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Abstract

The sequencing of complete genomes allows analyses of interactions between various biological molecules
on a genomic scale, which prompted us to simulate the global behaviors of biological phenomena on the
molecular level. One of the basic mathematical problems in the simulation is the parameter optimization
in the kinetic model for complex dynam $\mathrm{i}\mathrm{c}\mathrm{s}$ , and many optimization methods have been designed. We in-
troduce a new approach to optimize the parameters in biological kinetic models by quantifier elimination
(QE), in combination with numerical simulation methods. We also show an computational example for
the inhibition kinetics of HIV proteinase in order to demonstrate the effectiveness of our method

1 Introduction

Many methods for local and global optimization have been developed to model and simulate the

global network of biological molecules in a cell $[9, 11]$ , and some simulators based on various optimization

methods have also been designed (e.g. [10]). In the optimization methods, the estimation of kinetic
parameters plays a key role in the developed ent of kinetic models, which, in turn, promotes functional
understanding at the system level, for example, in several biological pathways $[7, 12]$ . In addition to the
development of optimization methodology, the high performance of computers for numerical calculations
also supports the optimization of the kinetic parameters in the complex dynamics within a reasonable
amount of computational time. The high computer performance supports not only tne numerical calcu-
lations based on calculus, but also the symbolic computations based on computer algebra (CA). Indeed
symbolic computation is popular in software platforms such as Maple [6] and Mathematica [14], and the
use of symbolic computation is increasing rapidly in biology [2]. The quantifier elimination (QE) is one
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of the main subjects in CA [3]. The QE was originally described in the mathematical proof by Tarski
(1951) [13], which stated that the elementary theory for the reals is decidable. Although the original

algorithm was too complex to solve the problem, a new method by Collins (1975) [5], cylindrical algebraic

decom position (CAD), allowed efficient implementation. Subsequent improvements in the algorithm $\mathrm{p}\mathrm{r}\mathrm{o}\sim$

vided feasible software platforms for symbolic computation (e.g., [1]). Although some applications of QE

to biological issues by symbolic computation were reported [4], an amalgam of symbolic computation by

QE and numerical calculation has not been designed. In this PaPer, we developed a novel optimization

method in combination with symbolic computation and numerical simulation. A procedure for parameter

optimization was designed to solve differential equations by QE in combination with numerical simula-

tion. The performance of our procedure is illustrated by optimizing ten parameters between nine variables

in a model for the inhibition kinetics of HIV proteinase [8]. As for the optimization performance, the

goodness of fit to the observed data and the optimized parameters are compared with those from the

previous studies $[8, 9]$ . Furthermore, some characteristics of the symbolic-numeric method are discussed

with the behaviors of the parameters and the variables in the model.

2 MATERIALS AND METHODS

2.1 Main tool: Quantifier elimination for uncertain input data

Our key tool for realizing symbolic-numeric optimization is quantifier elimination (QE) over the reals

[3]. When we find feasible model parameters according to the observed data, we can solve some con-

straints derived by substituting observed data for the corresponding $\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}\mathrm{s}/\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{s}$ in the original

constraints. Such constraints have some uncertainty, due to the inexact input data. Hence, if we aPPly

QE directly to the constraints, then there is a real danger of arriving at an incorrect answer. Actually,

we often obtain a false ” result for feasible cases. In order to extract the nontrivial information of

feasible parameters, even for the incorrect cases, we propose the introduction of new variables into the

constraints (see 2.2). We call them “ error variables” , which play a role in absorbing the uncertainty due

to inaccurate input data. If we aPPly QE for the constraints including error variables, then we obtain

possible ranges of error variables, so that the constraints are feasible. Then we obtain feasible regions of

the model parameters by aPPlying QE again to the constraints, where the error variables are substituted

with the minimum value of their feasible ranges.

2.2 Mathematical Framework

Problem: In this paper, we consider the follow ing fitting problem: the biological kinetic model analyzed

here is of the form:
$\dot{x}_{i}=v_{i}(X, K)$ (1)

where $X=\{x_{1}, \cdots, x_{n_{i}}\}$ is a set of variables, and $K=\{k_{1}, \cdots , k_{n_{j}}\}$ is a set of parameters. The problem

is to fit the param eters $K$ of the model to the observed data $\tilde{X}=\{\tilde{x}_{\mathrm{i}}^{t}\}$ for, $\mathrm{i}=1$ , $\cdots$ , $n_{x}$ , $t=0,1_{7}\cdots$ , $n_{\overline{x}_{\mathrm{t}}}$

under the following additional conditions:
(i) Conservation laws: $h_{i}(X)$ $=0$

$(\mathrm{i}\mathrm{i})\mathrm{V}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$ ranges: $x_{i}\in D_{i}$ , where $D_{i}=[a, b]$ , $a$ , $b\in \mathbb{R}\cup\{\infty\}$ .
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Basic Formula Here we set up the leading formula of this paper. As mentioned above, we have the

following constraints $\Psi$ with error variables ei from kinetic models: $\Psi\equiv\Lambda i\psi i$ , where $\psi_{i}=\dot{x}:-v_{i}(X, K)+$

$e_{i}=0$ . For the error variables we introduce a new variable, $e_{m}ax$ , which means the magnitude of the

error variables: $|e_{i}|\leq e_{\max}$ . Moreover, for the variables whose observed data is given, we consider the

following objective conditions: $X_{l}^{\langle t)}-\tilde{X}_{l}^{(t)}=0$ , to achieve fitting. Then the $J$ ‘ basic formula ” is given as

$F\dot{X}$ , $X,K$, $e_{\max}$ , $e_{i})\equiv(\Psi$ $\wedge Vi$ ( $X,$ $=0$ A $x_{i}\in D_{i}$ A $|e_{i}|\leq e_{\max}$ A $X_{l}^{\langle t)}-\tilde{X}_{l}^{(t)}=0$ ). (2)

We apply our symbolic-numeric approach to formulas derived by slightly modifying the basic formula

according to various purposes.

2.3 Optimization Procedure

We explain the concrete procedure of symbolic-numeric optimization, which consists of six parts as
illustrated in Figure 1.

Numerical simulation First we prepare simulation data for $\dot{X}$: and $x_{i}$ , for which we lack observed

data, by performing a numerical simulation of the kinetic models.

1. Set initial conditions $\overline{X}^{(0)}$ and starting values for unknown parameters $\tilde{K}^{(0)}$ as follows: $\tilde{X}^{(0)}\equiv$

$\{\tilde{x}^{(0)}|\mathrm{i}=1, \cdots , n_{x}\}$ and $\tilde{K}^{(0)}=K_{1}^{(0\rangle}\cup K_{2}^{(0)}$ , where $\tilde{K}_{1}^{(0)}\equiv\{k_{1}^{(0)}, \cdots , k_{j}^{(0)}\}$ are starting values, and
$\tilde{K}_{2}^{(0)}\equiv\{k_{j+1}^{(0)}, \cdots, k_{n_{j}}^{(0\rangle}\}$ are given fixed parameters.

2. By numerical simulation of the kinetic model (1), we obtain a time series for $x$: and $\dot{x}::X_{i}^{(t)}=$

$\{x_{i}^{(t)}|\mathrm{i}=1, \cdots, niyt=0,1, \cdots,n_{t}\}$ and $\dot{X}_{i}^{(t)}\sim=\{\tilde{\dot{x}}_{i}^{(t)}|\mathrm{i}=1, \cdots , n_{i},t=0,1, \cdots, nt\}$ .

$\cdot.\cdot\underline{\frac{\supseteq>oe}{\epsilon\alpha\tilde{\mathrm{c}}}u\infty’}$

$\tilde{\infty 81}$

Figure 1: Flowchart of symbolic-numeric optimization. The variables and values are enclosed by the boxes, and
the procedures are numbered corresponding to the description in the text
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Formulation After choosing some variables from $X$ , we call them “ focusing variables $”$

)
$Y$ , and

substitute $\mathrm{o}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{e}\mathrm{d}/\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d}$ data into the rem aining variables:

1. Choose a subset $Y$ of $X$ : $Y\subseteq X$ .

2. Substitute $\dot{X}$ , $X\backslash Y$ , in $F$ by the values of $\tilde{\dot{X}},\tilde{X}$ at a time point $t$ :
.

$iarrow\dot{X}_{i}^{(t)}\sim$ ,
$\cdot$

where
$x_{i}\in\tilde{\dot{X}}$ , $X\backslash Y$ . Then we denote the new form ula as $F’(Y, K_{1}, e_{\max}, e_{i})$ . We note by performing aQE

computation for the formula, $\exists Y\exists K_{1}\exists e_{\max}\exists e_{i}(F’)$,

Computation of offset by QE Observed data often contain an offset. Therefore, we must first deter-
mine the offset value. Here we consider the case that the offset appears linearly. For the sake of simplicity,

we assume that only $\tilde{x}_{1}$ has an offset. Let $F_{\circ ffset}’$ be the formula obtained by putting $\tilde{x}_{1}’$ -offset iinnitoo $\tilde{x}_{1}^{(t)}$

of $F’$ , where offset is a variable for offset. By performing QE for $\exists X$ E3 $K1 \exists e\max\exists e:(F_{oJfset}’)$ , we obtain

the $\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{r}\sim \mathrm{f}\mathrm{r}\mathrm{e}\mathrm{e}$ formula $\pi$(of$f$set), which stands for the feasible ranges of offset. Then we substitute
the minimum value of the offset for the variable offset in $F’$ , and we denote it again by $F’(Y, K_{1}, e_{\max}, e_{i})$ .

Estimation of emax and $K_{1}$ by QE First, we use QE to make the magnitude of ei as small as
possible, and then we estimate the parameters $K_{1}$ by QE:

1. Com pute the feasible range of $\pi(emax)$ : by computing QE for $F’(Y, K_{1}, e_{i})$ , we obtain a $\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{r}rightarrow$

free formula $\pi(emax)$ describing the feasible ranges of emax. Next, we put the minimum value of
$e_{\max}$ into $e_{\max}$ in $F’$ , and denote the resulting formula as $F’(Y, K_{1}, e_{i})$ .

2. Compute $K_{1}$ : by computing QE for $Y\exists e_{i}(F’)$ , we obtain a quantifier-free formula $\tau(K_{1})$ describing

the feasible ranges of $K_{1}$ Actually, the feasible ranges of $K_{1}$ are usually sufficiently narrow intervals

(e.g., about $10^{-6}$ ) to choose an appropriate specific value of $K_{1}$ .

Computation of sum of squares (SSq) We estimate the goodness-of-fit for the obtained parameter
$\mathrm{v}\mathrm{a}1\mathrm{u}\mathrm{e}\mathrm{s}K_{1}$ from the feasible ranges $\mathrm{o}\mathrm{f}K_{1}$ in terms of $SSq$ .

1. Set initial conditions $\tilde{X}^{(0)}$ and $K_{1}$ .

2. Perform numerical simulation of kinetic model (1).

3. Compute $SSq$ : $SSq= \sum_{t}(x_{1}^{(t)}-\overline{x}_{1}^{(t)})^{2}$ .

Termination If $SSq$ is smaller than a specific level $\theta$ , output $K$ . Otherwise, set new initial values and

go to (1).

2.4 Biological Model

We analyzed a model for the inhibition kinetics of HIV proteinase [8], as shown in Figure 2. The Pro-

teinase monomer (M) is inactive, but the enzyme (E) is active in the dimeric form. The dimer catalyzes

the conversion of the substrate (S) to the product (P). The inhibitor (/) is competitive for the sub-

strate and the product, and the inhibitor-binding enzyme is irreversibly deactivated (EJ). In the model,

there are ten parameters and nine variables. According to the previous studies [8, $9_{\rfloor}^{1}$ , five parameters
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$(k_{11}, k_{12}, k_{21}, k_{41}, k_{51})$ are given, and the remaining five unknown parameters $(k_{\underline{9}\underline{9}}, k_{3}, k_{427}k_{52}, k_{6})$ , two

initial values $(E_{init}, S_{in\mathrm{i}t})$ and the offset of the fluorimeter are estimated by the present method. The

experimental data of the product $[P]$ , which are composed of 300 data points measured from 0 to 3600

seconds, were downloaded from a web site (http: $//\mathrm{w}\mathrm{w}\mathrm{w}.\mathrm{g}\mathrm{e}\mathrm{p}\mathrm{a}\mathrm{s}\mathrm{i}.\mathrm{o}\mathrm{r}\mathrm{g}/\mathrm{t}\mathrm{u}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{s}/\mathrm{o}\mathrm{p}\mathrm{t}/\mathrm{h}\mathrm{i}\mathrm{v}\mathrm{f}\mathrm{i}\mathrm{t}.\mathrm{h}\mathrm{t}\mathrm{m}\mathrm{l}$ ).

3 RESULTS
First, we will describe the practical procedure for parameter optim ization in the kinetic model for HIV

proteinase, and then we will evaluate the optimized parameters by the goodness of fit to the observed

data.

3.1 Procedure for Optimizing Parameters in HIV inhibition Model

To perform the numerical simulation (in 2.3.1), $K_{1}$

and $K_{2}$ , are defined as the five unknown parameters and
$\mathrm{i}\mathrm{f}\mathrm{f}+\mathrm{s}\%\mathrm{f}$ $arrow-$ $E$ $k_{11}(arrow)$, $k_{12}(arrow)$ the five giyen parameters, and the nine variables are allo-
$S*E$ $-arrow$ ES $k_{rightarrow}\tau_{\mathrm{i}\backslash \mathrm{m}}k\tau’ s$

cated to $[P]$ , $[E]$ , [S], [ES], $[M]$ , $[EP^{7}\rfloor_{2}[I_{\rfloor}^{1}, [EI]$ , and $[EJ]$ .
$E\ ^{\mathrm{Y}}$ $\overline{\prime}$ $E+P$ $k_{3}$

Then we set the start value $\tilde{K}^{(0)}$ and the initial value
$E+P$ $-arrow$ $EF$ $k_{43\backslash }k_{4\underline{?}}$

$E+I$ $\Leftrightarrow$ $EI$ $k_{51}$ , $k_{5\underline{?}}$

$\tilde{X}^{(0)}$ . The start values for ten parameters and the initial
$EI$ $arrow$ $EJ$ $k_{\mathrm{S}}$ values for nine variables are cited from the previous study

[9] (see the legend in Figure 2). Also, the two initial val-
ues, Einit and Sinit, are changed within a limited range

Figure 2: Kinetic model for the inhibitor of HIV
proteinase. The start values for ten parameters with reference to the previous studies $[8, 9]$ : 31 discrete
and the initial values for nine variables [9] are as values for $([E]=0.00350,0.00355, \cdots, 0.00500)$ and 9 val-
follows: $k_{11}=0.1$ , $k12=10^{-4}$ , $k_{21}=100$ $k_{22}=$ ues for $([S_{\rfloor}^{\rceil}=24.0,24.5, \cdots, 28.0)$ . the focusing variables
300, $k_{3}=10$ , $k_{41}=100$ , $k_{42}=500$ , $k_{51}$ $=100$
, $k_{52}=0.1$ , $andk_{6}=0.1;\tilde{x}_{1}=0,\tilde{x}_{2}=0.004,\tilde{x}_{3}=$

$Y$ (in 2.3.2) are simply obtained by the symbolic compu-
24’5’ $\overline{x}_{4}=0,\tilde{x}_{5}=0,\overline{x}_{6}=0,\tilde{x}_{7}=0.003,\tilde{x}_{8}=$ tation with QE from the relationship between $X$ and\^ii
0, $and\tilde{x}_{9}=0$ . in the model. In the inequality $v_{i}(X, \mathrm{K})\mathrm{A}\mathrm{t}+x_{i}^{t}\geq 0$ , the

elimination of $\Delta f$ by QE outputs five inequalities included
ing five parameters: 100*[E]*[I]-k52*[EI]-k6*[EI] $>0$ , $100*[E]$ $*[I]-k52*[EI]>0$ , $100*[E]*[P]-$

$k42*[EP]-k3*[ES]<0,100*[E]$ $*[P]$ $-k42*[EP]>0$ , $and1\mathrm{O}\mathrm{O}*[E]*[S]$ $-k22*$ [ES] $-k3*[ES]>0$ . Among
the five unknown param eters in the above five inequalities, $[P]$ is included in the objective function, and
$[S]$ is a large value relative to the other variables in the reaction molecules. Except for the last three in-

equalities including [$P_{\mathrm{J}}^{\rceil}$ and $[S]$ , only $[EI]$ appears in the terms related to the unknown parameters in the
first two inequalities. Thus, the focusing variables $Y$ are defined as $[P]$ , $[S]$ , and $[EI]$ in the present model.
All symbolic computations by QE in this study are performed by REDUCE $(\mathrm{v}\mathrm{e}\mathrm{r}. 3.8)$ (http://www.uni-

koeln.de$/\mathrm{R}\mathrm{E}\mathrm{D}\mathrm{U}\mathrm{C}\mathrm{E}/$ ). In addition, the conservation laws in the present model are obtained by Gepasi [10],
a tool for estim ating the kinetic flux in a given model, as follows: $h_{1}(X)$ $=[S]+_{\mathrm{L}}^{\mathrm{r}}ES]+[P]+[EP]-S_{init}=0$

and $h_{2}(X)$ $=[M]+2[E]-$ $2[S]$ - 2 $[P]+2[EI]+2[EJ]-(2E_{init}-2S_{init})=0$ .
The computation of offset by QE (in 2.3.3) is realized by eliminating all of the variables by $\mathrm{Q}\mathrm{B}$ , except

for offset in $F_{offset}’$ . Then we obtain $\mu$ (of$f$set), depending on $\tilde{x}_{1}$ , and the values of six variables and five
parameters, as the following inequalities: $\mu$(off$set$ ) $=c_{1}+c2off et>0$ and $c_{3}+c_{4}offset\geq 0$ , where
$c_{1}$ , $c_{2}$ , $c_{3}$ and $c_{4}$ are constants. The constants in the above equations are estimated in each optim ization.
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Table 1: Goodness of fit with optimized parameters by symbolic-numeric method.
$\hat{\mathrm{h}}\mathrm{u}\mathrm{l}\epsilon$ fffiffilffi 1@ $k_{3}$ $k_{42}$ $k_{\mathrm{R}}$ $\mathrm{k}_{\mathrm{A}}$ $SS\underline{\tau}$ $E_{\ovalbox{\tt\small REJECT}}$ $ff_{\ovalbox{\tt\small REJECT}}$ $ffi^{\ovalbox{\tt\small REJECT}}$

$33\check{\mathrm{t}:}$ $\wedge 7\mathfrak{B}_{-}\underline{7}$ 9776 1305 0.063 $\theta \mathfrak{G}\mathrm{f}\mathrm{f}\mathrm{l}$ 0-00962 $\xi$} $\mathfrak{W}4\theta 5$ 275 -:} $\mathfrak{H}_{\angle}^{\gamma}S5\mathrm{B}\mathrm{R}$

984 155.5 9982 1127 0.102 $\mathfrak{x}>_{\mathrm{r}}\mathrm{a}\mathrm{e}\mathrm{a}\mathrm{e}$ 0.00825 $\zeta$} $\mathrm{i}\mathrm{n}\mathrm{t}$ $0$ $\underline{?}\mathrm{g}\mathfrak{g}$ $\ovalbox{\tt\small REJECT}\theta \mathfrak{W}\mathit{5}\mathit{9}\mathit{1}$

1305 9817 $S1^{\underline{\}}}\mathrm{B}$ $\mathrm{g}$ Iftf $\theta \mathrm{f}\mathrm{f}\mathrm{l}\mathrm{f}\mathrm{f}\mathrm{l}$ 000963 DJI0430 $\underline{\mathrm{s}}\mathrm{g}\mathfrak{g}$ $\lrcorner$ }$.0\mathfrak{B}59\mathrm{Z}$

JS48 2
40. $5\mathrm{g}$ 9 $\mathit{9}\mathit{9}t$} 1211 $0\geq Q_{\wedge}’$} $\mathrm{f}$?09713 006380 $\xi\}_{\wedge}\Re$]$\grave{\mathrm{a}}85$ $arrow B\mathrm{S}\theta$ -0040591

336. $\Re 4$ 225.9 9970 1219 1759 1759 O.OOS56 $\theta_{-}W4\mathrm{g}\theta$ $n_{\vee}$}$75$ $-\theta.B^{\mathrm{q}}\mathrm{B}5\mathit{9}1$

$3^{\eta}3\theta_{\backslash }$ Iffffi lS1.9 $9\cdot 980$ 1304 4991 49&1 O.OOS56 O.DS475 $\underline{?}7_{\backslash }5$ $-\theta.\emptyset 2\mathfrak{B}91$

$23\mathrm{L}6$ 9719 1140 $8_{-}\Re \mathrm{f}\mathrm{i}$ $2.\mathfrak{B}\mathrm{E}+\mathfrak{Q}8$ C.00659 $\mathrm{R}" \mathfrak{M}495$ $\sim’ P\theta \mathrm{r}\pi$ $-\theta,01\mathcal{B}\underline{5}91$

$\mathit{9}34_{l}18\mathrm{f}\mathrm{f}\mathrm{l}$

$\mathfrak{B}\theta$ 9990 1254 1000 loo 0.03334 DJI0430 $\tilde{z}7_{\mu}^{\triangleleft}$ $\mathrm{B}.\S\underline{\tau}\mathrm{g}391$

$\mathrm{h}\prime \mathrm{f}_{\mathrm{C}]1}4\epsilon\epsilon\ \mathrm{K}\mathrm{e}\mathfrak{B}$ $2\theta 1_{\sim}1$ $\overline{\iota}35\underline{2}$ 1171 $1_{-3}^{\mathrm{A}}\mathrm{t}\mathrm{E}+\theta$‘ $3\mathrm{B}\mathrm{f}\mathrm{f}\mathrm{l}\mathrm{E}+\alpha 4$ 0.00513 $\theta_{\wedge}\mathfrak{W}>^{-}47$ 2 79 $4BB\mathfrak{B}6_{\sim}’3$

ffitfflRN 179.7 946 $1\mathrm{S}1\cdot 9$ $\S.\mathrm{a}\mathrm{e}\hat{\Rightarrow}\mathrm{g}$ $\mathrm{R}1_{\sim}^{\gamma}24$ $0.\Re 387$ $\sim 34.\mathrm{f}\mathrm{f}\mathrm{i}$ $-\theta \mathrm{B}1$

For reference, the values related to the present optimization are also cited from previous studies $[8, 9]$ ,

Using $F’$ of $Y$ and the offset obtained above, we can estimate em ax and\^ii by QE (in 2.3.4). Note

that 279 sets of emax and\^ii are obtained by the corresponding sets of $E_{in\mathrm{i}t}$ and $s_{init}$ . Since the fitting

of simulated data strongly depends on the initial values, we further simulate numerically $E_{init}$ and Sinit

within the above ranges of $E_{in\tau t}$ and Sinit; by a standard technique of the bisection method, Einit and

Sinit for each set of emax $\mathrm{a}\mathrm{n}\mathrm{d}K_{1}$ are $\mathrm{e}$ im ated to minimize the $SSq$ that is calculated for 300 values of
$[P]$ (in 2.3.5). Finally, we obtain a set of $e_{\max},K_{1}$ , Einit and Sinit by selecting a minimum $SSq$ among

the 279 SSq’s.
To judge whether the loop in Figure 1 terminates or not (in 2.3.6), the minimum of SSq’s is compared

with the threshold $\theta$ . In the present study, the threshold is set to 0.01 to attain the sam $\mathrm{e}$ magnitude as

that in the previous study [9]. If the $SSq$ is smaller than 0 then we terminate the optimization process.

If the $SSq$ is larger than $\theta$ , then we start the loop by substituting 279 sets $\mathrm{o}\mathrm{f}K_{1}$ into $\tilde{K}^{(0)}$ with the sam $\mathrm{e}$

initial value sets of $\overline{x}_{2}^{(0)}([E_{ini\mathrm{f}}])$ and $\overline{x}_{3}^{(0)}([S_{in\dot{x}t}])$ . Although the number of starting values $\tilde{K}^{(0)}$ increases

as $279^{n}$ with the n-th iteration, the restriction of the parameter and the variable spaces prevents multiple

iterations. Indeed, only one or two iterations were sufficient to attain the threshold in the present model.

3.2 Observed Data Fitting with the Optimized Parameters

The optimized parameters with the six sets of observed data are listed in Table 1, together with the

iteration number, the goodness of fit measured by $SSq$ ) the initial values of $E_{init}$ and $S_{init}$ , and the offset.

In addition, the fittings of simulated values to the observed data in six cases are described in Figure 3.

One of the remarkable features of the present fitting is that only one or two points of the observed

data are sufficient to fit 300 data points with an $SSq$ value of less than 0.01. The data point for the

optimization is randomly chosen from 300 points of data, and all fittings attain the threshold by one or

two iterations of the loop. In two of the six cases, two rounds of iterations were required, but the first

fitting in each case agreed well with the observed data. This is partly because QE powerfully restricts

the possible ranges of the parameters and the variables, and partly because the present model is simpler

than that expected from the complex kinetics of ten parameters and nine variables. These points will be

discussed in the following section
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Figure 3: [left] Fitting to observed data with optimized parameters. The amount of product $[P]$ is multiplied
by a coefficient (0.024), according to [9], The experimental data are denoted by the jagged curve. The simulated
curves are denoted by the solid curves (finally optimized) and if the looP iterates twice, by the broken curves
(first optimized): $\mathrm{a}$ , $t=336_{\dot{i}}.\mathrm{b}$, $t=984;\mathrm{c}$ , $t=1848;\mathrm{d}$ , $t$ $=336$ and 984; $\mathrm{e}$ , $t=336$ and 1848; $\mathrm{f}$, $t=984$ and 1848.
[right] RelationshiPs between the five optimized parameters. The parameter ranges were estimated by the given
values at $t=984$ . The open circles indicated by arrows are the optimized parameter values at $t=984$.

Another feature is that the values of the parameters agree well with those in the previous studies
$[8, 9]$ . In particular, the highlighted parameters in this model, the inhibitor binding constant $(k_{52})$ and

the deactivation rate constant $(k_{6})$ , are about 0.10 and 0.097 in three of the six cases, which are similar

values to the constants in one previous study [8]. In contrast, the constants in the three remaining cases
are enormously large, except for $k_{52}$ at $t=984$ and 1848, which are also similar to the magnitude of the
rate obtained in the other previous study [9]. In comparison with both cases, the value in the latter case
is unreasonably large for the analysis to be acceptable. Thus, the large dissociation and deactivation rate

constants suggest that the potency of the inhibitor is overestimated in terms of the inhibitor reaction.

Two problems in the present optimization remain: one is the choice of the observed data for the
optimization, and the other is the confidence intervals for the parameters. As for the data choice, the
data showing a flat slope in the kinetic curve seem intuitively inadequate for the simulation. Indeed, by
using the data of more than $t=2500$ in Figure 3, QE frequently outputs ‘ false ’; this means no parameter

and variable spaces for the initial conditions in $F’$ . Any data, except for those in the steady states, may
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possibly output ‘ true ’ for the optimization by $\mathrm{Q}\mathrm{E}$ . As for the confidence intervals for the parameters,

we will discuss them in terms of the parameters and the variable spaces in the following section.

4 DISCUSSION
4.1 Parameter Spaces Estimated by QE

The relationship between the parameters can be easily estimated by $\mathrm{Q}\mathrm{E}$ . Indeed, the parameter

relationship in arbitrary ranges of variables is obtained by only the exclusion of the object function in $F’$ ,

and is useful to elucidate visually the parameter optimization by QE in terms of the confidence intervals

of the optimized parameters.
Figure 4 shows the relationships between five optimized parameters. Given $E_{init}$ and $s_{init}$ , the $F’$

obtained by excluding the object function consists of five known and five unknown parameters and three

focusing and six remaining variables. In $F’$ , the three focusing variables and three of the five unknown

parameters can be eliminated by $\mathrm{Q}\mathrm{E}$ , given numerical values at $t=984$ for six known variables, and then

we can obtain the relationship between the remaining pair of parameters (a quantifier-free formula for

the parameters).

One of the striking features of the elimination by QE is that the parameter spaces are highly restricted

in all parameter pairs. The parameter space of each pair emerges in a very narrow range between two

boundaries, which is a visual representation of the uncertainty of the parameters. For example, the

narrow range for the parameter space between $k_{22}$ and $k_{42}$ is obtained with the following inequalities:

$155.49657522<k_{22}<155.49657525$ and $1127.2733904<k_{42}<$ 1127.2733905. Furthermore, the total

parameter ranges are shown visually in the restricted ranges; the maximum ranges of the parameter pairs

in Fig. $4\mathrm{b}$ are $0\leq k_{22}\leq 411$ and $0\leq k_{42}\leq$ 1813, and the dissociation constant of $[EP](k_{42})$ varies in a

wider range than that of [ES] $(k_{22})$ .

As seen in the figure, the relationships between the two parameters are divided into independent and

dependent relationshiPs. The parameter range with a slope indicates that the two param eters change

mutually, and are dependent on each other, and the range with no slope indicates that the parameters are

independent of each other. Only the relationship between $k_{22}$ and $k_{42}$ ( $\mathrm{b}$ in Figure 4) is dependent, and

the remaining relationships are independent. Thus, the present method reveals the mutual dependency

of the parameters with their feasible ranges.

4.2 Concluding Remarks

The present study is the first application of QE to the parameter optimization problem in conjunction

with a numerical simulation. Our symbolic-numeric method by QE shows the same magnitude of goodness

of fit as the previous numerical optimization. Furthermore, the present method has the distinct potential

to elucidate the relationships between the parameters in the kinetic model. Thus, our method provides

a new direction for the analysis of kinetic models in the field of computational biology.

Acknowledgements

We would like to express our gratitude to Mr. Taku Takeshima for his kind assistance. One of

the authors (K. H.) was partly supported by a Grant-in-Aid for Scientific Research on Priority Area



48

$‘ l$ Genome Information Science ” (grant 15014208) and for Scientific Research (B) (grant 15310134), from

the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References
[1] H. Anai, and H. Yanami, ”SyNRAC: A maple-package for solving real algebraic constraints”, , In Sloot,

P.M.A. et al. (eds.), Proceedings of the International Workshop on Computer Algebra Systems and

Their Applications: CASA’2003, volume 2657 of LNCS. Springer-Verlag, 2003.

[2] M. Barnett, ”Computer algebra in the life sciences”, ACM SIGSAM Bulletin, Vol. 36, 2002, pp.

5-32.
$\lfloor\lceil 3]$ B. Caviness, and J. Johnson (ed.), Quantifier Elimination and Cylindrical Algebraic Decomposition,

Springer-Verlag, 1998.

[4] C. Chauvin, M. Muller, and A. Weber, “An application of quantifier elimination to mathematical
biology”, In J. Fleischer, J. Grabmeier, $\mathrm{F}.\mathrm{W}$ . Hehi, and W. Kuchlin $(\mathrm{e}\mathrm{d}\mathrm{s}.)$ , Computer Algebra in

Science and Engineering, pp. 287-298, World Scientific, 1995.

[5] $\mathrm{G}.\mathrm{E}$. Collins, ”Quantifier elimination for the elementary theory of real closed fields by cylindri-

cal algebraic decom position”, In Lecture Notes in Computer Science, Vol. 33, pp. 134-183, Berlin:
Springer-Verlag, 1975.

[6] F. Garvan, The Maple Book, London: Chapman and Hall, 2001.

[7] $\mathrm{M}.\mathrm{H}$ . Hoefnagel, M.J.C. Starrenburg, $\mathrm{D}.\mathrm{E}$ . Martens, J. Hugenholtz, M. Kleerebezem, $\mathrm{I}.\mathrm{I}$ . Van Swam,

R. Bongers, $\mathrm{H}.\mathrm{V}$ . WesterhofT, and J. Snoep, “Metabolic engineering of lactic acid bacteria, the
combined approach: kinetic modeling, metabolic control and experimental analysis” , Microbiology,
Vol. 148, 2002, pp. 1003-1013.

[8] P. Kuzmic, “Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV pro-
teinase”, Anal Biochem., Vol. 237, 1996, pp. 260-273.

[$9|$ P. Mendes, and $\mathrm{D}.\mathrm{B}$ . Kell, “Non-linear optimization of biochemical pathways: applications to
metabolic engineering and parameter estimation” , Bioinform atics, Vol. 14, 1998, pp. 869-883.

[10] P. Mendes, and $\mathrm{D}.\mathrm{B}$ . Kell, “MEG (Model Extender for Gepasi): a program for the modelling of
complex, heterogeneous, cellular systems”, , Bioinformatics, Vol. 17, 2001, pp. 288-289.

[11] $\mathrm{C}.\mathrm{G}$ . Moles, P. Mendes, and $\mathrm{J}.\mathrm{R}$ . Banga, “Parameter estimation in biochemical pathways: a com-
parison of global optimization methods”, Genome ${\rm Res}.$ , Vol. 13, 2003, pp. 2467-2474.

[12] I. Swameye, $\mathrm{T}.\mathrm{G}$ . Muller, J. Timmer, O. Sandra, and U. Lingmuller, ”Identification of nucleocyto-
plasmic cycling as a remote sensor in cellular signaling by databased modeling” , Proc. Natl. Acad.
Sci. USA., Vol. 100, 2003, pp. 1028-1033.

[13] A. Tarski, Decision Methods for Elementary Algebra and Geometry, Berkeley University of California
Press, 1951.

[ $14\rceil$ S. Wolfram, The Mathem atica Book, 4th ed. Cam bridge University Press, 1999


