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概要

We investigate the bifurcation of three-dimensional tertiary flows numerically in a simple shear
layer with a cubic velocity profile when secondary flow loses its stability to oscillatory perturbations.
It is found that the bifurcating motion is either of periodic nature or of traveling-wave nature,
depending on the spanwise symm etry of disturbances. Furthermore, it turns out that the travelling-
wave propagating in the spanwise direction generates tlle spanwise mean flow

1 Introduction
It is of considerable importance to applications in engineering and geophysics, among $\mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{S}_{\rangle}$ to under

stand the mech anism of the transition from laminar flow to early stages of turbulence in plane parallel

shear layers. As a simple example of such shear layers we consider flows with a cubic velocity profile.
These flows with an inflectional velocity profile can be realized between two parallel vertical plates which

are kept at constant$\mathrm{n}\mathrm{t}$ different temperatures under the gravity field. The flows are characterised by a
upward motion near a hotter plate and by a downward motion near a colder plate, so that the momen-
tum for the undisturbed state is only in the vertical direction. It is well known that Squire’s theorem is

applicable in this case, so that it is sufficient to analyse the stability of the basic state with respect to
two-dimensional spanwise-independent) perturbations In fact, a spanwise-independent secondary flow

characterized by cats’ eyelike transverse vortices sets in as the shear gets stronger (Vest &Arpaci ).

The stability analysis on the secondary flow indicates that the secondary flow becomes unstable to three-
dimensional perturbations with either a monotone subh armonic nature or an oscillatory harmonic nature
(Nagata &Busse ), In the present paper we investigate the nonlinear development of the perturbations

in the oscillatory harmonic case using two numerical schemes: a direct numerical simulation to integrate

the time evolution of the primitive variables for Navier-Stokes equations and a Newton-Raphson iterative

scheme to solve the nonlinear algebraic equations for the disturbance amplitudes in an equilibrium state.

2 Mathematical formulation
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$\mathrm{z}^{*}=+\mathrm{d}|$ $\dot{\mathrm{z}=}0|$ $\mathrm{z}^{*}=- \mathrm{d}|$

$\mathrm{H}$ $1$ : Configuration

$G_{r}$ in (1) is the Grashof number defined by $G_{r}=\gamma gd^{3}(T_{+}-T_{-})/(2\nu^{2})$ where $\gamma$ is the coefficient of

thermal expansion, $\nu$ is the kinematic viscosity and $g$ is the acceleration due to gravity.

The equations which govern disturbances deviated from the basic state (1) are written by

$\nabla$ . at $=$ 0, (2)

$\partial_{t}u+$ $(u. \nabla)u$ $=$ $-\nabla p+\theta$$\hat{i}+\nabla^{2}u$ , (3)

$d_{t}’\theta+$ $(u \cdot\nabla)\theta$ $=$ $\frac{1}{Pr}\nabla^{2}\theta$ , (4)

where $\mathrm{u}$ is the velocity disturbance, $P$ the pressure disturbance, $\theta$ the temperature disturbance, $Pr=\nu/\kappa$

the Prandtl number. The no slip boundary condition and the fixed temperatures are $\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{e}^{\backslash }\mathrm{r}\mathrm{i}\mathrm{b}\mathrm{e}A$ on the

plates:
$u=0$ and $\theta=0$ at $z=\pm 1$ . (5)

It may be easily found that temperature disturbnce becomes identically zero in the vanishing Prandtl

number limit.
The stability of the basic state is governed by

$\partial_{t}\nabla^{2}\triangle_{2}\tilde{\phi}+\{U_{B}(z)\partial_{x}-\nabla^{2}\}\nabla^{2}\triangle_{2}\tilde{\phi}-U_{B}’(z)\partial_{x}\triangle_{2}\tilde{\phi}=0$, (6)

and
$\partial_{C}\triangle_{2}\tilde{\psi}+\{U_{B}(z)\partial_{x}-\nabla^{2}\}\triangle_{2}\tilde{\psi}-U_{B}’(z)\partial_{y}\triangle_{2}\tilde{\phi}=0$ , (7)

where $\tilde{\phi}$ and $\tilde{\psi}$ are the poloidal and toroidal components of an infinitesimal velocity perturbation $\overline{u}$ :

$\tilde{u}=\nabla \mathrm{x}$ $\nabla \mathrm{x}$ $(\tilde{\phi}k)+\nabla \mathrm{x}$ $(\tilde{\psi}k)$ . (8)

superimposed on the basic flows (1)
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We express $\tilde{\phi}$ and $\tilde{\psi}$ as

$\tilde{\phi}=\sum_{\ell=0}^{\infty}\tilde{a}_{l}(1-z^{2})^{2}T_{l}(z)\exp\{\mathrm{i}\mathrm{c}\mathrm{y}x+\mathrm{i}\beta y+\sigma t\}$, (9)

$\overline{\psi}=\sum_{\mathrm{e}ll=0}^{\infty}\tilde{b}\iota(1-z^{2})T_{l}(z)\exp\{\mathrm{i}\alpha x+\mathrm{i}\beta y+\sigma t\}_{?}$ (10)

where a and a are the wavenumbers in the streamwise and the spanwise directions, respectively. $T\ell(z)$

is the r-th Chebyshev polynomial.
In order to analyse the nonlinear development of the perturbation we consider a velocity deviation

\^u from the laminar state and for convenience separate it into the average part $\check{U}(z)i+\check{V}(z)j$ and the
residual $\dot{u}$ , so that the total velocity $u$ is given by

$u=U(z)i+\check{V}(z)j+\check{u})$ (11)

where $U(z)=U_{B}(z)+\check{U}$ $(z)$ The residual tt is further decomposed into the poloidal and toroidal parts:

$\check{u}=\nabla \mathrm{x}\nabla \mathrm{x}$ $(\phi k)+\nabla \mathrm{x}$ $(\psi k)$ . (12)

The nonlinear state is governed by

$\partial_{t}\nabla^{2}\triangle_{2}\phi$ $+$ $\{U(z)\partial_{x}-\nabla^{2}\}\nabla^{2}\triangle_{2}\phi-U’(z)\partial_{x}\triangle_{2}\phi$

$+$ $\check{V}(z)\partial_{y}\nabla^{2}\triangle_{2}\phi-\check{V}’(z)\partial_{y}\triangle_{2}\phi$

$+$ $\delta[(\check{u}\cdot\nabla)\check{u}]=0$ , (13)

$\partial_{t}\triangle_{2}\psi$ $+$ $\{U(z)\partial_{x}-\nabla^{2}\}\triangle_{2}\psi-U’(z)\partial_{y}\triangle_{2}\phi$

$+$ $\check{V}(z)\partial_{y}\triangle_{2}\psi+V’(z)\partial_{x}\triangle_{2}\phi \mathrm{v}$

$+$ $\epsilon[(\dot{u}. \nabla)\overline{u}]=0$ , (14)

$\check{U}^{Jl}+\partial_{z}\overline{\triangle_{2}\phi(\partial_{xz}^{2}\phi+\partial_{y}\psi)}=\partial_{\mathrm{g}}\check{U}$, (15)

$\dot{V}’+\partial_{z}\overline{\triangle_{2}\phi(\partial_{yz}^{2}\phi-\partial_{x}\psi)}=\partial_{t}\check{V}$ , (16)

where the differential operators $\epsilon$ in (11) and 6 in (12) are defined by

$\epsilon\equiv k(\nabla \mathrm{x}$ and $\mathit{5}\equiv k(\nabla\cross\nabla \mathrm{x}.$ (17)

and the overline in (15) or (16) stands for the $x$ , $y$-average. In the above, the possibility of induced

average fiow $\check{V}(z)$ in the spanwise direction is incorporated. We express $\phi$ , $\psi,\check{U}$ and $\check{V}$ as follows:

$\phi$ $=$
$\sum_{t=0}^{\infty}\sum_{(m,n)\neq\langle \mathrm{O}.0)}^{\infty}\sum_{=m=-\infty n-\infty}^{\infty}a_{lmn}(1-z^{2})^{2}T_{l}(z)$

$\mathrm{x}\exp(\mathrm{i}ma(x-cxt) +inj3\{y -c_{y}t))$ $(1\mathrm{S})$
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$\psi$ $=$
$\sum\infty$ $\sum\infty$ $\sum\infty b_{lmn}(1-z^{2})T_{l}(z)$

$\iota=0m=-\infty n=-\infty$

$(m,n)\neq\langle \mathrm{O},0)$

$\mathrm{X}$ $\exp(\mathrm{i}m\alpha(x-c_{X}t)+\mathrm{i}n\beta(y-\mathrm{c}_{y}t))$ (19)

0 $=$ $\sum_{l=0}^{\infty}$ Cg $(1-z^{2})T_{f}(z)$ (20)

$\check{V}$

$=$ $\sum_{l=0}^{\infty}d_{l}(1-z^{2})T_{l}(z)$ . (21)

In the expressions (18)-(19) the phase velocities, $c_{x}$ and $c_{y}$ , are included in order to deal with a travelling-

wave tyPe of nonlinear equilibrium states. For a steady state time-derivatives are omitted in the equations

(13)- (16) and $r_{x}$
. and $r_{y}$

. are both zero. As a measure of nonl nearity we choose the momentum transport

$\tau$ on the plates normalised by its value for the basic state:

$\tau=U’(z)/U_{B}’(z)|_{z=\pm 1}$ (22)

In order to investigate the stability of the equilibrium state, we superimpose arbitrary three-dimensional
infinitesimal perturbbaLions 011 the nonlinear state (18) - (21) The $\mathrm{s}\mathrm{t}\mathrm{a},\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}$ equations $1\mathrm{i}11\mathrm{e}\mathrm{a}1^{\backslash }\mathrm{i}\mathrm{s}\mathrm{e}\mathrm{d}$ with

respect to the perturbations are given by

$\partial_{t}\nabla^{2}\triangle_{2}\tilde{\phi}$ $+$ $\{U(z)\partial_{x}-\nabla^{2}\}\nabla^{2}\triangle_{2}\tilde{\phi}-U’(z)\partial_{x}\triangle_{2}\tilde{\phi}$

$+$ $\overline{V}(z)\partial_{y}\nabla^{2}\triangle_{2}\tilde{\phi}$ $-\check{V}’(\approx)\partial_{y}\triangle_{2}\tilde{\phi}$

$+$ 5 $[(\dot{u}\cdot\nabla)\tilde{u}+(\tilde{u}\cdot \nabla)\check{u}]=0\}$ (23)

$\partial_{t}’\triangle_{2}\tilde{\sqrt)}+\{U(z)c9_{x}-\nabla^{2}\}\triangle_{2}\overline{\psi}-U’(z)\partial_{y}\triangle_{2}\tilde{\phi}$

$+\check{V}(z)\partial_{y}\triangle_{2}\tilde{\psi}+\check{V}’(\approx)\partial_{x}\triangle_{2}\tilde{\phi}$

$+$ $\epsilon$ [ $(\check{u}\cdot\nabla)\overline{u}+$ (tz . $\nabla)\check{u}$] $=0$ . (24)

$\tilde{\phi}$ and $\tilde{\psi}$ are expressed by

$\overline{\phi}=\sum\infty$ $\sum\infty$ $\sum\infty\overline{a}\iota_{mn}(1-z^{2})^{2}T_{I}(z)$

$\mathit{1}=0m=-\infty n=-\infty$

$\mathrm{x}$ $\exp\{i(m\alpha+d)(x-c_{x}t)+\mathrm{i}(n\beta+b)(y-\mathrm{c}_{y}t) + \sigma t\}$ , (25)

$\tilde{\psi}=\sum\infty\sum\infty$ $\sum\infty\overline{b}_{lmn}(1-z^{2})T_{l}(z)$

$t=0m=-\infty n=-\infty$

$\mathrm{x}$
$\exp\{\mathrm{i}(n\mathrm{z}\alpha +d)(x-\mathrm{c}_{x}t)+\mathrm{i}(n\beta +b)(y-c_{y}t) + \sigma t\}$ , (26)

where $d$ and $\mathrm{b}$ are Floquet parameters.

3 Numerical methods
3,1 Stability and bifurcation analysis

Substitution of the expansions (18) - (21) into the basic equations (13) - (16) reduces to a set of

nonlinear algebraic equations for the expansion coefficients with the aid of the Chebyshev collocation

method. We employ the Newton-Raphson method to solve the set of equations
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For the stability of an nonlinear equilibrium state we superimpose the general form of a three dimensional
perturbation (25) and (26) on the equilibrium state and we obtain the eigenvalue problem for the growth
rate aof the perturbation as the eigenvalue with the aid of Floquet’s theorem.

3.2 Direct numerical simulation

We choose the wall-normal components of the velocity and the vorticity in addition to the mean velocity

components in the streamwise and the spanwise directions as the flow field. The flow field is expanded by

the Fourier series in the streamwise and spanwise directions and the Chebyshev polynomials in the wall-
normal direction The time-development of the flow is followed by the method of the Adams-Bashforth

scheme for convective terms and the Crank-Nicolson scheme for viscous terms.

$\mathrm{G}\mathrm{r}$

152: The bifurcation diagram

4 Results
The bifurcation diagram in the $(G_{r}, \tau)$ spa,$\mathrm{e}\mathrm{e}$ is shown in Fig. 2. The basic flow becomes unstable at

$G_{r}=500$ to a two-dimensional perturbation and $2\mathrm{D}$ transverse vortex flow $(2\mathrm{D}\mathrm{T}\mathrm{V})$ with the streamwise

wavenumber a $=1.2\overline{\tau},$ as a secondary flow bifurcates supercritically. The $2\mathrm{D}\mathrm{T}\mathrm{V}$ becomes unstable first

at $G_{r}=534$ to a steady $3\mathrm{D}$ subharmonic three-dimensional perturbation with the Floquet parameters

$(d, b)=(0625=\alpha/2,1.0)$ , and later at $G_{r}=545$ to a harmonic three dimensional perturbation with

$(d, b)=(0,1.0)$ . The real eogenvalues are associated with the subharmonic perturbation and the the

complex conjugate pair of eigenvalues with the harmonic perturbation. We obtain a $3\mathrm{D}$ steady subhar-

monic flow $(3\mathrm{D}\mathrm{S}\mathrm{b}^{\backslash })$ which bifurcates al $G_{r}=534$ as a tertiary solution as shown by the thick cueve in

Fig. 2. Time-dependent solutions as a tertiary state may occur at $G_{r}=545$ . For DNS we restricted

the wavenumber pair (or, $\beta$ ) for the computation domain $(L_{x}=2\pi/\alpha L_{y}=2\pi/\beta)$ to (1.25, 1.00) for the

harmonic case and to (0.625, 1.0) for the subha rmonic case. Since the three-dimensional subharmonic

solution cannot manifest itself by DNS in the harmonic domain we expect some three-dim ensional pe-

riodic flows to bifurcate directly from the $2\mathrm{D}\mathrm{T}\mathrm{V}$ at $G_{r}=545$ in the harmonic case. However, it turns

out that the periodic flows exist only as a transient state and the solution in the final state is $\mathrm{a}\{^{\backslash }\mathrm{t}\mathrm{u}\mathrm{a}11\mathrm{y}$
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a three-dim $\mathrm{e}\mathrm{l}\mathrm{l}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{I}\mathrm{l}\mathrm{a}4$ travelling-wave $(3\mathrm{D}\mathrm{T}\mathrm{W})$ instead. The $3\mathrm{D}\mathrm{T}\mathrm{W}$ does not change its flow pattern in

a frame moving with the spanwise phase speed $c_{y}$ and keeps a constant momentum transport on the

plates as indicated by the dashed curve in Fig. 2. The existence of the $3\mathrm{D}\mathrm{T}\mathrm{W}$ i‘s also c.onfirmed $\mathrm{b}_{\iota}\mathrm{y}$

the calculation by Newton-Raphson method. It is interesting to note that the $3\mathrm{D}\mathrm{T}\mathrm{W}$ has a non-zero
average velocity $\check{V}(_{\sim}\mathit{7})$ in the spanwise direction It should be noted that the solutions in the harmonic

case constitute a subset of the solutions in the subharmonic case.

5 Conclusions
In the present paper we have investigated the nonlinear development of the perturbations in the oscil-

latory harmonic case using two numerical schemes, a direct numerical simulation and a Newton-Raphson

iterative scheme. Both numerical schemes have indicated that the bifurcating three-dimensional flow

when the secondary flow loses its stability to an oscillatory disturbance is periodic for the case where the

spanwise symmetry is retained, whereas it is of travelling-wave tyPe travelling with a constant phase in

the spanwise direction when the spanwise symmetry is broken. The mean flow produced by nonlinear

interactions of oscillatory perturbations has only the streamwise component for the three-dimensional

periodic flow. It turns out that the mean flow has an additional spanwise component, thus generating the

spanw ise momentum, for the three-dimensional travelling-wave solution. We will also show the generation

of the spanwise mom entum by means of symmetry arguments.
In experiments the vertical fluid layer betw een two plates must be confined by the side walls, in general,

which ought to inhibit the total mass flux in the horizontal direction Therefore, in order to detect a

horizontal mass flux we plan to carry out an experiment on na natural convection in a vertical annulus

The mass flux sould be generated in the azimuthal direction either clockwise or anti-clockwise depending

on the form of an initial disturbance.
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