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Abstract

This paper exam ines the maximization problem of the recursive utility in an incomplete market
driven by jump-diffusion processes (compound-Poisson processes with the finite jump distribution).
We state A Pnon Estimates of the spread between the solutions of two Backward Stochastic Dif-
feiential Equations (BSDEs) with jumps, from which we prove the existence and uniqueness of the
solution which is originally shown by Tang and Li [16]. By using BSDE techniques, we show the first
order condition for optimality and derive a state price density process explicitly. The optimal wealth
and utility processes are characterized as the solution of forward-backward system which is applicable
to the similar problem

1 Introduction
In this paper, we consider the continuous-time portfolio-consumption problem of an agent with recursive
utility who operates in an incom plete market driven by jum $\mathrm{p}$-diffusion processes (compound-Poisson
processes with the finite jump distribution).

A conventional asset pricing model in financial economics is structured under the assumption that
agents’ preferences have a time-additive von Neumann-Morgenstern representation. However such a
model has been exposed to many critics mainly for two reasons that are possibly related each other.
First, it has failed to perform well when applied to real market. The equity premium puzzle by Mehra
and Prescott [13] is one of the most famous counter examples. Second, the above specification of the
utility confounds risk aversion and intertemporal substitutability, while these two aspects of preference
are conceptually different. There have been a number of studies to solve this paradox.

Motivated by these drawback of such a conventional model, Epstein and Zin [5] studied recursive
intertemporal utility functions that generalize conventional, time-additive, expected utility in a discrete-
time setting. These utility functions permit a degree of separation to be achieved between substitution and
risk aversion. In their following paper [6], the empirical results show that the recursive utility improves
the goodness-of-fit of the model.

Duffie and Epstein [2] developed the recursive utility in a continuous-time setting as Stochastic Dif-
ferential Utility (SDU). Also, they investigated fundamental properties of SDU and induced its Bellman
equation. Moreover, in their subsequent paper [3], the state price density process of the normalized SDU
was formulated explicitly by using the utility gradient approach of Duffie and Skiadas [4] in the case of
the information generated by Brownian motion. Recently, there was an argument on the CCAPM under
SDU in the economy with a jump-diffusion process [9]. However as the state price density process in his
study is a quotation of Duffie and Skiadas [4], his result may be inappropriate and may not be applicable
to a jump-diffusion process.

El Karoui, Peng and Quenez [7] showed that the maximization problem of SDU can be solved by using
Backward Stochastic Differential Equation (BSDE) which was advocated by Pardoux and Peng [14], By
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using this result, they solved the optimization problem of SDU when the agent faces a nonlinear wealth
process under the influence of taxation system or uncompetitive price formation [8],

Lazrak and Zapatero [10] characterized a set of consumption processes which are optimal for a given
SDU when beliefs are unknown by using the forward-backward system of El Karoui et al. This problem is
known as the inverse problem of Mas-Colell [12], and also known that the parameters of a utility function
are not able to be determined uniquely only from the given demand curve. Lazrak and Zapatero presented
the martingale conditions and advocated the verification method which uses a short rate.

In an attempt to develop these studies further, this study will apply a recursive utility to an incomplete
market driven by jump-diffusion processes. As it has been noted in many papers, a recursive utility process
can be seen as the solution of a BSDE. Firstly, we state A Priori Estimates of the spread between the
solutions of two BSDEs with jumps, from which we prove the existence and uniqueness of the solution
which was originally shown by Tang and Li [16]. (This result was extended to non-Lipschitz; case
by Rong [15].) Additionally, we show the comparison theorem for BSDEs with jumps which gives that
the positive constraint on the wealth process is equivalent to the positively of the terminal wealth only.
Consequently, for a given consumption process and positive terminal wealth, the utility and the wealth
processes are both solutions of BSDEs with jumps, To extend the result of El Karoui et al., we study the
property of differentiability of the solutions of BSDEs with jumps. Using the differentiability, we derive a
first order condition which gives a necessary and sufficient condition of optim ality. This characterization
can be written in terms of not only the optimal utility and wealth processes but also their deflators. From
first order condition, the optimal wealth and utility and their associated deflators are characterized as
the solution of a forward-backward system.

2 Backward Stochastic Differential Equations with Jumps

This section focuses on introduction of some important extensions for BSDEs with jumps, which was
originally shown by El Karoui, Peng and Quenez [7] in a Brownian information setting.

For the sake of analysis, some notation must be defined. Given a probability space $(\Omega, \mathcal{F})\mathrm{P})$ , an $\mathbb{R}^{m}-$

valued Brownian motion $W$ and a random measure $N(\mathrm{H}, dy)$ which has a predicable measure $\nu(dy)dt$

$\{_{-}F_{t}; t\in[0, \mathrm{T}\}\}$ denotes the filtration generated by a Brownian motion $W$ and a random measure $N(dt, dy)$

$N(dt, dy)$ is the martingale measure such that $\tilde{N}(\mathrm{H}, dy)=N(dt, dy)-u(dy)dt$ . For $x\in \mathbb{R}^{n}$ , $|x|$ denotes
its Euclidian norm such that $|x|=\sqrt{\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}(x^{*}x)}$ , $\langle x, y\rangle$ denotes an inner product such that $\langle x, y\rangle$ $=$

$\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}(x^{*}y)$ , and *denotes a transpose.
Let $\mathrm{L}^{2}(\mathbb{R}^{n})$ be the space of all measurable random variables $X$ : $\Omegaarrow \mathbb{R}^{n}$ satisfying $||X||<\infty$ where

$||X||:=(E[|X|^{2}])_{r}^{\frac{1}{2}}$ and $\mathbb{H}_{T}^{2}(\mathbb{R}^{n})$ be the space of all predictable process $\varphi$ : $\Omega\rangle\zeta[0, T]$ $-arrow \mathbb{R}^{n}$ satisfying
$||\varphi||<\infty$ where $||\varphi||:=(E[f_{0}^{T}|\varphi_{t}|^{2}dt])^{\frac{1}{2}}$ . Denote also that $\mathrm{L}_{\nu()}(\mathbb{R}^{n})$ be the space of all measurable

$\mathbb{R}^{n}\mathrm{R}\mathrm{e}\mathrm{v}\mathrm{a}1\mathrm{u}\mathrm{e}\mathrm{d}$ functions $\varphi(y)$ such that $|\varphi|_{\nu(\cdot)}<\infty$ , where $| \varphi|_{\nu(\cdot)}:=(\int_{y}|\varphi(y)|\nu(dy))$ , and $\mathbb{H}_{T,\nu()}^{2}(\mathbb{R}^{n})$ be the
space of all predictable function process $\varphi$ : $\Omega\rangle\langle$ $[0, T]$ $arrow \mathbb{R}^{n}$ satisfying $||\varphi||_{\mathrm{t}/(\cdot)}<\infty$ where $||\varphi||_{\nu(\cdot)}.=$

$(E[f_{0}^{T} \int_{y}|\varphi_{t}(y)|^{2}N(dt, dy)])^{\frac{1}{2}}$ . For $\beta>0$ and $\varphi\in \mathbb{H}_{T}^{2}(\mathbb{R}^{n})$ , $||\varphi||_{\beta}^{2}$ denotes $E[ \int_{0}^{T}e^{\beta t}|\varphi_{t}|^{2}dt]$ . $\mathbb{H}_{T,\beta}^{2}(\mathbb{R}^{n})$ de-

notes the space $\mathbb{H}_{T}^{2}(\mathbb{R}^{n})$ endowed with the norm $||\cdot||\beta\cdot||\varphi||_{\nu(\cdot),\beta}^{2}$ also denotes $E[f_{0}^{T}e^{\beta t} \int_{y}|\varphi_{t}(y)|^{2}N(dt, dy)]$

where $\varphi\in \mathbb{H}_{T,\nu(\cdot)}^{2}(\mathbb{R}^{n})$ . $\mathbb{H}_{T,\nu(\cdot),\beta}^{2}(\mathbb{R}^{n})$ denotes the space $\mathbb{H}_{T,\nu(\cdot)}^{2}(\mathbb{R}^{n})$ endowed with the norm $||\cdot||_{\nu(}$ ), $\beta$ .

Consider the BSDE,

$-dY_{t}=f(t, Y_{t_{7}}Z_{t}, \Lambda_{t}(\cdot))dt-Z_{t}^{*}dW_{t}-\int_{\mathrm{R}\backslash 0}\Lambda_{t}(y)\tilde{N}(dt, dy)$ , $Y_{T}=\xi$ , (1)

where
$f’(t, Yt, Zt, \Lambda t(\cdot))=\int_{\mathrm{R}\backslash 0}g(t,Yt, Zt, \Lambda t(y))\nu(dy)$ .

We now introduce standard parameters of the BSDE.

Definition 2.1 $(f, \xi)$ are said to be standard parameters for the BSDE where $\xi$ $\in \mathrm{L}^{2}(\mathbb{R}^{n})$ , $f$ $\in \mathbb{H}_{T,\nu(\cdot)}^{2}(\mathbb{R}^{n})$ ,
and $f$

. is uniformly Lipschitz; $\mathrm{i}.e.$ , there exists $L$ such that

$|f(\omega, t, y_{1}, z_{1}, \lambda_{1}(\cdot))-f(\omega, t, y_{2\sim 2},7, \lambda_{2}(\cdot))|\leq L(|y_{1}-y_{2}|+|z_{1}-z_{2}|+|\lambda_{1}-\lambda_{2}|_{\nu()})$ ,

for $\forall(y_{1}, z_{1}, \lambda_{1}(y))$ , $\forall(y_{2,\sim 2}\tau, \lambda_{2}(y))$ .
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Tang and Li [16] showed that the BSDE with the standard parameters has a unique solution. This
paper shall attem pt to show an existence and uniqueness of the solution with a different approach. For
this purpose, let us start with next proposition, so called A Priori Estimates.

Proposition 2.2 (A Priori Estimates) Let $((f^{i}, \xi^{i})$ ; i $=1,$ 2) be two standard parameters of the BSDE
and $((Y^{i}, Z^{i}, \Lambda^{i});i=1,2)$ be solutions. Put $\delta Yt$ $=Y_{t}^{1}-Y_{t}^{2}$ and $\delta_{2}ft=f^{1}(t, Y^{2}, Z^{2}t’\Lambda^{2}(tt\cdot))-f^{2}(t, Y^{2}, Z^{2}t2\Lambda^{2}(tt\cdot))$ .

For any $(\kappa, \lambda, \mu)$ such that $\kappa^{2}>L$ , $\lambda^{2}>L$ , $\beta\geq L(2+\kappa^{2}+\lambda^{2})+\mu^{2}$ , it follows that,

$|| \delta Y||_{\beta}^{2}\leq T\{E[e^{\beta T}|\delta Y_{T}|^{2}]+\frac{1}{\mu^{2}}||\delta_{2}f||_{\beta}^{2}\}$ ,

$|| \delta Z||_{\beta}^{2}\leq\frac{\kappa^{2}}{\kappa^{2}-L}\{E[e^{\beta T}|\delta Y_{T}|^{2}]+\frac{1}{\mu^{2}}||\delta_{2}f||_{\beta}^{2}\}$ ,

$|| \delta\Lambda||_{\beta}^{2}\leq\frac{\lambda^{2}}{\lambda^{2}-L}\{E[e^{\beta T}|\mathit{5}Y_{T}|^{2}]+\frac{1}{\mu^{2}}||\delta_{2}f||_{\beta}^{2}\}$ .

Using this property, we can give a proof of the existence of a unique solution of BSDE.

Theorem 2.3 Given standard parameters (f.,$\xi)$ , there exists a unique solutions (Y, Z,$\Lambda)\in \mathbb{H}_{T}^{2}(\mathbb{R}^{n})\mathrm{x}$

$\mathbb{H}_{T}^{2}(\mathbb{R}^{m\mathrm{X}n})\mathrm{x}$ $\mathbb{H}_{T,\nu()}^{2}(\mathbb{R})$ which solves (1).

3 The utility and wealth processes
This section focuses on defining the utility and the wealth processes which formulate simultaneous Forward
Backward Stochastic Differential Equations (FBSDEs). Our main problem is formulated as optimization
of the solution of the FBSDEs.

3.1 The utility process
Duffie and Epstein [2] introduced a recursive utility in the continuous case under uncertainty. This
permits risk aversion to be disentangled from the degree of intertemporal substitutability.

Let us consider an agent with the recursive utility who operates within an incomplete market driven
by jump-diffusion process

Following the notation given by Duffie and Epstein, a certainty equivalent $m$ is defined on a probability
measure $p$ (representing the distribution of utility),

$m(\tilde{Y}):=h^{-1}(\mathrm{E}[h(\tilde{Y})])$ ,

where $h$ denotes the von Neumann-Morgenstern index, which is continuous, strictly increasing and satisfy
a growth condition; i.e., there exists some constants $k$ such that, $h(x)\leq k(1+|x|)$ .

With this certainty equivalent, the recursive utility is defined as,

$Y_{t}:= \lim_{sarrow 0}m(Y_{t+s}|F_{t})$ . (2)

Also the aggregator $f$ is defined as,

$h(Yt)Y_{t}):= \lim_{\mathit{8}arrow 0}\frac{\partial}{\partial t}m(Y_{t+s}|\mathcal{F}_{t})$.

In these settings, it is natural to assume that the utility process $Y_{t}$ follows that,

$dY_{t}=\mu ydt$ $+ \sigma_{Y}dW_{t}+\int_{\mathrm{R}\backslash 0}J_{Y}(y\rangle\tilde{N}(dt, dy).$ (3)

By applying Feynman-Kac to $h(Y_{t})= \lim_{\epsilonarrow 0}E[h(Y_{t+s})|F_{t}]$ , we obtain the drift term of the utility process
(3),

$\mu_{Y}=-(f(c_{t}, Y_{\mathrm{t}})+\frac{h’\langle Y_{t})}{h’(Y_{t})}\sigma_{Y}^{2}+\int_{\mathrm{R}\backslash 0}\frac{h(Y_{t-}+J_{Y})-h(Y_{t-})-J_{Y}h’(Y_{t})}{h’(Y_{t})}\nu(dy))$ .
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Therefore the recursive utility can be expressed as follows.

$Y_{t}=E \ovalbox{\tt\small REJECT} Y_{T}+\int_{t}^{T}\{$
$f(c_{s}, Y_{s})+ \frac{h’(Y_{s})}{h’(Y_{\mathit{8}})}\sigma_{\mathrm{Y}}^{2}+\int_{\mathrm{R}\backslash 0}\frac{h(Y_{s-}+J_{\mathrm{Y}})-h(Y_{s-})-J_{Y}h’(Y_{t})}{h’(Y_{\theta})}\nu(dy)\}ds\ovalbox{\tt\small REJECT}$ .

In the remaining of this paper, the utility process shall be expressed in more general form as,

$-dY_{t}=f(t, c_{t}, Y_{t}, Z_{t)} \Lambda_{t}(\cdot))dt-Z_{t}^{*}dW_{t}-\int_{\mathrm{R}\backslash 0}\Lambda t(y)\tilde{N}(dt, dy)$ , $Y_{T}=Y$, (4)

where the driver of this BSDE is,

$f(t, c_{t}, Y_{t}, Z_{t}, \Lambda_{t}(\cdot))=\int_{\mathrm{R}\backslash 0}g(t, c_{t}, Y_{t}, Z_{t}, \Lambda_{t}(y))\nu(dy)$ .

We make some assumptions in order to ensure that the BSDE has a unique solution,

Assumption 1 f is supposed to be uniformly Lipschitz with respect to Y, Z and $\Lambda(y)$ .

Assumption 2 There exists some constants $k_{1}$ , $k_{2}$ s toch that $|f(t,$c, 0,0,$0)| \leq k_{1}+k_{2}\frac{c^{p}}{p}a.s$. with
$0<p<1\forall c\in \mathbb{R}^{+}$ .
These assumptions ensure that, for each $c\in \mathbb{H}_{T,\nu(\sim)}^{2}$ , and each terminal reward $Y\in \mathrm{L}^{2}$ , BSDE (4) has a

unique solution $(Y, Z, \Lambda)\in \mathbb{H}_{T}^{2}(\mathbb{R}^{1})\mathrm{x}$ $\mathbb{H}_{T}^{2}(\mathbb{R}^{m)\zeta 1})\mathrm{x}$ $\mathbb{H}_{T,\nu()}^{2}(\mathbb{R})$ .
2 additional assumptions may be necessary in the later section.

Assumption 3 $f$ is strictly concave with respect to $c$ , $Y$ , $Z$ and $\mathrm{A}\{\mathrm{y}$ ) and $f$ is a strictly nondecreasing

function with respect to $c$ .

By using the comparison theorem which is shown in next section, assumption 3 ensures the usual proper-
ties of utility functions, that is, monotonicity with respect to the terminal value and to the consumption,
and concavity with respect to the consumption.

In general, the terminal value $Y$ is a utility of the terminal wealth $X_{T\}}$ that is, $Y=u(X_{T})$ , where $u$

satisfies the below assumption.

Assumption 4 $u$ is strictly concave and strictly nondecreasing real function defined on $\mathbb{R}>\sigma\Omega$ which is
$F_{t}\mathrm{x}B(\mathbb{R})$ measurable, and satisfies $|u(x)| \leq k_{1}+k_{2}\frac{x^{p}}{p}\cdot a.s$ . with $0<p<1\forall x\in \mathbb{R}^{+}$ .

This assumption ensures that the variable $h(X_{T})\in \mathrm{L}^{2/p}\subset \mathrm{L}^{2}$ for each $X_{T}\in \mathrm{L}^{2}$ , and that the recursive
utility associated with this terminal value is increasing and concave with respect to terminal wealth.

3.2 The wealth process
This subsection focuses on a specification of the dynamics of the wealth process. There exists $\mathrm{n}+1$ assets
to which the agent can invest some of his wealth in the market. One is a riskless asset whose price process
$P_{t}^{0}$ is,

$dP_{t}^{0}=P_{t}^{0}r_{t}dt$ . (5)

where $r_{t}$ is a short rate. In addition to the bond, $\mathrm{n}$ risky assets (the stocks) are continuously traded. The
price process of $\mathrm{i}\mathrm{t}\mathrm{h}$ stock $P_{t}^{i}$ is,

$\frac{dP_{t}^{i}}{P_{t}^{i}}=a_{t}^{i}dt+\sum_{j=1}^{m}\sigma_{t}^{x,\mathrm{i}}dW_{t}^{j}+\int_{\mathrm{R}\backslash 0}d_{\ell}^{i}(y)N(dt, dy)$ (6)

The agent invests to these assets with portfolio $\pi_{t}=$ $(\pi_{t}^{1}, \pi_{t}^{2}, \cdots , \pi_{t}^{n})$
’ and $\pi_{t}^{0}=X_{t}-\sum_{i=1}^{n}\pi_{t}^{i}$ . In

these settings, the wealth process of the agent is,

$dX_{1}=(X_{t}- \sum_{i=1}^{n}\pi_{t}^{i})\frac{dP_{t}^{0}}{P_{t}^{0}}+\sum_{i=1}^{n}\pi_{t}^{l}\frac{dP_{t}^{i}}{P_{t}^{i}}-c_{t}dt$

(7)

$=(X_{t}r_{t}+ \pi_{t}^{*}\sigma_{t}\theta_{t}+\int_{\mathrm{R}\backslash 0}\pi_{\mathrm{t}}^{*}d_{t}(y)\nu(dy)-c_{t)}dt+\pi_{t}^{*}\sigma_{t}dW_{t}+\int_{\mathrm{R}\backslash 0}\pi_{t}^{*}d_{t}(y)\overline{N}(dt, dy)$.
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where $\theta_{t}$ is the risk premium vector, such that $a_{t}-r_{t}1=\sigma_{t}\theta_{t}$

A general setting for the wealth process can be given by

$-dX_{t}=a(t, c_{t}, X_{t}, \pi_{t}^{*}\sigma_{t}, \pi_{t}^{*}d_{t} (.))dt-\pi_{t}^{*}\sigma_{t}dW_{t}-\int_{\mathrm{R}\backslash 0}\pi_{t}^{*}d_{t}(y)\tilde{N}(dt, dy)\}$ $X_{0}=x$ , (S)

where the driver of this forward SDE is,

$a(t, c_{t}, X_{t}, \pi_{t}^{*}\sigma_{t}, \pi_{t}^{*}d_{t}(\cdot))=\int_{\mathrm{J}\mathrm{R}\backslash 0}b(t, c_{t)}X_{t}, \pi_{t}^{*}\sigma_{t}, \pi_{t}^{*}d_{t}(y))\nu(dy)$ .

We suppose similar assumptions on the driver $a$ of the wealth process.

Assumption 5a is supposed to be unifo rmly Lipschitz with respect to $X$ , $\pi^{*}\sigma$ and $\pi^{*}d(y)$ .

Assumption 6 There exists a positive constant $k$ such that, $|a(t, c, 0,0, \mathrm{O})|\leq k\mathrm{c}a.s$ . for $\forall c\in \mathbb{R}^{+}$ .

Assumption 7a is convex with respect to $c$ , $x$ , $\pi^{*}\sigma$ and $\pi^{*}d(y)$ , and $a$ is nondecreasing with respect to
$\mathrm{c}$ .

Assumption 8 $a(t, c, 0, 0, 0)\geq 0a.s$ . for $\forall c\in \mathbb{R}^{+}$ .

Let $(X_{t}^{x,\mathrm{c},\pi}; 0\leq t \leq T)$ be the wealth process associated with initial wealth $x$ and strategy $(c, \pi)\in$

$\mathbb{H}_{T,\nu(\cdot)}^{2}(\mathbb{R})\mathrm{x}$ $\mathbb{H}_{T\nu(\rangle)}^{2}(\mathbb{R}^{n})$ . One may notice that given an initial wealth and portfolio, there exists a
pathwise unique wealth process which solves forward equation (8) since $a$ is Lipschitz. (Growth condition
$\int_{1\mathrm{R}\backslash 0}|\pi_{t}^{*}d_{t}(y)|^{2}\iota/(dy)\leq k(1+|X_{t}|^{2})$ for $\exists k$ , $\forall X_{t}$ 1s also satisfied since $d_{t}(y)\in \mathrm{L}_{\nu(\cdot)}^{2}(\mathbb{R}^{n}).)$

4 Formulation of the maximization problem
Let us consider an agent, endowed with initial wealth $x>0$ , who invests at each time $t$ with portfolio $\pi_{t}$

and consumes with consumption process $c_{t}$ . Recall that the wealth process of the agent is,

$-dX_{t}=a$ ($t$ , $c_{t}$ , $X_{t}$ , $\pi_{t}^{*}$ a $t$ , $\pi_{t}^{*}d_{t}(\cdot)$) $dt- \pi_{t}^{*}\sigma_{t}dW_{f}-\int_{1\mathrm{R}\backslash 0}\pi_{t}^{*}d_{t}(y)\tilde{N}(dt, dy)$, $X_{0}=x$ . (9)

The agent may choose a portfolio-consumption strategy which maximizes his utility of consumption and
terminal wealth. This optimization problem is expressed as,

$( \mathrm{c},\pi)\in A(x)\sup Y_{0}^{(x,c,\pi)}$ , (10)

where $Y^{(x,c,\pi]}$ is the recursive utility which follows,

$-dYt=f(t, ct, Yt, Zt, \Lambda t(\cdot))dt-Z^{*}dWtt$ $- \int_{\mathrm{R}\backslash 0}\Lambda t(@/)\tilde{N}(dt, dy)$ , $Y_{T}=u(X_{T})$ . (10)

Assum ption 9 The function $g$ and $b$ are to be Lipschitz with respect to $\Lambda_{t}(y)$ and $\pi^{*}d(y)$ for $\forall y$ respec-
tively; $i.e$ . there exists A such that,

$g(t, y, z, \Lambda_{\ell}^{1}(y))-g(t, y, z, \Lambda_{t}^{2}(y))\leq L(\Lambda_{t}^{1}(y)-\Lambda_{t}^{2}(y))$ (121,

Proposition 4.1 (Adjoint process) Let $(\beta, \gamma, \eta(y))$ be a bounded $(\mathbb{R}, \mathbb{R}^{n}, \mathbb{R})$ -vdued predictable process for
$\forall y\in \mathbb{R}\backslash \mathrm{O}$ , $\varphi\in \mathbb{H}^{2}$ , $\xi\in \mathrm{L}$ and $\Lambda\in \mathrm{L}_{\nu()}^{2}$ . Then the linear BSDE,

$-dY_{\mathrm{t}}= \ovalbox{\tt\small REJECT}_{\varphi_{t}+Y_{t-}\beta_{t}+Z_{t}^{*}\gamma_{t}+\int_{\mathrm{R}\backslash 0}\Lambda_{t}(y)\eta_{t}(y)\nu(dy)\ovalbox{\tt\small REJECT}}dt-Z_{t}^{*}dW_{t}-\int_{\mathrm{R}\backslash 0}\Lambda_{t}(y)\tilde{N}(dt, dy)$, $Y_{T}=\xi$ ,
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has $0$, unique solution $(Y, Z, \Lambda(y))$ and $Y_{t}$ is given by the closed form,

$Y_{t}=E|| \Gamma_{T}\xi+\int_{t}^{T}\Gamma_{s-}\varphi_{s}ds|F_{t}\ovalbox{\tt\small REJECT}$ ,

where $\Gamma_{t}$ is the adjoint process defined by the linear forward SDEf

$\frac{d\Gamma_{t}}{\Gamma_{t-}}=\beta_{t}dt+\gamma_{t}^{*}dW_{t}+\int_{1\mathrm{R}\backslash 0}\eta_{t}(y)\overline{N}(dt, dy)$, $\Gamma_{t}=1$ . (13)

By using this proposition, we can prove next useful theorem.

Theorem 4.2 (Comparison Theorem) Suppose that the assumptions hold, let two BSDEs be,

$-dY_{t}^{i}=f^{i}(t, c_{t}, Y_{t}^{i}, Z_{\mathrm{t}}^{i}, \Lambda_{t}^{i}(\cdot))dt-Z_{t}^{i*}dW_{t}-\int_{\mathrm{R}\backslash 0}\Lambda_{t}^{i}(y)\tilde{N}(dt, dy)$, $Y_{T}^{i}=\xi^{i}$ , (14)

where $i=1$ , 2 and let us suppose that $\xi^{1}\geq\xi^{2}$ and $f^{1}(t,$ $c$ , $Y$, $Z$, $\Lambda(\cdot\rangle)\geq f^{2}.(t, c, Y, Z, \Lambda(\cdot))$ . Then, we have
$Y_{t}^{1}\geq Y_{t}^{2}$ , $0.\mathrm{s}$ . $\forall t\in[0, T]$ .

Remark 4.1 Assumption 9 is a sufficient condition for the comparison theorem 4,2. If the process
$\int_{\mathrm{R}\backslash 0}\Delta_{\Lambda}g^{1}$ (t)$At(y)is(dy) is Lipschitz to $5\mathrm{A}\mathrm{t}(\mathrm{y})$ in the space of $\mathrm{L}_{\nu()}$ , the comparison theorem hold.

Let us define the maximal reward by

$V(x)= \sup_{c(,\pi)\in A(x)}Y_{0}^{(x,\mathrm{c},\pi)}$ . (15)

Consider two optimization problems, by using the comparison theorem, we state the following proposition.

Proposition 4.3 Let $(a^{1}, f^{1}, u^{1})$ , $(a^{2}, f^{2}, u^{2})$ be two standard parameters satisfying the above assumptions
$w\iota th$ ,

$u^{1}(x)\leq u^{2}(x)$ ,
$f^{1}$ ( $t$ , $c$ , $y$ , $z$ , A $(\cdot)$ ) $\leq f^{2}(t, c, y, \sim\#, \lambda(\cdot))$ ,

$a^{1}(t, c, x, \pi^{*}\sigma, \pi^{*}d(\cdot))\geq a^{2}(t, c, x, \pi^{*}\sigma, \pi^{*}d(\cdot))$ .

Let $V^{1}(x)$ (respectively $V^{2}(x)$ ) be maximal reward associated with $(a^{1}, f^{1}, u^{1})$ (respectively $(a^{2},$ $f^{2}.$ , $u^{2})$ ).
Then,

$V^{1}(x)\leq V^{2}(x)$ . (16)

By Assumption 8 and the comparison theorem, the positive constraint on the wealth process $X_{t}^{x,c,\pi}\geq 0$

is equivalent to the positive constraint on the terminal wealth $X_{T}^{x,c,\pi}\geq 0$ . Using this property, it becomes
possible to take the terminal wealth as control variable instead of portfolio process. Let $V$ denotes a
consumption space, the subset of predictable measurable positive process $c_{t}$ which belongs to $\mathbb{H}_{T}^{2}(\mathbb{R})$ .
And let $C$ denotes a terminal wealth space, the set of square-integrable $F_{T}$ measurable positive random
variable 4.
Definition 4.4 A pair $(\xi, c)\in \mathcal{L}$ xD is a “consumption plan”. $(X_{t}^{(\xi,\mathrm{c})}, \pi_{t}^{(\xi,\mathrm{c})})$ denotes the wealth and
portfolio associated with given consumption plan $(\xi,$c), which is the solu tion of the BSDE,

$-dX_{t}^{(\xi,c)}=a(t, c_{t}, X_{t}^{(\xi,\mathrm{c})}, \pi_{t}^{(\xi,c)*}\sigma_{t}, \pi_{t}^{(\xi,c)*}d_{t}(\cdot))dt$ $- \pi_{t}^{(\xi,\mathrm{c})*}\sigma_{t}dW_{t}-\int_{\mathrm{R}\backslash 0}\pi_{t}^{(\xi,c)*}d_{t}(y)\tilde{N}(dt, dy)$, $X_{T}^{(\xi,\mathrm{c})}=\xi$ .

And $(Y_{t}^{(\xi_{:}c)} , Z_{t}^{\langle\xi,c)} , \Lambda_{t}^{(\xi,\mathrm{c})}(y))$ denotes the utility of consumption plan $(\xi, c)$ , which is the solution of the
BSDE,

$-dY_{t}^{(\xi,\mathrm{c})}=f(t, c_{t\prime}Y_{t}^{(\xi_{2}c)}, Z_{t}^{(\xi,\mathrm{c})}, \Lambda_{t}^{(\xi,c)}(\cdot))dt-Z_{t}^{\langle\xi,c)*}dW_{t}-\int_{\mathrm{R}\backslash 0}\Lambda_{t}^{(\xi,\mathrm{c})}(y)\tilde{N}(dt, dy)$ , $Y_{T}^{(\xi,c)}=u(\xi)$ .
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In the context of consumption plans, the initial wealth $x$ is considered as a constraint. In case of $a$ is

nonlinear, the set of consum ption plan such that $X_{0}^{(\xi,\mathrm{c})}=x$ is not convex. To obtain a convex set, the

milder constraint $X_{0}^{(\xi,\mathrm{c})}\leq x$ is required.

Definition 4.5 A consumption plan $(\xi, c)\in L$ xD is called admissible for initial wealth x if and only if
$X_{0}^{(\xi,\mathrm{c})}\leq x$ . Let $A(x)$ be the set of consumption plans admissible for the initial wealth $x$

It follows that the optimization problem can be written in the following backward formulation;

$V(x)= \sup_{c(\xi,)\in A(x)}Y_{0}^{(\xi,c)}$ . (17)

Consequently, the agent optimize a consumption plan $(\xi, c)$ belonging to $A(x)$ so that it maximize the

recursive utility function given by $Y_{0}^{(\xi,c))}$ .

5 Maximum principle
Following the utility gradient approach of Duffie and Skiadas [4], we consider another optimization prob-
lem without constraint, which is equivalent to the original problem. Because of the assumption that $f$

.
and $h$ are concave and $a$ is convex, the function defined on $L\mathrm{x}D$ by,

$(\xi, c)\mapsto x-X_{0}^{(\xi,c)}$ ,

$(\xi, c)\mapsto Y_{0}^{(\xi,\mathrm{c})}$ ,

are concave. Using the result of convex analysis, we find that there exists a constant $v$ $>0$ such that,

$( \xi,c)\in L\cross D\sup(Y_{0}^{(\xi,\mathrm{c}\}}+v(x-X_{0}^{(\xi,c)}))$ (18)

Furthermore, if the supreme is achieved in (17) by $(\xi^{0}, c^{0})$ , then it is achieved by $(\xi^{0}\}c^{0})$ in (18) with
$X_{0}^{(\xi,c)}=x$ .

This section shall attempt to derive a necessary and sufficient condition of the optimization problem
of (18) under additional assumption. Let us start with the introduction of differentiability assumption.

Assumption 10 $a$ and $f$ are supposed to be continuously differentiate with respect to $(c, X, \pi^{*}\sigma)$ and
$(c, Y, \mathrm{Z})$ , and $b$ and 9 are continuously differentiable with respect to $\pi^{*}\sigma$ and $\Lambda_{f}h$ is continuously differ-
entiable. Also, $h’$ , $f_{\mathrm{c}}$ , $a_{c}$ are supposed to be bounded.

Let $(\xi^{0}, c^{0})$ be an optimal consumption plan for (18), and $(Y_{t}^{0}, Z_{t}^{0}, \Lambda_{t}^{0}(y))$ and $(X_{t}^{0}, \pi_{\ell}^{0})$ be the utility
and $\mathrm{w}\mathrm{e}\mathrm{a}\mathrm{l}\mathrm{t}\mathrm{h}/\mathrm{p}\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{o}$ processes associated $(\xi^{0}, c^{0})$ . Let $(\xi, c)$ be a consumption plan such that $\xi-\xi^{0}$

}

$c-c^{0}$ are uniformly bounded. Then $(\xi^{0}+\alpha(\xi-\xi^{0}), c^{0}+\alpha(c-c^{0}))$ is consumption plan for $\forall\alpha$ , $0\leq\alpha$ $\leq 1$ .
Let ( $Y_{t^{O}},$ $Z_{t}^{\alpha},$ \^A $(\mathrm{y}\})$ and $(X_{t}^{\alpha}, \pi_{t}^{\alpha})$ be the utility and $\mathrm{w}\mathrm{e}\mathrm{a}\mathrm{l}\mathrm{t}\mathrm{h}/\mathrm{p}\mathrm{o}\mathrm{r}\mathrm{t}\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{o}$ processes associated $(\xi^{0}+\alpha(\xi-$

$\xi^{0})$ , $c^{0}+\alpha(c-c^{0}))$ .

Proposition 5.1 The function a $\mapsto(Y_{t}^{\alpha},$ $Z_{t\rangle}^{\alpha}$ \^A $(\mathrm{y}\})$ is right-differentiable with lerivatives given by
$(\partial_{\alpha}Y_{t}^{0}, \partial_{\alpha}Z_{t}^{0},\partial_{\alpha}\Lambda_{t}^{0}(y))$, the solution of the following BSDE,

$-d \partial_{\alpha}Y_{t}^{0}=[f_{c}^{0}(t)(c_{t}-c_{t}^{0})+f_{Y}^{0}(t)\partial_{\alpha}Y_{t}^{0}+f_{Z}^{0}(t)^{*}\partial_{\alpha}Z_{t}^{0}+\oint_{\mathrm{R}\backslash 0}g_{\Lambda}^{0}(t, y)\partial_{\alpha}\Lambda_{t}^{0}\iota/(dy)\ovalbox{\tt\small REJECT} db$

$- \partial_{\alpha}Z_{t}^{0*}dW_{t}-\int_{\mathrm{R}\backslash 0}\partial_{\alpha}\Lambda_{t}^{0}(y)\tilde{N}(d\mathrm{f}, dy)$ ,

$\partial_{\alpha}Y_{T}^{0}=u’(\xi^{0})(\xi-\xi^{0})$ ,

where $f_{c}^{0}(t)=f_{c}(t, c_{t}^{0}, Y_{t}^{0}, Z_{t}^{0}, \Lambda_{t}^{0}(\cdot))$ , $f_{Y}^{0}(t)=f_{Y}(t, \mathrm{q}^{0}, Y_{t}^{0}, Z_{t}^{0}, \Lambda_{\ell}^{0}(\cdot))$ , $f_{Z}^{0}.(t)=ft(t)c_{\ell}^{0},$ $Y_{t}^{0},$ $Z_{t}^{0},$ $\Lambda_{t}^{0}(\cdot))$ ,
$g_{\Lambda}^{0}(t, y)=g_{\Lambda}(t, c_{t}^{0}, Y_{l2}^{0}Z_{t}^{0}, \mathrm{A}_{t}^{0}(y))$ .
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Applying this result to $(X_{t}^{\alpha},\pi_{t}^{\alpha})$ , a pair $(\partial_{\alpha}X_{t}^{0},\partial_{\alpha}\pi_{t}^{0})$ is a solution of

$-d \partial_{\alpha}X_{\mathrm{t}}^{0}=[a_{\mathrm{c}}^{0}(t)(c_{i}-c_{t}^{0})+a_{X}^{0}(t)\partial_{\alpha}Y_{t}^{0}+a_{\pi\sigma}^{0}.(t)^{*}(\partial_{\alpha}\pi_{t}^{0*}\sigma_{t})+\int_{\mathrm{R}\backslash 0}b_{\pi d}^{0}.(t,y)\partial_{\alpha}\pi_{\mathrm{t}}^{0*}d_{t}(y)\nu(dy)]dt$

$- \partial_{\alpha}\pi_{t}^{0*}\sigma_{t}dW_{t}-\int_{\mathrm{R}\backslash 0}\partial_{\alpha}\pi_{t}^{0*}d_{t}(y)\overline{N}(dt, dy)$ ,

$\partial_{\alpha}X_{T}^{0}=\xi-\xi^{0}$ ,

where $a_{c}^{0}(t)=a_{c}(t, c_{t}^{0}, X_{t}^{0},\pi_{t}^{0*}\sigma_{t},\pi_{t}^{0}" d_{t} (\cdot))$ , $a_{X}^{0}(t)=ax(t,c_{t’ ttt,t}^{0}X^{0},\pi^{0*}\sigma\pi^{0}‘ d_{t}(\cdot))$ , $a_{\pi\cdot\sigma}^{0}(t)=a_{7r^{*}\sigma}(t,$ $C^{0}t$

’

$X_{t}^{0}$ , $\pi_{t}^{0*}\sigma_{t}$ , $\pi_{t}^{0*}d_{t}(\cdot)))b_{\pi^{*}d}^{0}(t,y)=b_{\pi^{*}d}(t, c_{t}^{0},X_{t}^{0}, \pi_{t}^{0*}\sigma_{t},\pi_{t}^{0*}d_{t}(y))$.
Since these BSDEs are linear, using Proposition 4.1, there exist the adjoint processes associated with

$\partial_{\alpha}Y^{0}$ and $\partial_{\alpha}X^{0}$ . The adjoint process of $\partial_{\alpha}Y^{0}$ is,

$\frac{d\Gamma_{t}}{\Gamma_{\mathrm{t}}}=f_{Y}^{0}(t)dt+f_{Z}^{0}(t)^{*}dW_{t}+\int_{\mathrm{R}\backslash 0}g_{\Lambda}^{0}\langle t)\tilde{N}(dt,dy)$.

Also the adjoint process of $\partial_{\alpha}X^{0}$ is,

$\frac{dH_{t}}{H_{t}}=a_{X}^{0}(t)dt+a_{\pi^{*}\sigma}^{0}(t)^{*}dW_{t}$ $+ \int_{\mathrm{R}\backslash 0}b_{\pi^{\mathrm{Y}}d}^{0}(t)\overline{N}(dt,dy)$ .

Before proceeding to next theorem, we introduce additional assumption so called the Inada condition.

Assumption 11 (Inada condition) h and f satisfies $h’(0)=+\infty$ and $f_{c}$ (t, 0, $Y_{)}$ Z, A( )) $=+\infty$ .

Theorem 5,2 Suppose that the assumptions hold. Let $(Y_{t}^{0}, Z_{t}^{0}, \Lambda_{t}^{0}(y))$ and $(X_{t}^{0}, \pi_{t}^{0})$ be the utility and
the $wealth/portfof\mathrm{i}o$ process associated with $(\xi^{0}, c^{0})$ which is an optimal consumption plan. The maximum
pnnciple can be written as follows,

$\Gamma_{T}u’(\xi^{0})=vH_{T}$ , (19)

$\Gamma_{t}f_{\mathrm{c}}^{0}(t)=vH_{t}a_{\mathrm{c}}^{0}(t)$ , $0\leq t\leq T$ , (20)

Theorem 5.3 Suppose that the assumptions hold, Let $(\xi^{0}, c^{0})$ be a consumption plan. Let $(Y^{0}, Z^{0}, \Lambda^{0}(y))$

and $(X^{0}, \pi^{0})$ be the utility and the utealth processes associated with $(\xi^{0}, c^{0})$ . Suppose that (19) and (20)

are $s$ atisfiei, then $(\xi^{0}, c^{0})$ is optimal

These results lead the state price process explicitly.

Corollary 5.4 (State price density process) State price density process $\phi_{t}$ in this economy ccvn be ex-
pressel as,

$\phi_{t}=f_{c}^{0}(1)$ $\exp\{$

$+ \int_{0}^{\mathrm{t}}f_{Z}^{0}(t$

$\int_{0}^{\mathrm{t}}\{f_{Y}^{0}(s)-\frac{1}{2}|f_{Z}^{0}(s)|^{2}-\int_{\mathrm{R}\backslash 0}g_{\Lambda}^{0}(s)\nu(dy)\}ds$

(21)

$)^{*}dW_{s}+ \int_{0}^{t}\int_{\mathrm{R}\backslash 0}\log(1+g_{\Lambda}^{0}(t))N(dt, dy))$ .

6 Forward-Backward system

This section focuses on the $fo$ rward-backward system which is derived from the maximal principle. Using

theorem 5.2, the optimal terminal wealth satisfies,

$\xi^{0}=u^{\prime-1}(\frac{vH_{T}}{\Gamma_{T}})$ ,

However in this section, the arguments shall be made under an additional assumption
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Assumption 12 The driver of the wealth can be expressed as, $a(t_{7}c_{t}, X_{t}, \pi_{t}^{*}\sigma_{t}, \pi_{t}^{*}d_{t}(\cdot))=a(t,$ $X_{t}$ , lhat ,
$\pi_{t}^{*}d_{t}(\cdot))+c$ , for $\forall(t, c, X, \pi)$ .

In this case, the optimal consumption $c_{t}^{0}$ is,

$c_{t}^{0}=I(t, vH_{t}\Gamma_{\mathrm{f}}^{-1}, Y_{t}, Z_{t}, \Lambda_{t}(\cdot))$

where the function I is inverse function defined that

$f_{c}$

.
$(t, \mathrm{I}(\mathrm{t}, vH_{t}\Gamma_{t}^{-1}, Y_{t}, Z_{t}, \Lambda_{t}(\cdot)), Y_{t}, Z_{t}, \Lambda_{t}(\cdot))$ $=vH_{t}\Gamma_{t}^{-1}$ .

From theorem 5.2, we see that the following theorem hold.

Theorem 6.1 Let ($Y_{t}$ , $Z_{t}$ , At(y)) and $(X_{t}, \pi_{t})$ be the utility and the $wealth/portfolio$ process. And let
$\Gamma_{t}$ , $H_{t}$ be the associated adjoint processes. They are the optimal utility and wealth processes and their
deflators if and only if they are the unique sofrtzon of the forward-backward system,
Backward components

$-dXt=a$ ( $t,$ $I(t_{\dagger}vHt\Gamma_{t}^{-1},$ $Yt,$ $Zt,$ $\Lambda t(\cdot)),$ $Xt,$ $\pi_{t}^{*}\sigma t,$ $\pi_{t}^{*}dt(\cdot 1,)dt-\pi_{t}^{*}\sigma tdWt-\int_{\mathrm{R}\backslash 0}\pi^{*}dt(ty)\tilde{N}$ (Yt, $dy)$
)

$X_{T}=u^{l-1}(vH_{T}\Gamma_{T}^{-1})$ ,

$-dY_{t}=f$ ($t,$ $I$ (1, $vH_{t}\Gamma_{t}^{-1},$ $Y_{t},$ $Z_{t}$ , At(y)) $Y_{t},$ $Z_{t},$ $\Lambda_{t}(\cdot)$ ) $dt-Z_{t}^{*}dW_{t}- \int_{\mathrm{R}\backslash 0}\Lambda_{t}(y)\tilde{N}($Yt, $dy)_{2}$

$Y_{T}=u(u^{\prime-1}(vH_{T}\mathrm{F}_{T}^{-1}))$ .

Forward components

$\frac{d\Gamma_{t}}{\Gamma_{t}}=f_{Y}(t, I(t, vH_{t}\Gamma_{t}^{-1}, Y_{\mathrm{t}}, Z_{t}, \Lambda_{\mathrm{t}}(\cdot)), Y_{t}, Z_{t}, \Lambda_{t}(\cdot))dt+f_{Z}.(t,$ $I$ ( $t,$ $vH_{\ell}\Gamma_{t}^{-1},$ $Y_{t},$ $Z_{t}$ , At (y)) $Y_{t},$ $Z_{t}$ , At(-)YdWt

$+ \int_{\mathrm{R}\backslash 0}g\Lambda(t, I(t, vH_{t}\Gamma_{t}^{-1}, Y_{t}, Z_{t}, \Lambda_{\mathrm{g}}(\cdot))\}Yt, Zt, \Lambda \mathrm{t}(y))\tilde{N}(dt, dy)$, $\Gamma_{0}=1$ ,

$\frac{dH_{t}}{H_{t}}=a_{X}$ ( $t_{7}\mathrm{I}$ ( $\mathrm{t},$
$vF_{t}\mathit{1}\Gamma_{t}^{-1},$ $Y_{t},$ $Z_{t}$ , At (y)) $X_{\mathrm{t}},$ $\pi_{t}^{*}\sigma_{t},$ $\pi_{t}^{*}d_{b}(\cdot)$ ) $dt$

$+a_{\pi^{*}\sigma}$ ( $t$ , $I$ ( $t$ , $vH_{t}\Gamma_{t}^{-1}$ , $Y_{t}$ , $Z_{t}$ , At $(\mathrm{y}|)$ ), $X_{t}$ , $\pi_{t}^{*}$ a $t$ , $\pi_{t}^{*}d_{t}(\cdot)$ ) $*dW_{t}$

$+ \int_{\mathrm{R}\backslash 0}.b_{\pi d}$.($t$ , $I$ ( $t$ , $vH_{\mathrm{t}}\mathrm{F}_{t}^{-1}$ , $Y_{\ell}$ , $Z_{t}$ , At $(\mathrm{y}|)$ ), $X_{t}$ , $\pi_{t}^{*}$ Dg , $\pi_{t}^{*}d_{t}(y)$ ) $\tilde{N}(dt, dy)$ , $H_{0}=1$ .

7 Summary and conclusions
Discussed in this study is the maximization problem of the recursive utility in an incomplete market
driven by jump diffusion processes. To fulfill this purpose, we have developed A Priori Estimates of the
spread between the solutions of two BSDEs with jumps, from which the existence of unique solution is
derived, After defining the utility and the wealth processes, the comparison theorem for BSDEs with
jum $\mathrm{p}$ is proved. To extend the result of El Karoui et $\mathrm{a}1$ , we have studied differentiability of the solutions
of BSDEs with jumps. Also, using the property of differentiability, a first order condition is derived,
which gives a necessary and sufficient condition for optimality. Thus, through the above arguments, a
characterization of the optimal wealth and utility and their associated deflators can be derived as a unique
solution of a forward-backward system. These results can be easily extended to plural dimensional jumps.

All proofs in this paper are omitted due to space limitations. They are available to interested readers
on request
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