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Abstract. In a rendezvous search on a finite graph, two agents are placed
randomly on nodes, At each step each moves to an adjacent node or stays
where he is. It costs an amount for each step and when each agent moves
from a node to an adjacent node and also when each exan ines a node. Their
common purpose is to minimize the expected cost required to meet. We
analyze a case where the graph is a star graph and the examination cost is
the same for every node. Then we try to extend our study to the case where
the graph is a star graph and the examination cost for every terminal node
is the same.
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1. Introduction.
In a rendezvous search two or more agents try to minimize the cost needed to find each other.
In a discrete form of the rendezvous search problem, the agents move in discrete time from
node to node on a finite and connected graph after they are placed randomly on nodes of the
graph. The nodes can be marked if they have a name that both agents can recognize when
they go there; they are markable if each agent knows whether it has visited a node or not or
they are unmarkable if each agent forgets whether it has visited a node or not. When agents
can choose different strategies, the model is called asymmetric, while it is called symmetric
if agents must choose the same strategy. In a basic model of rendezvous search, the cost
consists of only the time needed to find each other.

Anderson and Weber (1990) first proposed the graph formulation of a rendezvous search
problem, and Alpern (1995) formalized the general continuous rendezvous. Since Alpern’s
work, many papers on rendezvous search have been published. Alpern and Beck (1999)
assumed individual limits for the total distance that each player can travel. Alpern and Gal
(2003) is a monograph dealing with search games and rendezvous search with an extensive
bibliography.

In this paper we consider a discrete form and try to solve the asymmetric rendezvous
search problem when the nodes are markable. It is well-known that in an area of the search
game, the model becomes more practical and interesting by assuming the examination cost,
but it becomes very difficult to solve. The most remarkable point in this paper is that we
consider an examination cost and a traveling cost as well as the cost for the time needed to
find each other. After seeing Theorems 1 and 2 in this paper, the reader would know that
the problem becomes very difficult to solve when the examination cost is different from node
to node.
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2. Model and Notation,

We consider a finite graph $(N, E)$ where $N=\{0_{\mathrm{J}}1$ , .. . , $m\}$ is the set of nodes and $E\subseteq N\cross$ $N$ is
the set of edges. Two agents (called Agents I and $\mathrm{I}\mathrm{I}$) are placed on nodes of the graph $(N, E)$

at random. They know their position up to the symmetry of the graph. We assume that
the nodes can be markable, that is, an agent can remember nodes where $\mathrm{h}\mathrm{e}/\mathrm{s}\mathrm{h}\mathrm{e}$ examines or
stays in the previous steps. We measure time discretely, in steps. At each step each agent
stays where $\mathrm{h}\mathrm{e}/\mathrm{s}\mathrm{h}\mathrm{e}$ is or moves to an adjacent node. Furthermore, at each step $\mathrm{h}\mathrm{e}/\mathrm{s}\mathrm{h}\mathrm{e}$ may
or may not examine a node. So at each step each agent can choose one of four alternatives :

(i) ME: move to an adjacent node and examine the node ;
$(\mathrm{i}\mathrm{i})MN$ : move to an adjacent node and does not examine the node;
(in)SE: stay where $1\mathrm{l}\mathrm{e}/\mathrm{s}\mathrm{l}\mathrm{l}\mathrm{e}$ is and examine the node; an$1\mathrm{d}$

$(iv)SN$ : stay where $\mathrm{h}\mathrm{e}/\mathrm{s}\mathrm{h}\mathrm{e}$ is and does not examine the node.

They can find each other only when (i) they are at the same node, and (ii) at least one of
them examines. They can not find when they transpose their positions between two adjacent
nodes. It costs 1 when each moves from a node to an adjacent node (i.e., traveling cost) and
$a_{i}$ when each examines the node $i\in N$ (i.e., examination cost). It cost $c$ for each step. Their
common purpose is to minimize the expected cost required to meet as well as the expected
number of steps. We assume that agents can choose different strategies, that is, the model is
asymmetric. By this setting, at every step, at most one of the agents must examine a node.
So without loss of generality, we have

Assumption 1. At every step Agent II does not examine a node.

In the remaining part of this section, Sections 3 and 4, we assume a star graph, that is,

$E–\{(0,1), \ldots, (0, m)\}$ .

The node 0 is called the central node and the other nodes are called terminal nodes. Each
agent can distinguish whether $\mathrm{h}\mathrm{e}/\mathrm{s}\mathrm{h}\mathrm{e}$ is at a terminal node or not. In Section 3 we analyze a
special case where the examination cost is the same for every node. Then we try to extend
our study to the case where the exam ination cost for every terminal node is the same.

The choices of players at the step $t$ are denoted by $d_{i}(ter(cen), t),i=1,2$ for the choice
of Agent $i$ when he is at the terminal (central) node respectively. The nodes where players
are at the end of the step $t$ is denoted $\mathrm{b}_{\vee}\mathrm{v}rti\{t$), $i=1,2$ for the node where Agent $i$ is. $n_{I}(0)$

and $n_{II}\langle 0$) are nodes where Agents are put initially. We let $d_{I}(t)\equiv(d_{I}(ter,t)_{\backslash }d_{I}(cen, t))$ and
$d_{II}(t)\equiv(d_{II}(ter,t),d_{II}(cen,t))$ . Strategies for Agents I and II are :

$d_{I}\equiv$ $(d_{I}(1),d_{I}(2)$ , $\ldots$) and $d_{II}\equiv(d_{II}(1), d_{II}(2),$ $\ldots)$ .
By Assumption 1, Agent II has only two choices at each step, that is, $d_{II}(tert)\}=SN$ or $MN$ ,

and $d_{II}(cen,t)$ $=SN$ or $MN$ . We write as $f(d_{I},d_{II};n_{I}(0),n_{II}(0))$ the expected cost when Agents
adopt the strategy pair $(d_{I},d_{II})$ and they are put at $n_{I}(0),n_{Il}(0)$ initially, and then as $f(d_{I},d_{II})$

the expected cost when Agents adopt the strategy pair $(d_{I)}d_{II})$ . Then

$f(d_{I}, d_{II})=$ $\sum$ $f(d_{I}, d_{II;}n_{I}(0),n_{II}(0)\}P(n_{I}(0),n_{II}(0))$

$n_{I}(0),n_{JI}(0)$

$= \frac{m}{(m+1)^{2}}f(d_{I}, d_{II;}ter,cen)+\frac{m}{(m+1)^{\mathrm{o}}\sim}f(d_{I}, d_{II;}cen, ter)$
$+ \frac{m(m-1)}{(m+1)^{2}}f(d_{I},$ $d_{II;}ter,\neg ter$ (1)

$+ \frac{m}{(m+1)^{\mathrm{o}}\sim}f(d_{I}, d_{II;}ter, ter)+\frac{1}{(m+1)^{2}}f(d_{I}, d_{II\prime}.cen, cen)$ ,



80

where $ter$ means a different terminal from $ter$ . So $f(d_{I},d_{II;}ter,\overline{ter})$ is the expected cost when
both agents are at terminal nodes which are different. $f$ ($d_{I},$ $d_{II_{7}}|$ tes $ter$) is the expected cost
when both agents are at the same term inal node.

3. Analysis of a Special Case

In this section, we analyze the case where the examination cost is the same for every node,
that is,

$a_{i}=a$ for every $i\in N$ .

For simplicity we put

Assumption 2. At the first step Agent I examines.

The problem is solved and given as the next theorem.

Theorem 1. If $c+a> \frac{2}{m+1}$ then an optimal strategy is

(51) $d/(t)=$ (ME, SE, and $d_{II}(t)=(MN, SN),\forall t$ $=1$ , $\ldots$ .

The expected cost for this strategy is $2- \vdash c+a-\frac{\sim^{\gamma}}{m+1}.$ .
If $c+a< \frac{2}{m+1}$ then an optimal strategy is

(52) $\mathrm{d}/(1)=(SE$ , SEA, $\mathrm{d}/(\mathrm{t})=$ ( $\mathrm{A}IE,$ SE) and $\mathrm{d}/(1)=(SN, SN)$ , $d_{II}(2)$ $=(MN, SN)$ .

The expected cost for this strategy is $2( \frac{m}{m+1})^{\mathrm{o}}\sim+\underline{\underline{\eta\sim}}m+1m\underline{1}(c+a\}$.

Roughly speaking, the theorem says that if $c+u$ is relatively large, then Agents must move
to the central node first and then examine, while if $c+a$ is relatively small, Agents must
examine first and then move to the central node. As $m$ becomes large, the expected cost
converges to 2 \dagger $c+a$ , which is attained by the strategy (51) since the probability that both
agents are at the central node converges to 0.

Proof: We calculate the expected cost for the strategy (51).

$f(d_{I}, d_{II;}ter, cen)$ $=1+c+a$ , since $d_{I}ter,$ $1$ ) $=ME$, and $d_{II}cen$ ) $1$ ) $=SN$ ,

$f(d_{I}, d_{II}; cen)ter)=1+c+a$ , since $d_{I}(cen, 1)$ $=SE$, and $d_{II}(ter, 1)=MN$,

$f$ ( $d_{I}$ , $d_{II;}ter$, $ter$ $=2$ $+c+a$ , since $d_{I}ter,$ $1$ ) $=ME$, and $d_{II}ter,$ $1$ ) $=MN$,

$f$ ($d_{I_{1}}d_{II;}ter,$ $ter\}$ $=2+c+a$, since $d_{I}ter,$ $1$ ) $=ME$, and $d_{II}(ter, 1)=MN$,

$f(d_{I}, d_{II};cen, cen)$ $=c+a$ , since $d_{I}(cen, 1)=SE$ , and $d_{II}cen$ ) $1$ ) $=SN$.

Hence by the equality (1), we have $f(d_{I}, d_{I},)=2+c+a$-;.
We calculate the expected cost for the strategy (51).

$f(d_{I}, d_{II;}ter, cen)=1+2c+2\mathrm{a}$ , since $d_{I}(ter, 1)=SE_{1}$ and $d_{II}(cen, 1)=SN$ ,

$d_{I}ter,$ $2)=ME$, and $d_{II}(cen, 2)=SN$ .
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$f(d_{I}, d_{IIj}cen, ter)=1+2c+2a$ , since $d_{I}cen,$ $1$ ) $=SE$ , and $d_{II}ter$ ) $1$ ) $=SN$,

$d_{I}cen,$ $2)=SE$ , and $dn(ter, 2)=M\Lambda^{\Gamma}$.

$f(dI, d_{II;}ter,\overline{ter})=2+2c+2a$, since $d.r(ter, 1)=SE$ , and $d_{II}ter$ ) $1$ ) $=SN$,

$d_{I}(ter, 2)=ME$ , and $dT(ter, 2)=MN$.

$f(d_{I},d_{II};ter,ter)$ $=$ $cla$ , since $d_{I}ter$) $1$ ) $=SE$ , and $d_{II}ter,$ $1$ ) $=SN$,

$f(pl_{I}, d_{II}’, cen, cen)$ $=c+a$ , since $d_{I}(cen, 1)=SE$ , and $d_{II}cen,$ $1$ ) $=SN$.

Hence by the equality (1), we have $f(d_{I}, d_{II})=2( \frac{m}{m+1})^{2}+\frac{2nl+1}{m+1}(c+a)$ .
So, by considering the strategies (51) and (52), the expected cost is at most $\min\{2+c+a-$
$\frac{2}{m+1},2(\frac{m}{m+1})^{2}+\frac{2m+1}{m+1}(c+a)\}$ . Next before seeing that the expected cost is at least $\mathrm{m}\mathrm{m}\{2+c+$

$a- \frac{2}{m+1}$ , $2( \frac{m}{m+1})^{\underline{\eta}}+\frac{2m+1}{m+1}(c+a)\}$ , we need lemmas.

Lemma IA.

$f(d_{I},d_{IIj}ter, cen)$

$A$

$\geq 1+2c+2a$ if $d_{I}ter$ ) $1$ ) $=SE$ and $d_{II}cen,$ $1$ ) $=SN$ ;
$\geq 1+a+c+\frac{m-1}{m}(2+$ $c+a$} If $d_{I}(ter, 1)---SE$ and $d_{II}(cen, 1)=$ $\mathrm{M}\mathrm{i}\mathrm{V}$ ;
$=1+c+a$ if $d_{I}\mathrm{t}\mathrm{e}\mathrm{r},$ $1$ ) $=ME$ and $d_{II}cen,$ $1$ ) $=SN$ ;

$\backslash$

$\geq 3+2c+2a$ if $d_{I}ter,$ $1$ ) $=f\mathfrak{t}IE$ and $d_{II}cen,$ $1$ ) $=MN$ .

By the symmetry of the initial positions of the players, we have Lemma IB. We get Lemmas
IC-IE in a similar way to Lemma 1A.

Lemma IB.

$/(d/, d_{I}I;cen, ter)$

$’\geq 1+2c+2\mathrm{c}\iota$ if $d_{I}cen,$ $1$ ) $=SE$ and $d_{II}(ter, 1)=SN$ ;
$=1+c+a$ if $d_{I}cen,$ $1$ ) $=SE$ and $d_{II}(ter, 1)=MN$ ;
$\geq 1+c+a+\frac{m-1}{m}(2+c+a)$ if $d_{I}cen,$ $1$ ) $=ME$ and $d_{II}ter,$ $1$ ) $=SN$ ;

$\backslash$

$\geq 3+2c$ $+2a$ if $d_{I}cen,$ $1$ ) $=ME$ and $dn(ter, 1)=MN$.

Lemma 1C.

$f(d_{I}, d_{II;}\ell er,\overline{ter})$

$P$

$\geq 12$ $+2c+2a$ if $d_{I}ter,$ $1$ ) $=SE$ and $d_{II}(\overline{ter}, 1)=SN$ ;
$\geq 2+2c+2a$ if $dn(ter, 1)=SE$ and $d_{II}(\overline{ter}, 1)=MN$ ;
$\geq 2+2c+2a$ If $d_{I}ter$ , $1\rangle$ $=ME$ and $d_{II}(\overline{ter}, 1)=SN$ ;

$\backslash$

$=21c+a$ if $d_{I}$ ($ter$, $1\}=ME$ and $d_{II}\mathrm{c}t\overline{er}$, $1$ ) $=MN$.

Lemma 1D.

$f(d_{I}, d_{II;}ter,ter)$ $\{$

$=c+a$ if $d_{I}ter$ ) $1$ ) $=SE$ and $d_{II}ter,$ $1$ ) $=SN_{\}}$
.

$=2+c+a\geq 2+2c+2\mathrm{a}\geq 2+2c+2\mathrm{a}$

$\mathrm{i}\mathrm{f}d_{I}(ter,1)=SE\mathrm{a}\mathrm{n}\mathrm{d}d_{II}(ter,1)=MN\mathrm{i}\mathrm{f}dI(ter,1)=ME\mathrm{a}\mathrm{n}\mathrm{d}d_{II}(ter,1)=SN\mathrm{i}’$

.

if $d_{I}ter,$ $1$ ) $=ME$ and $d_{II}(te\Gamma_{\}}1)=MN$ .

Lemma IE.

$/(d/, d_{II;}cen, cen)\{$

$=c+a$ if $d_{I}cen,$ $1$ ) $=SE$ and $d_{II}cen,$ $1$ ) $=SN$ ;

$\geq 2\geq 2\geq 2+++a+c+\frac{m-1}{n\iota}[22c+2a2c+2a+c+a]$

if $dj(cen, 1)=ME$ and $d_{II}cen,$ $1$ ) $=MN$.
if $d_{I}(cen, 1)=SE$ and $d_{II}(cen, 1)=MN$ ;
if $d_{j}(cen, 1)=ME$ and $d_{II}(cen, 1)=SN$;
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Lemma IF.

$f(d_{I}, d_{II}) \geq\min\{2+c+a-\frac{2}{m+1},2(\frac{m}{m+1})^{2}+\frac{2m+1}{m+1}(c+a)\}$, $\forall(d_{I}, d_{II})$ .

By the equality (1) and Lemmas IA-IE, we prove this lemma case by case. The remaining
part of the proof is omitted.

From Lemma IF we see the strategy (51) is optimal if $2( \frac{m}{m+1})^{2}+\frac{2m+1}{m+1}(c\dagger a)>2+c+a-\frac{2}{m+1}$ ,
i.e., $c+a> \frac{2}{m+1}$ . The strategy (52) is optimal if $c+a<m+1\underline{\underline{9}}$ . This completes the proof of the
theorem, $\bullet$

4. An alysis of the Problem on a Star Graph with 3 Nodes.

In this section we solve the rendezvous search in the case of 3 nodes, that is, $m=2$ . We
assume

$a_{o}=a$ , and $a_{1}=a_{\underline{7}}=b$.

Letting $m=2$ in (1), we get:

$f$(1) $d_{II})$ $=$ $\sum$ $f(dI, dII;nx$(0), $n_{II}(0))P(n_{I}(0)_{\backslash }n_{II}(0))$

$n,(0),n_{II}(0)$

$= \frac{2}{g}f$($d_{I},$ $d_{II;}\mathrm{t}\mathrm{e}\mathrm{r}$, mid)$)$ $+ \frac{2}{9}f$ ($d_{I}$ , $d_{II}’$, mid, $ter$ ) $+ \frac{2}{9}f(d_{I},$ $d_{\mathit{1}I;}ter$, $\neg ter$
(2)

$+ \frac{2}{9}f(d_{I}, d_{II;}ter, ter)+\frac{1}{9}f$ ( $d_{I}$ , $d_{II}$ ; mid, mid),

where $ter$ means a different terminal from $ter$ . The problem is to find a strategy pair $(d_{I},d_{II})$

which minimizes the expected cost $f(d_{I},d_{II})$ .

Theorem 2. Assume either a $>1$ $+c+26$ or a $<c$ \dagger 2b.

If $a>maxf$ $\frac{3}{2}b$ $+ \frac{1}{3}+c$ , $\frac{5}{6}b$ $+ \frac{7}{9}+\frac{c}{3}$ } then an optimal strategy is

(T1) $\mathrm{d}/(1)=$ (SE, ME) $d_{I}(2)=(MN\backslash MN)$ , $d_{I}(3)=$ (ME, ME) and $d_{II}(t)=(SN, MN)$ , $\forall t=1$ , $\ldots$ .

The expected cost for (T1) is $\frac{5}{3}+\frac{3}{2}b$ $+2c$ .
If $a< \sim\underline{3},b+\frac{1}{3}+c$ and $b> \frac{2}{3}-c$ then an optimal strategy is

(T2) $d_{I}(t)=$ (ME, $5\mathrm{E}$), and $d_{TI}(t)=(MN, SN),\forall t=1$ , $\ldots$ .

The expected cost for (T2) is $\frac{4}{3}+a+c$ .
If $a$ $< \frac{5}{6}b+\frac{7}{9}+\frac{c}{3}$ and $b<3\underline{\underline{7}}-c$ then an optimal strategy is

(T3) $d_{I}(1)=$ (SE, $5\mathrm{E}$), $d_{I}(t)=$ (ME, SE) and $d_{II}(1)=(SN, SN)$ , $d_{II}(t)=(MN, SN)$ , $\forall t=2$ , $\ldots$ .

The expected cost for (T3) is $\frac{8}{9}+a+\frac{2}{3}b+\frac{5}{3}c$ .

Roughly speaking, the theorem says that if $a$ is relatively large, then Agents must move to
the terminal nodes first and then examine, while if $a$ is relatively small and $b$ is relatively
large, Agents must move to the middle node first and examine. If both of $a$ and $b$ is small,
then Agents must stay first
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Proof: We calculate the expected cost for the strategy (T1).

$f(d_{I)}d_{II}; ter, mid)=2+ \frac{3}{2}b+2c$ , since $d/(ter, 1)=SE$ , and $d_{II}$ mid, $1$ ) $=MN$,

$f$ ( $d_{I}$ , $d_{II}$ ; mid, $ter$) $=2+ \frac{3}{2}b+2c$ , since $d_{I}$ (rnid, $1$ ) $=ME$, and $d_{II}(ter, 1)=SN$ ,

$f$( $dr$ , $d_{II}$ ; $ter,\neg ter=2+2b+3c$ , since $d_{I}ter$) $1)=SE$, and $d_{II}ter,$ $1$ ) $=SN$,

$f(dr, d_{II;}ter, ter)$ $=b+c$, since $d_{I}ter$ ) $1$ ) $=SE$ , and $d_{II}ter$) $1$ ) $=SN$,

$f$ ( $d_{I}$ , $d_{II}$ ; mid, $mid$) $=3+ \frac{3}{2}b+2c_{\backslash }$ since $d_{I}$ (mid, $1$ ) $=ME$ , and $d_{II}$ mid, $1$ ) $=MN$.

Hence by the equality (2), we have $f(d_{I}, d_{II})= \frac{5}{3}+\underline{3}-,b+2c$ .
We calculate the expected cost for the strategy $(T2\}$ .

$f$ ( $d_{I}$ , $d_{II}$ ; $ter$ , mid)=l \dagger $a$ $+c$, since $d_{I}ter,$ $1$ ) $=ME$, and $dII(midi1)=SN$,

$f$ ( $d_{I}$ , $d_{II}$ ; mid, $ter$ ) $=1$ $+a+c$, since $d_{I}$ (mid, $1$ ) $=SE$ , and $d_{II}(ter, 1)=MN$,

$f(dr, d_{II_{1}}\cdot ter,\overline{ter})=2+a+c$, since $d_{I}ter$) $1$ ) $=ME$, and $d_{II}(ter, 1)=MN$,

$f(dr, d_{IIj}ter, ter)=2+a+c$, since $d/(ter, 1)=ME$ , and $d_{II}ter,$ $1$ ) $=MN$,

$f\langle d_{I},d_{II}$ ; $7nid$ , $mid$) $=a+c$, since $d_{I}$ mid, $1$ ) $=SE$
} and $dII(midi 1)$ $=SN$.

Hence by the equality (2), we have $f \langle d_{I},d_{II})=\frac{4}{3}+a+c$ .

We calculate the expected cost for the strategy (T3).

$f$ ( $d_{I}$ , $d_{II}$ ; $ter$ , mid)$)=1+a+b+2c$, since $d_{I}ter,$ $1$ ) $=SE$, and $d_{II}$ (mid, $1$ ) $=SN$,

$f$ ($dr,$ $d_{II}$ ; mid, $ter$ ) $=1+2a+2\mathrm{C}_{\}}$ since $d_{I}$ mid, $1$ ) $=SE_{1}$ and $d_{II}(ter, 1)=SN$ ,

$f(d_{I},$ $d_{II\mathrm{i}}ter,\neg ter$ $=2+a+b+2c$, since $d/(ter, 1)=SE$ , and $d_{II}(ter, 1)$ $=SN$,

$f(dr, d_{II}\cdot,ter, ter)=b+c$, since $d_{I}(ter, 1)=SE$ , and $d_{II}(ter, 1)=SN$,

$f$ ($d_{I1}d_{II;}$ mid, mid)=a+c, since $d_{I}$ mid, $1$ } $=SE_{7}$ and $d_{II}(mid, 1)=SN$.

Hence by the equality (2), we have $f(d_{I},d_{II})$ $= \frac{8}{9}+a+\frac{2}{3}b+\frac{5}{3}c$.

So; by considering the strategies $(T1),(T2)$ and (T3), the expected cost is at most $\min\{\frac{5}{3}+\frac{3}{2}b+$

$2c$ , $\frac{4}{3}+a+c$ , $\frac{8}{9}+a+\simeq b\mathrm{o}3+\frac{5}{3}c\}$. Next before seeing that the expected cost is at least $\min\{\frac{5}{3}+\frac{3}{2}b+$

$2c_{r} \frac{4}{3}- 1a+c$, $\frac{8}{3}+a+\frac{2}{3}b+\frac{5}{3}c\}$ , we need lemmas. The remaining part of the proof is omitted. See
$\mathrm{R}\mathrm{u}\mathrm{c}\mathrm{k}\mathrm{l}\mathrm{e}/\mathrm{K}\mathrm{i}\mathrm{k}\mathrm{u}\mathrm{t}\mathrm{a}$ (2004).

5. A Search Game on a Finite Graph

Assuming the examination cost makes a model more realistic and interesting, but the analysis
becomes difficult. In this section we see how it is when the model is a search game on a
cyclic graph.

Let $(N, E)$ be a cyclic graph, that is,

$E=\{(0,1), (1,2), \ldots, (m-1,m), (m,0\}\}$ .
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There are two playsers, called the hider and the seeker. The hider hides among one of all
nodes except for the node 0, and stays there. The seeker examines each node until he finds
the hider, traveling along edges. We asume that at the beginning of the search the seeker is at
the node 0, and he chooses a path which minimizes the length between $\dot{\mathrm{z}}$ and $j$ when $(\mathrm{i}\mathrm{j})\not\in E$

and examines 2 after having examined $\mathrm{J}$ . Associated with the examination of $\mathrm{i}(1\leq i\leq m)$ is
the cost that consists of two parts: (i) a traveling cost $d(i,j)>0$ of examining $i$ after having
examined $j$ , and (ii) an examination cost $a_{i}$ . Assume

$d(i,j)=1$ for all $(i, j)\in E$ .

There is not a probability of overlooking the hider, given that the right node is examined.
Before searching (hiding resp.), the seeker (the hider) must determine a strategy so as to
make the cost of finding the hider as small (large resp.) as possible. A pure strategy for the
hider is expressed by an element in $N\backslash \{0\}$ . A pure strategy for the seeker is a permutation
$\sigma$ on $N\backslash \{0\}$ , which means the seeker examines $\mathrm{a}(\mathrm{m})$ , . . . , $\mathrm{a}(\mathrm{m})$ in this order.

It is easy to solve this game for the case where $a_{i}=a$ for every $i\in N\backslash \{0\}$ . But It is very
difficult to solve this game in general It is solved for a very special case.

Theorem 3. (Kikuta (2004)) Assume for $k>0$ , $\mp_{1a_{1}}^{1+a}=k^{i-1}$ for every $i\in N\backslash \{0\}$ . The value
of the game is

$\frac{1+a_{1}}{1+k^{\wedge}}\sum_{x=1}^{\tau r\iota+1}k^{x-1}$ .

An optimal strategy for the hider is to hide at the node $i$ with probability $\propto\sum_{x=1}^{x-}k^{\infty-1}k^{\mathrm{i}-1}$ for
$i\in N\backslash \{0\}$ . An optimal strategy for the seeker is to examine 1. .. , $m$ in this order with
probability $\frac{1}{k+1}$ and $m$ , $m-1$ , $\ldots$ , 1 in this order with the remaining probability.

By letting $k=1$ , Theorem 3 is applicable to the case where $a_{i}$ -$-$-a for every $i\in N\backslash \{0\}$ . The
hider must hide at every node at random, and the seeker examines 1 ... , $m$ and $m,m-1$ , $\ldots$ , 1
with probability 1/2 respectively. When $m$ $=3$ , this game is solved completely (See Kikuta
(2004) $)$ . It may be difficult but interesting to solve this game when $m$ is small.

6. Comments.

This is the first study for rendezvous search on a finite graph with examination cost, and
the problems are solved for very special cases, The followings are left for the future studies:
(i) Rendezvous search on a star graph where the examination costs are different,

(ii) Rendezvous search on a linear graph with examination cost where the meeting takes
place when agents are at adjacent nodes.
(iii) After solving unmarkable cases, apply the results to find upper bounds for the markable
case.
(iv) Symmetric rendezvous search on a star graph.
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