Fig. 3). The phase

diagram of Fig. $5\mathrm{b}$ shows that the traveling modes require $a$ less than a certain

value.

The parameter $\phi$ also influenced strongly to the stabilization of these modes, as

shown in Fig. $5\mathrm{c}$ . The domain of traveling modes becomes narrow with decrease of

the diameter $\phi$ , and it completely disappears below a certain value of the diameter.

This phase diagram shows that $\phi$ more than a certain value is required for traveling

modes.

Since the parameters $\alpha_{1}$ , $\beta_{1}$ , $\alpha_{2}$ , $\beta_{2}$ , and $\phi$ correspond to the dissipative rate
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of heat, the heat supply, the growth rate, the supply of the active carbons, and the

ring diameter of the reaction scaffold, respectively, the conditions which stabilize

the traveling modes can be concluded as follows. The dissipative rate of heat and

the growth rate are more than a certain value and are about proportional. And the

heat supply within the moderate range, the active carbon supply less than a certain

value, and the diameter more than a certain length are needed.

Since carbon atoms are activated in a reaction spot, the movement of the reac-

tion spot may be interpreted in terms of the growth modes. Then, we regard the

dynamics appeared here as the grow th mode. It seems reasonable to interpret as

follows. The traveling modes are the helical growth mode and the other modes are

the symmetrical growth mode. Therefore, the conditions which stabilize the helical

growth mode will attribute to conditions for the traveling modes.

. investigated point
$-\backslash arrow\backslash \vee$ traveling mode $\square$ node mode

$\ovalbox{\tt\small REJECT}$ fast traveling mode focus mode
$\mathit{7}\mathrm{T}$ oscillatory mode
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Figure 3: the phase diagram of dynamics stabilized by parameters $\alpha_{1}$ , $\alpha_{2}$ ,

Within the range of the used values of the parameters, five dynamics, i.e.,

the tranveling mode, the fast traveling mode, the one time travering mode,

attenuation mode, and no ignition mode, were confirmed. The values of other

parameters, $\beta_{1}$ , $\beta_{2}$ , and $\phi$ , were fixed to 0.45, 0.13, and 0.3, respectively.

$\mathrm{v}$

travet ing mode fast five } $\mathrm{i}$ ng mode

$\mathrm{v}$

$\mathrm{v}$

$\mathrm{v}$

forcus ntode

Figure 4; dynamics appeared in firgure 3. The state of v (the wallizing carbo
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amount) in each dynamics is represented by two figures, i.e., two graphs

where the vertical axis is $v$ (the upper) and is time $t$ (the bottom). For the sake

of convenience, the one-dimensional ring of the reaction field is straightened,

and represented as the horizontal axis (x) in these graphs. Therefore, both

ends of the $x-$ axis are actually linked together, and the $x-$ axis represents

the position in the reaction scaffold. The upper graph shows the converged

spatial pattern on a certain time. The bottom graph shows the spatiotemporal

pattern of v. Shading applid in the bottom graph indicates the value of v. The

brighter the color becomes, the larger the value of $v$ becomes.

investigated point $\underline{\square }$ node mode

traveling mode focus mode
$\ovalbox{\tt\small REJECT}^{\backslash }$ fast traveling mode

Figure $5\mathrm{a}$ : the phase diagram of dynamics stabilized by parameters a2, $\beta_{1}$ .

The values of other parameters, $\mathrm{a}\mathrm{i}$ , $\beta_{2}$ , and $\phi$ , were fixed to 4.0, 0:13, and

0.3, respectively
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Figure 5b

investigated point

traveling mode $\square$ node mode
$\ovalbox{\tt\small REJECT}$ fast travelin $\mathrm{g}$ mode $\wedge\lrcorner \mathrm{t}$ focus mode

Figure 5c

$-\cdot$

‘

investigated point $\prod_{-\wedge}$ node mode

traveling mode focus mode
$\ovalbox{\tt\small REJECT}\backslash$ fast traveling mode $\Omega$ oscilatory mode
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Figure $5\mathrm{b}$ : the phase diagram of dynamics stabilized by parameters $\alpha_{2}$ , $\beta_{2}$ .
The values of other parameters, $\alpha_{1}$ , $\beta_{1}$ , and $\phi$ , were fixed to 4.0, 0.13, and

0.3, respectively.

Figure $5\mathrm{c}$ : the phase diagram of dynamics stabilized by parameters a2, $\phi$ .

The values of other parameters, $\alpha_{1}$ , $\beta_{1}$ , and $\beta_{2}$ , were fixed to 4.0, 0.13, and

0. 13, respectively.

4 Discussion

In this paper, we discussesd the conditions which stabilize the helical growth mode

of a SWNT according to the following procedure. 1) The phenomenological model

of SWNT growth was constructed as a reaction-diffusion system where the reac-

tion field was approximated as a one-dimenssional ring of continuum. 2) Through

computer simulations of this model, the conditions which stabilize the dynamics

of traveling reaction spot were elucidated by modulation of the parameters. 3)

Through interpretation of the dynamics, the suitable conditions were applied to

that of the growth mode.

It is a great fruits on this study that the mode of the tube growth could be dealed

with by numerical cal culation by modeling a reaction field as a ring,

In connection with the simulation results that the helical growth modes are

destabilized with decrease of the diameter and completely disappear below a cer-

tain diameter, experiments $()$ show following results. Although NT production

experiments usually synthesize SWNTs with various diameters and with different

lattice structures at a time, a distribution of helically latticed SWNTs decreases

according to the grade of the shortness of their diameters. And helically latticed
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SWNTs can not be found below a certain diameter. This agreement between the

simulation results and the experimental results suggests that SWNT lattice struc-

tures may be relevant to SWNT growth modes. In the future, it will be important

to investigate the connection between the growth mode and the lattice structure.
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Appendix

A. Parameters

$D=10^{-4}$ , $k=5.0\mathrm{x}$ $10^{5}$ .

Nondimensional parameters

$e=7.9$ .

B. Initial condition

$u(x, 0)=\{\begin{array}{l}a\mathrm{f}\mathrm{o}\mathrm{r}0\leq x\leq cb\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}\end{array}$

$v(x, 0)=0.0$ , $a=0.6$ , $b=0.1$ , $c=\pi\phi/2$ , ( $\pi\phi$ is the ring length).

Moreover, in order to induce always a herical growth mode in the initial stage, the
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following asymmetry was introduced about the boundary. The Dirichlet boundary

condition is set during time $t$ $<<$ Is, but otherwise the periodic boundary

condition is set up.


