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Abstract

In this paper we present a method to compute or estimate the sum of roots with positive real parts
(SORPRP) of a polynomial, which is related to a certain index of stability in optimal control, without
computing numerical values of the roots explicitly The method is based on symbolic computations and
enables us to deal with polynomials with parametric coefficients for their SORPRP. This leads to provide
a novel systematic method to achieve optimal regulator design in control by combining with quantifier
elimination. We show some experimental result for a typical class of plants to confirm the effectiveness of
the proposed method.

1 Introduction
In control and system theory, investigating location of roots of the characteristic polynom iai is one of

important and fundamental topics related to the stability of feedback control systems. For example, in

case of atypical feedback system with aplant $P(s)= \frac{n_{q}(s\}}{d_{q}(s)}$ controlled by acontroller $C(s)= \frac{7b_{\mathrm{C}}(\mathrm{S})}{d_{\mathrm{c}}(s)}$ where
$n_{q}(s)$ , $d_{q}(s)$ , $n_{c}(s)$ , $P(s)\in \mathbb{Q}[s]$ , the stability of the system is described as follows: The feedback system is

stable if and only if all of the roots of the closed-loop characteristic polynomial $g(s)=n_{p}n_{\mathrm{c}}+d_{p}d_{p}$ locate

within the left-half plane of the Gaussian plane. This is called $Hu$ rwitz stability. We may consider more

general notion of stability, called DInstability, which implies that all of the roots locate inside a restricted

region $\prime D$ within the left-half plane of the Gaussian plane.

Control design problem is to find a controller $C(s)$ so that the system satisfies given specifications. As

the controller $C(s, \mathrm{q})$ has fixed-structure with some parameters $\mathrm{q}$ , what we have to do is to seek feasible

controller parameters $\mathrm{q}$ which satisfies the specifications. For such problems, techniques in computer
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algebra have been successfully applied [9, 13, 1, 2]. Stability is the first necessary requirement for control

system design. Assigning roots of a certain polynomial within a desired region is an essential problem

for stability study. Root assignm ent problem for Hurwitz stability is to find controller parameters $\mathrm{q}$ so

that the system is Hurwitz stable. This is easily verified by the well-known Rout -Hurwitz criterion. In

the case of $D$-stabiiity, a wedge shape region or a circle is usually used as stability region $/D$ . For root

assignment problems with such stability regions, controller design problem is reduced to check a sign

definite condition (SDC) $\forall z>0$ , $f(z)>0$ where $f(z)\in \mathbb{Q}(\mathrm{q})[z]$ , see $[14, 12]$ . Applying real quantifier

elimination (QE) to the sign definite condition, we can obtain possible regions of controller parameters

$\mathrm{q}$ to meet $D$-stability. For a sign definite condition we can utilize an efficient quantifier elimination

algorithm specialized to SDC $[1, 10]$ . These two controller synthesis methods with respect to stability

are implemented as functions in a MATLAB toolbox for robust parametric control [3]

In this paper we focus on the sum of roots with positive real parts (SORPRP) of a given even polyno-

mial, and provide another successful application of computer algebra to control design problem, where the

SORPRP is related to certain index of stability in optimal control. We call the index “stability index”.

Here we compute or estimate the SORPRP without computing explicit numerical values of roots. Hence,

we can handle polynomials with parametric coefficients for their SORPRP.
The key point of the method is that computing SORPRP is reduced to computation of the maxim al

real root of another univariate polynomial. Subsequently this enables us to achieve control system design

with respect to SORPRP systematically. In fact, since the actual control design problems treated are
recast as simple conditions on an univariate polynomial with parametric coefficients (one of them is a

sign definite condition), we can utilize an efficient quantifier elimination algorithm using Sturm-Habicht

sequence $[1, 10]$ . The proposed method is applied to an even polynomial derived from “Linear Quadratic

Regulator (LQR) problem” which is one of the main concerns in control theory.

2 SORPRP of even polynomials
First we consider an even polynomial $f(x)$ of degree $2m$ in $\mathbb{Q}[x]$ with non zero constant, and let

$\alpha_{1}$ , $\ldots$ , $\alpha_{m}$ be roots of $f(x)$ with positive real parts and $\alpha_{m+1}$ , $\ldots$ , $\alpha_{2m}$ roots with negative real parts.

We set $\Omega=$ {a 1, ... , $\alpha_{2m}$ }. So,

$\mathrm{f}(\mathrm{x})=a_{2m}x^{2m}+a_{2m-2}x^{2m-2}+\cdots+a_{2}x^{2}+a0=a_{2m}\prod_{i=1}^{2m}\langle x-\alpha_{i})$ ,

where $a_{2k}\in \mathbb{Q}$ for $0\leq k\leq m$ , $a_{2m}\neq 0$ and $a_{0}\neq 0$ . Our first target is to compute $W=\alpha_{1}+$ . . . $+\alpha_{m}$

without computing all a $i’ \mathrm{s}$ . For simplicity, we call $W$ the SORPRP of $f$ . Since, for each non real root of
$f(x)$ , its complex conjugate has the same real part, we have the following:

Lemma 1
$W$ is a real number.

2.1 Polynomial having SORPRP as its root

Let $B_{i_{1},\ldots,i_{m}}=\alpha_{\mathrm{i}_{1}}+\cdots+\alpha_{i_{m}}$ for $\mathrm{i}_{1}<$ . . . $<\mathrm{i}_{m}$ , and $B$ the set of all distinct values of $B_{i_{1},\ldots,i_{m}}$ .
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Definition 2
Gathering all sums $B_{i_{1}}$ , .., $i_{m}$ , we can construct a polynom $\mathrm{i}alR_{m,f}(z)$ and its square-tee part $\overline{R}_{m,f}(z)$ ,

where $z$ is a new variable:

$R_{m,[}(z)= \prod_{i_{1}<\ldots<i_{\tau n}}(z-B_{i_{1},\ldots,i_{m}})$
,

$\overline{R}_{m,f}(z)=\prod_{B\in B}(z-B)$
.

As there might be a case where $B_{i_{1},..,\iota_{m}}$ coincides with $Bj_{1}$ , . ’
$j_{m}$ for distinct $(i_{1}$ , . . ., $\mathrm{i}_{m})$ and $(j_{1,\ldots\gamma}j_{m})$ ,

the square-free part $\overline{R}_{m,f}(z)$ might be smaller than $R_{m,f}(z)$ . Since ai7 $B_{21}$ , $..,i_{m}$ are algebraic number, it

follows that $R_{m,f}(z)\in \mathbb{Q}[y]$ and so $\overline{R}_{m,f}(z)$ $\in \mathbb{Q}[y]$ . We may call $R_{m,f}(z)$ and $\overline{R}_{m,f}(z)$ the characteristic

polynomial of sums of $m$ roots, and the minimal polynomial of sums of $m$ roots, respectively.

It is obvious that the SORPRP $W=\alpha_{1}+\cdots+\alpha_{m}$ of $f(x)$ coincides with the maximal real root of
$\overline{R}_{m,f}(z)(R_{m,f}(z))$ , since $W$ is a real number. To compute $\overline{R}_{m,f}(z)$ and $R_{m,f}(z)$ , we use the following

triangular set related to Cauchy moduli [5] defined by $f(x)$ .

Definition 3
Let $D$ be an arbitrary computable integral domain and $K$ its quotient field. For a polynomial $g(x)$

of degree $n$ in $D[x]$ , we define the following polynomials: $\{g_{1}(x_{1}), g_{2}(x_{1},x_{2}), \ldots,g_{n}(x_{1}, \ldots,x_{n})\}$ , where
$\mathrm{g}(\mathrm{x})=\mathrm{g}(\mathrm{x})$ and $g_{i}(x_{1}$ , ..., $x_{i})$ is the quotient of $g(x_{i})$ divided by $(\mathrm{x}\mathrm{i}-x_{1})\cdots$ $(x_{\mathrm{i}}-x_{i-1})$ for each

$i>1$ . We note that $g_{i}(x_{1}, \ldots, x_{i})\in \mathrm{D}[\mathrm{x}]$ , $\ldots$ , $x_{i}$ ] and $9\mathrm{i}(\mathrm{x}\mathrm{i})\ldots$ ,Xi) coincides with the quotient of

$g_{i-1}$ ( $x_{1}$ , $\ldots$ , Xi-i) $x_{i})$ divided by $x_{i}-x_{i-1}$ . Here we call $\{g_{1}, \ldots,g_{n}\}$ the standard triangular set defined
by $\mathrm{g}(\mathrm{x})$ , and also call $\{g_{1}, \ldots, g_{k}\}$ the k-th standard triangular set defined by $g(x)$ .

It is well-known that $\{g1, \ldots, gk\}$ forms a Grobner basis of the ideal $\langle g_{1}, \ldots, g_{k}\rangle$ generated by itself

with respect to the lexicographic order $x_{1}<$ . $..<x_{k}$ in $K[x_{1}, \ldots, x_{k}]$ and the set of all its zeros with

multiplicities counted coincides with the set { $(\beta_{\dot{\iota}_{1}}, \ldots, \beta_{i_{k}})|\mathrm{i}_{1}$ , $\ldots$ , $i_{k}\in\{1, \ldots,n\}$ are distinct to each

other }, where $\beta_{1}$ , $\ldots$ , $\beta_{n}$ are all roots of $g(x)$ in the algebraic closure of $K$ . Thus, when $g(x)$ is square free,

$\langle g_{1}, \ldots, g_{k}\rangle$ is a radical ideal. We note that for each $g_{\dot{\mathrm{t}}}$ its leading coefficient $lc(g_{l})$ with respect to the order

$<$ coincides with the leading coefficient $lc(g)$ of $g(x)$ . Now let $F$ $=\{f1(x_{1}), \ldots , f_{m}(x_{1}, \ldots, x_{m})\}$ be the

m-th standard triangular set defined by $f(x)$ in $\mathbb{Q}[x_{1}, \ldots, x_{m}]$ . $R_{m,f}(z\rangle$ can be computed by successive

resultant computation and $\overline{R}_{m,f}(z)$ can be computed as the minimal polynomial of $z=x_{1}+\cdots+x_{m}$

modulo the ideal I $=\langle \mathcal{F}\rangle$ (with square-free computation if necessary).

Computation of $R_{m,f}(z\rangle$ via resultant Let $T_{m}(z)=z-(x_{1}+\cdots+x_{m})$ and for each $k\leq m$ , we

define $T_{k}$ successively as follows:

$T_{k-1}(z,x_{1}, \ldots, x_{k-1})=res_{x_{k}}(f_{k}(x_{1}, \ldots, x_{k}),T_{k}(z,x_{1}, \ldots ,x_{k}))$ ,

where resz means the resultant with respect to a variable 2. Then $T_{0}(z)\in \mathbb{Q}[y]$ and $T_{0}(z)$ coincides
with $a_{2m}^{d}R_{m,f}(z)$ for some positive integer $d$ . This can be shown as follows: By construction of Sylvester

matrices in resultant computation, it follows that the leading coefficient of $T_{i}$ with respect to $$j$ , where
$T_{l}$ is considered as a univariate polynomial in Xj, is some powers of $a_{2m}$ for each $j<\mathrm{i}$ , and the same for

the leading coefficient of $T_{i}$ with respect to 2. Then, by the property of resultant, we have

$T_{0}(z)$ $=$ $a_{2m}^{d_{1}} \prod_{i=1}^{2m}T_{1}$ ($z$ , a $t$ ),

$T_{1}(z,\alpha_{\mathrm{i}_{1}})$ $=$
$a_{2m}^{d_{2}} \prod_{j_{2}\neq i_{1}}T_{2}(z, \alpha_{\iota_{1}}, \alpha_{i_{2}})$

,
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.

$T_{m-1}$ ( $z,\alpha_{i_{1}}.$ , . . . , a $i_{m-1}$ ) $=$
$a_{2m}^{d_{m}} \prod_{i_{n\iota}\neq i,i_{m-1}},T_{m}$

( $z$ , a $i_{1},$ $\sim\cdot$ , $\alpha_{\iota_{m}}$ ),

$T_{m}(z,\alpha_{i_{1}}, \ldots, \alpha_{i_{m}})$ $=$ $z-(\alpha_{i_{1}}+\cdot\cdot +\alpha_{i_{m}})$

where $\mathrm{i}_{1}$ , $\ldots$ , $\mathrm{i}_{m}$ are distinct to each other and each $d_{i}$ is a positive integer. (See [8].) When $f(x)\in \mathbb{Z}[x]$ ,

that is, all $a_{2k}$ are integers, $T_{q}(z)$ belongs to $\mathbb{Z}[z]$ , In order to avoid “coefficient growth” in resultant
computation, we may apply factorization technique to each $T_{k}$ or its factors for computing smaller factors
of $T_{\mathrm{f}\mathrm{J}}$ . (See \S 4.2 for usage of factors.) We note that multi-polynomial resultant can be also applied for
computing $T_{0}(z)$ .

Computation of $\overline{R}_{m,f}(z)$ via minimal polynomial Let $z=x_{1}+\cdots+x_{m}$ and I $=\langle F\rangle$ in
$\mathbb{Q}[x_{1}, \ldots, x_{m}]$ . Then, we consider a minim al polynomial $M(\mathrm{z})$ of $z$ modulo $\mathrm{I}$ , that is, $M(z)$ has the
sm allest degree among all polynomials $h(z)$ in $\mathbb{Q}[z]$ such that $h(x_{1}+\cdots +x_{m})$ belongs to the ideal Z.
Since the set of all zeros of I with multiplicities counted is {( $\alpha_{i_{1}}$ , .. ., aim) $|\mathrm{i}_{1}$ , $\ldots$ , $\mathrm{i}_{m}\in\{1, \ldots, 2m\}$ are
distinct to each other }, it can be shown easily that $M(z)$ is a factor of $R_{m,f}(z)$ and has $\overline{R}_{m_{rf}}(z)$ as
its factor. (We may say that $M(z)$ stands between $R_{m,f}(z)$ and $\overline{R}_{m,f}(z)$ . ) Especially, when $f(x)$ is
square-free, then $M(z)/lc(I\sqrt I(z))$ coincides with $\overline{R}_{m,f}(z)$ . When $f(x)$ $\in \mathbb{Z}[x]$ , that is, all $a_{2k}$ are integers,
by removing denominators of coefficients appearing in $M(z)$ , we may assume that $M(z)$ belongs to $\mathbb{Z}[z]$ .
Then the leading coeffici nt $lc(M)$ divides some power of $a_{2m}$ , as $M(z)$ divides $T_{0}(z)$ . As we already
know the Gr\"obner basis $\{f_{1}, \ldots , f_{m}\}$ of $\mathrm{I}$, $M(z)$ can be computed rather easily.

2.2 Parametric case

Now we consider the case where each coefficient \^a $h$ is some polynomial in parameters $\mathrm{p}=\{p_{1\cdot)},. .p_{\mathrm{f}}\}$ .
Thus, the even polynomial $f(x)$ is considered as a multivariate polynomial $f(x, \mathrm{p})$ in $\mathbb{Q}[x, \mathrm{p}]$ . Setting
$D=\mathbb{Q}[\mathrm{p}]$ and $K=\mathbb{Q}(\mathrm{p})$ , we can compute the m-th standard triangular set

$F$ $=\{f_{1}(x_{1}, \mathrm{p}), \ldots, f_{m}(x_{1}, \ldots, x_{m\}}\mathrm{p})\}$

in $D[x_{1}, \ldots, x_{m}]$ . Then, as tc$(f_{i})=a_{2m}(\mathrm{p})$ for each $\mathrm{i},\overline{F}=\{f_{1}/a_{2m}, . . ., f_{m}/a_{2m}\}$ is the reduced Grobner
basis of $\langle F\rangle$ in $K[x_{1}, \ldots, x_{m}]$ . By $F$, we can compute $T_{0}(z, \mathrm{p})$ by successive resultant computation and
$M(z, \mathrm{p})$ as a minimal polynomial of 2 modulo the ideal { $\mathrm{T})$ in $\mathrm{Q}[\mathrm{x}\mathrm{i}, \ldots x_{m}]$ . We note that using a block
order $\{x_{m}>, .$. $>x_{1}\}>>z$ , $M(z, \mathrm{p})$ is found in a Grobner basis of $\langle F \cup\{z-(x_{1}+\cdots +x_{m})\}\rangle$ in
$K[x_{1}, \ldots, x_{m}, z]$ . Then TO($z$ , p) belongs to $\mathbb{Q}[y, \mathrm{p}]$ , and by removing denominators, we may assume that
$M(z, \mathrm{p})$ also belongs to $\mathbb{Q}[y, \mathrm{p}]$ . As $\overline{F}$ is the reduced Grobner basis of $\langle F\rangle$ and the denom inator coincides
with $\mathrm{a}2\mathrm{m}(\mathrm{p})$ , the following holds. (See Exercises of Chapter 6.3 in [7].)

Theorem 4

For each $(c_{1}, \ldots, c_{t})\in \mathbb{Q}^{t})$ consider the poiynomial $f_{c}(z)$ obtained from $f(x, \mathrm{p})$ by substituting the
parameters $(p_{1}, \ldots,p_{t})$ with $(c_{1}, \ldots, c_{l})$ . If the leading coefficient $a_{2m}(c_{1}, \ldots, c_{t})$ does not vanisii, then
$T_{0}(z, c_{1}, \ldots , ct)$ coincides with $cR_{m}$ , $f_{\mathrm{c}}$

$(z)$ for some non-zero constant $c$ in $\mathbb{Q}$ , and $M(z, c_{1}, \ldots, c_{t})$ is a
factor of $R_{m,fc}(z)$ and has $\overline{R}_{m,f_{\mathrm{c}}}(z)$ as its factor in $\mathbb{Q}[z]$ .

By Theorem 4, we can handle the SORPRPs for polynomials with parametric coefficients. For the
total computational efficiency, computing $M(z, \mathrm{p})$ is much better than computing $T_{0}(z, \mathrm{p})$ in many cases
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3 Formulation of Basic Problem

Here we explain the fundamental problem in this paper. We denote the polynomial obtained above
$(T_{0}(z, \mathrm{p})$ or $\mathrm{H}(\mathrm{z})\mathrm{p}))$ by $\mathrm{H}(\mathrm{z})$ . What we do after obtaining $\mathrm{H}(\mathrm{z})$ is the following:

Problem 1
Given a polynom $\mathrm{i}al\mathcal{R}(z)$ involving parameters $\mathrm{p}$ in coefficients, $\mathcal{R}(z)\in \mathbb{Q}(\mathrm{p})[z]$ and $M_{1}$ , $M_{2}\in \mathbb{Q}$

$(\mathit{1}1/I_{1}>NI_{2})$ . Then find feasible ranges ofparameters $\mathrm{p}$ so that the maximal real root $W$ of $\mathcal{R}(z)$ satisfies

the following each requirement: (a) $W<lVI_{1}$ , (b) $W>\mathrm{M}_{2}$ , and (c) $f\downarrow/I_{2}<W<\mathrm{J}1/I_{1}$ . Here we exclude
ranges where the leading coefficient of $\mathcal{R}(z)$ or its constant term vanishes.

In view of control theory the param term $\mathrm{p}$ usually comes from controller or plant parameters of the control

system to be designed, and the above three requirem ents are originated from control design specifications

in terms of SORPRP. PROBLEM 1 is resolved by using quantifier elimination over the real closed field.

Actually all of the requirements are reduced to simple first-order formulas for $\mathcal{R}(z)\in \mathbb{Q}(\mathrm{p})[z]$ as follows:

(a) $W<M_{1}$ : This requirem ent is equivalent to the first-order formula $\forall z>M_{1}$ , $\mathcal{R}(z)\neq 0$ . This is

so called a sign definite condition [1], hence we can solve it by an efficient quantifier elimination algorithm

using Sturm-Habicht sequence $[11, 6]$ .

(b) $W>M_{2}$ : This requirement is equivalent to the first-order formula: $\exists z>M_{2}$ , $\mathcal{R}(z)=0$ . We

can aiso solve it by an efficient quantifier elimination algorithm using turm-Habicht sequence [10].

(c) $f\vee I_{2}<W<M_{1}$ : This requirement is equivalent to the conjunction of (a) and (b), that is,

$(\forall z>l1/I_{1}, \mathcal{R}(z)\neq 0)$ A (lz $>$ Mx, $\mathrm{H}(\mathrm{z})=0$ ). Hence, this is achieved by superposing both quantifier-free

formulas obtained by performing quantifier elimination for (a) and (b).

4 LQR problem - control application

We here consider a typical optimal control problem named Linear Quadratic Regulator (LQR) problem.

We will first briefly explain the problem in \S 5.1 and show some computational examples, by which we

can confirm the effectiveness of our proposed $\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{h}\mathrm{o}\mathrm{d}^{1\rangle}$ .

Here we briefly explain about Linear Quadratic Regulator (LQR) problem (see [18] for more details)

and introduce our target polynomial of which we want to estimate the SORPRP
Let us consider a linear time-invariant SISO (single-input simple output) system represented by

$\mathrm{x}(\mathrm{t})$ $=$ $x(t)+bu(t)$ , (1)
$y(t)$ $=cx(t)$ ,

where $x\in \mathbb{R}^{m}$ is the state variable, $u\in \mathbb{R}$ is the control input, $y\in \mathbb{R}$ is the output, $A\in \mathbb{R}^{m\mathrm{x}m}$ is the

system matrix, $b\in \mathbb{R}^{m}$ is the input matrix, and $c^{T}\in \mathbb{R}^{m}$ is the output matrix. Then the LQR problem

is to find a control input ze which minimizes the cost function

$J=l_{0}^{\infty}(qy^{2}(t)+ru^{2}(t))dt$ , (2)

$1)\mathrm{A}11$ computations except quantifier elimination are done by using a computer algebra system $Risa/Asir$, see
$\mathrm{h}\mathrm{t}\mathrm{t}\mathrm{p}://\mathrm{w}\mathrm{w}\mathrm{w}$.math. kobe-u. $\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}/\mathrm{A}\mathrm{s}\mathrm{i}\mathrm{r}/\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{r}.\mathrm{h}\mathrm{t}\mathrm{m}\mathrm{l}$ ) All QE computations in this paPer were carried out by QEPCAD,

see http: $//\mathrm{w}\mathrm{w}\mathrm{w}$ . $\mathrm{c}\mathrm{s}$ .usna. $\mathrm{e}\mathrm{d}\mathrm{u}/\mathrm{q}\mathrm{e}\mathrm{p}\mathrm{c}\mathrm{a}\mathrm{d}/\mathrm{B}/\mathrm{Q}\mathrm{E}\mathrm{P}\mathrm{C}\mathrm{A}\mathrm{D}$.html, since QEPCAD succeeded in achieving all of QE computations for

our examples in a very small amount of time. For the larger sized problems, we may use an efficient QE algorithm based
on turm-Habicht sequence $[1, 10]$ Some tyPes of QE methods using term-Habicht sequence are available in a Maple

Package $\mathrm{S}\mathrm{y}\mathrm{N}$ RAC $[4, 17]$
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where $q>0$ and $r>0$ are called weights. If we take the lager value of $q$ , we can get the faster response

in general. On the other hands, the lager value of $r$ is required when we have a severe restriction on the
value of $u$ , since $r$ reflects the penalty on $u(t)$ . Note that the ratio $q/r$ plays an essential role for finding

the optimal control input and determines the closed-loop poles.

Actually, it is well-known that the optimal closed-loop poles are determined by the corresponding

polynomial given by
$\varphi(s)=r$ . $d(s)d(-s)+q$ . $n(s)n(-s)$ , (3)

where $d(s)$ and $n(s)$ are the denominator and numerator of the transfer function of the plant (1) reP-
resented by $P(s)=c(sI-A)^{-1}b$ . In other words, $P(s)= \frac{n\langle s)}{d(n)}$ , where $d(s):=det(sI-A)$ , $n(s):=$

$cadj(sl-A)b$ . Note that $deg(d(s))=m$ , $deg(n(s))<m$ hold.

The polynomial $\varphi(s)$ is our target polynomial with de9(\mbox{\boldmath $\varphi$}(s)) $=2m$ and it is an even polynomial It
is strongly desired to establish a guiding principle to choose appropriate values of $r$ and $q$ or the ratio
$q/r$ , since the closed-loop poles are all the poles of $\varphi(s)$ which has negative real parts.

In the sequel we carry out an investigation of the weights $r$ and $q$ in terms of stability index, that is,

the sum of roots with negative real parts (SORNRP) of $\varphi(s)$ . We can attain this by just aPPlying our
method for SORPRP shown in the previous sections to $\mathcal{R}(-z)$ , where the polynomial $\mathcal{R}(z)$ has SORPRP
of $\varphi(s\rangle$ as its root. Because, as $\psi(s)$ is even, the value of SORPRP coincides with the absolute value of
SORPNP, and $R(-z)$ also has $-1\mathrm{x}$ SORPNP as its maximal real root.

Particularly we study some behaviors of a parameter involving in the plant $P(s)$ and feasible bounds
for SORPRP $W$ versus the ratio of weights $q/r$ or $q$ with $r=1$ under the specifications in \S 4. This kind
of investigations is important in practice to see control performance limitations, since the stability index
is one of appropriate measures for the quickness of feedback control system $\mathrm{s}$ .

4.1 A sample plant: $2\mathrm{n}\mathrm{d}$-order system with time delay

Here we study the LQR problem for a class of typical second-order systems with time delay given by

$P(s)= \frac{\omega_{n}^{2}ke^{-Ls}}{s^{2}+2\zeta\omega_{n}s+\omega_{n}^{2}}\simeq\frac{k\omega_{n}^{2}}{s^{2}+2\zeta\omega_{n}s+\omega_{n}^{2}}\frac{1-\frac{1}{2}Ls}{1+\frac{1}{2}Ls}$,

where the exponential $e^{-L\mathrm{s}}$ is transformed to a rational function by the Pade approximation. We consider
the case where $k=1$ , $\langle$ $=0.1$ , $\omega_{n}=30(kHz)$ , and $r=1$ . Here, initially we assume that $L>0$ , $r$ , $q>0$ .

Then the target even polynomial is expressed as

$\varphi(s;q, L)$ $=$ $d(s)d(-s)+q\cdot n(s)n(-s)$

$=$ $-25L^{2}s^{6}+(-49L^{2}+100)s^{4}+$ ( $(-25q$ - 25)L $+196$) $s^{2}+$ lOOq +100

$\mathrm{V}^{\gamma}\mathrm{e}$ remark that the leading coefficient $-25L^{2}$ of $\varphi(s)$ never vanish as $L>0$ , and the constant term
lOOq +100 also never vanish as $q>0$ .

Let $\mathrm{I}_{3}$ be the ideal generated by the 3rd standard triangular set of $\varphi\langle s;q$ , $L$ ) ; $\{\varphi(x_{1}; q, L)$ , $\varphi_{1}(x_{1}, x_{2};q, L)$ ,
g2 $(x_{1},x_{2},xa; q, L)\}$ , where $\varphi_{1}(x_{1}, x_{2};q, L)$ is the quotient of $\varphi(x_{2}, q, L)$ divided by $x_{2}-x_{1}$ and $\varphi_{2}(x_{1},x_{2};x_{3};q, L)$

is the quotient of $\varphi_{1}(x_{3}, q, L)$ divided by $(\mathrm{x}\mathrm{s}-x_{1})(x_{3}-x_{\mathit{2}})$ . Then we can obtained the following minimal
polynom ial in $z$ of $x_{1}+x_{2}+x_{3}$ with respect to $\mathrm{I}_{3}$ immediately

$\mathcal{R}(z;q, L)=\mathcal{R}_{1}\mathcal{R}_{2}\mathcal{R}_{3}\mathcal{R}_{4}\mathcal{R}_{5}$
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where
$\mathcal{R}_{1}$ $=Lz+2$ ,
R2 $=Lz-2$,

$\mathcal{R}_{3}$ $=625L^{4}z^{4}-5000L^{3}z^{3}+(2450L^{4}+15000L^{2})z^{2}+(-9800L^{3}$

$-20000L\}z+$ $(-2500r\mathrm{q}k2 -99)L^{4}+9800L^{2}+10000$ ,
$R_{4}$ $=625L^{4}z^{4}+5000L^{3}z^{3}+(2450L^{4}+15000L^{2})z^{2}+(9800L^{3}$

$+20000L)z+$ (-2500rg&2 -99)L $+9800L^{2}+$ 10000,
$\mathcal{R}_{5}$ $=-25z^{4}$ - $49z^{2}$ -2$rqk2- $25.$

The maximal real root of $\mathcal{R}(z)$ coincides with the SORPRP $W$ of $\varphi(s;q, L)$ . Since we need to compute

sum of roots with negative real parts in a sense of stability, we aPPly our method computing SORPRP

to $\mathcal{R}(-z;q, L)$ . But, it follows that $\mathcal{R}(-z;q, L)=\mathcal{R}(z;q, L)$ .

Relationship between $L$ and $q$ : Here we consider the case where the bounds for the SORPRP

are given, that is, $M_{1}$ and $M_{2}$ are fixed- Then we check the behavior of the plant parameter $L$ versus

a change of $q$ . The possible regions of $(L, q)$ to meet the specifications in the $L-q$ parameter space is

obtained by aPPlying quantifier elimination to $\mathcal{R}(z;q, L)$ as explained in Q4.

(a) $W<M_{1}$ : Let $M_{1}=500$ , then the specification (a) is equivalent to the following first-order formula:
$\forall z>500$ , $\mathcal{R}(z;q, L)\neq 0$ . After performing quantifier elimination to this, we can obtain the following

equivalent quantifier-free formula in $(L, q)$ which describe feasible regions of $(L, q)$ for (a):

($q+625004\acute{9}0001>=0$ A $250L-1\geq 0$ A
$2500L^{4}q-39063112499901L^{4}+625004900000L^{3}-3750009800L^{2}+10000000L-10000\leq 0$ A
$2500L^{4}q-39063112499901L^{4}$ - $625004900000L^{3}-3750009800L^{2}$ – IOOOOOOOL – $10000\leq 0$

This is illustrated as a shaded region in Fig.l.

Figure 1: Feasible region of $L-q$ for (a) [Left] , (b) [Middle], and (a) A (b) [Right]

(b) $W>M_{2}$ : Let $M_{2}=300$ , then the specification (b) is equivalent to the following first-order formula:

$\exists z>300$ , $\mathcal{R}(z;q, L)=0$ . After performing quantifier elimination to this, we can obtain a following

equivalent quantifier-free formula in $(L, q)$ which describe feasible regions of $(L, q)$ for (b):

$(q+8100176401 <0)\vee(L>0\mathrm{A}15\mathrm{O}\mathrm{L} -1<0)\vee$

$(2500L^{4}q-5062720499901L^{4}-135002940000L^{3}-135000980\mathrm{O}L^{2}-6000000L-10000>0)\vee$
$(250\mathrm{O}L^{4}\mathrm{q} - 5062720499901L^{4}+ 1350029400001^{3}-1350009800L^{2}+6000000L -10000>0)$

This is illustrated as a shaded region in Fig.l.
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(c) $lVI_{\mathit{2}}$ $<W<il/f_{l}$ : if $lvI_{2}=300$ , $\mathit{1}\mathrm{V}I_{1}=500$ for the requirement (c), the problem is recast as the

following first-order formula: (Vz $>500$ , $\mathcal{R}(z\cdot q\}’ L)\neq 0$ ) A $(\exists z>300, \mathcal{R}(z;q, L)=0)$ . A formula
describing feasible regions of $(L, q)$ for the requirement (c) can be obtained by superposing above two

results for (a) and (b) in the parameter space $L-q$ as shown 1n Fig.3.

Control theoretical significance : Any system with parameter values of $L$ and $q$ within the feasible
regions shown in Figs. 1, 2 and 3 meets the above requirements in terms of the magnitude of SORPRP.
We can obtain the following knowledge from Fig. 3. The plant parameter $L$ is restricted within an interval

for a fixed value of $q$ under the specification of $300<W<500$ . The maximum and minimum edges of
the feasible interval of $L$ are monotonically increasing. Thus, for instance for the value of $L$ around 0.01,
$q$ must be taken from the region which is larger than a certain value. We can obtain the exact threshold
value easily since we have the feasible region as a semi-algebraic set by virtue of quantifier elimination.
These greatly help control designers to choose appropriate value of the ratio of weights $q/r$ for their
control system more systematically.

5 Conclusion
In this paper we have presented a method to compute or estimate the sum of roots with positive

real parts (SORPRP) of a polynomial with parametric coefficients based on symbolic and algebraic
computations. Since the method does not compute explicit num ericat values of the roots, we can treat
polynom ials with parametric coefficients for their SORPRP.

Combining the method with quantifier elimination, we succeeded in giving a novel systematic method
for achieving optimal regulator design in control. In order to see its effectiveness and practicality, we
made some experiments for a concrete example from optimal regulator control.

The method proposed here shall provide one of promising direction for an ad hoc part (i.e., choice
of weights) of optimal regulator design that is one of the main concerns in control and gives another
successful application of computer algebra to control design problem.
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