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Abstract

This paper studies an endogenous network formation game based on well-known Con-

nections Model first introduced by Jackson and Wolinsky (1996). We assume that the cost

to construct a link can be shared between two players on the both ends through a bilateral

negotiation process. Although this game always has a Nash equilibrium in which the un-

deriying network is efficient, there also exist equilibria with inefficient networks. To solve

this multiplicity of equilibria, we introduce a stronger equilibrium with a special type of

symmetry, that we call indiscriminate Strong Nash Equilibrium (ISNE). It is shown that the

ISNE necessarily achieves efficient netw orks and attains the core of the associated cooperative

game.

Keywords: Network formation game; Connections Model; Endogenous cost allocation; Effi-
cient network; Strong Nash Equilibrium

1 Introduction

Network Formation Game (NFG) is a fast grow ing domain of game theory. The literature

includes Aumann and Myerson (1988), Jackson and Wolinsky (1996), and Slikker and van

den Nouweland (2000). Among the existing studies, there are two major problems drawing

researchers’ attention. The first problem is determining the type or topology of network con-

structed in equilibrium. The second is identifying payoff structures, or rules of negotiation

among players, that guarantee the equilibrium network to be efficient, i.e., socially optimal. In

fact, it is not easy to find such a rule
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Our model is based upon the model introduced by Jackson and Wolinsky (1996), which

is often referred to as Connections Model. In their model, the value of network connection

between two nodes declines geometrically as the distance between the two increases. Here the

distance is defined as the number of links constituting the shortest path between the two. The

distance is sometimes “hops” in the context of telecommunication network design. In the original

Connections Model, the cost to establish a link is split evenly to the adjacent nodes.

One of major weakness in the original Connections Model is that it does not guarantee the

network in equilibrium to be efficient. In order to overcome this problem, we make a small

modification to the original Connections Model, We allow some degree of freedom to negotiate

on allocation of the link cost between two players on the both ends. It will be shown that this

small modification enables to control the NFG so that it can always achieve an efficient network.

In our model, each player declares the player on the other edge of a link the upper limit of

cost he / she can incur to construct the link. The link is decided to be constructed if the sum
of declared costs exceeds the total construction cost. The negotiation tool of these two players

is how much to declare as the upper limit. This bilateral negotiation is done simultaneously

among all the player pairs and this game is therefore formulated as a game in strategic form.

We first show that Nash equilibrium which achieves an efficient network always exists in

this modified Connections Model. However there also exists equilibrium which may lead to an
inefficient network. Hence we consider a stronger equilibrium, Strong Nash Equilibrium (SNE).

Unfortu nately SNE alone is not sufficient to obtain an efficient network. However, by focusing

onto a class of SNE where each player declares the same cost preference to the other players

sharing links, it can be shown that such SNE guarantees the efficiency of the underlying network.

We call the class of equilibrium to be indiscriminate SNE. The indiscriminate SNE in our game
is explicitly identified in a closed form, and is always included in the core of the associated

cooperative game although indiscriminate SNE is originally a solution of non-cooperative game.
To the end of this section, we would like to note that the endogenous assumption we added is

practical one in many telecommunication applications, such as network formation of the Internet.

The bilateral interconnection between Internet Service Providers (ISPs) is often referred as

peering, and the cost allocation between the two is determined through negotiation. The quality

of service of communication declines rapidly as number of hops between the source and the
destination increases, which matches the assumption of Connections Model. Hence, our model
will provide many insights to scholars studying Internet economics. For further discussion on
interconnection issues among Internet service providers, see Bailey (1997).

This paper is organized as follow $\mathrm{s}$ . In the next section, we review the existing literature
related to NFG, identifying the position of our study. In Section 3, we form ally introduce our
modified Connections Model and provide some important property of the equilibrium. In Section
4, we provide conditions under which the efficient network can be achieved in equilibrium. In
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Section 5, we discuss Strong Nash Equilibrium of our game and its efficiency. Finally, in Section
6, we consider a cooperative game derived from the modified Connections Model, and explore

relationships between cooperative solutions and Strong Nash equilibria. Throughout this paper,

we omit all proofs for theorems, which are available upon request.

2 Literature Review

Since the pioneering work of Myerson on the stability of networks was published in 1977 many

models related to Network Formation Games (NFGs) have been introduced. They are catego-

rized into two groups, exogenous models and endogenous models. They differ in timing in which

players’ payoffs are determined.

In the exogenous models, players’ payoffs are predetermined corresponding to the network

topology, and no negotiation on cost sharing is allowed. The only decision variable each player

has is whom he / she wants to have direct links to. Jackson and Wolinsky (1996) introduced

Connections Model, which is the basis of our model, and consider whether both the stability

and the efficiency of the network can be compatible, or not. Their model assumes an exogenous

cost sharing rule where the two players adjacent to the established link bear the cost evenly.

Their conclusion is that the efficiency and the stability are not necessarily compatible, Jackson

and Nouweland (2003) introduced a stronger stability concept in which network in equilibrium

is not deviated from by any coalition among players. They concluded that relationship between

strong stable network and efficient network in general depends on allocation rule that is given

exogenously. However if a component-wise egalitarian allocation is employed, strong stable

networks and efficient networks coincide.

In endogenous models, players negotiate on how much link cost to be shared. Our study

in fact belongs to this group. Our model is based on Connections Model which is originally

exogenous, but incorporates endogenous cost negotiation mechanism among players. Our study

is closely related to Bala and Goyal (2000), and Bloch and Jackson (2004). The model of $\mathrm{B}$ala

and Goyal is an endogenous Connections Model but their model allows him / her to establish

the link without agreement of the other player on the other edge when a player accepts to bear

the whole cost of the link.

Bloch and Jackson (2004) consider an endogenous game with a bilateral negotiation process

and characterize structure of Nash equilibrium. They also propose a sufficient condition under

which efficient networks are supportable in equilibrium. A major difference of their study from

ours is that like Slikker and Nouweland (2001) payoff itself is subject to negotiation in their model

while our model allows players to negotiate only over the cost sharing. We focus our study on

Connections Model and investigate Strong Nash Equilibrium as well as Nash equilibrium. In

fact, we find a class of equilibrium which necessarily achieve efficient networks and in which the



72

corresponding payoff necessarily attains a core allocation of the related cooperative game.

3 Model Description and Characteristics of Nash Equilibrium

In this section, we formally introduce our model Our model is based on Connections Model

first introduced by Jackson and Wolinsky (1996). We incorporate a negotiation process among
players on cost sharing into the original Connections Model. In other words, our model is an
endogenous version of Connections Model.

Let $N=\{1,2, \ldots, n\}$ be the set of nodes of the network. Each node represents a player of

the game. A link can be established for any node pair $i$ and $j$ . The construction cost for a link
$(\mathrm{i}, j)$ connecting players $\mathrm{i}$ and $j$ is $c(>0)$ . In our model, the cost $c$ for link $(\mathrm{i}, j)$ can be shared

between player $\mathrm{i}$ and $j$ . This endogenous nature of the game is the biggest difference from the

original Connections Model.
The negotiation between players 2 and $j$ is done in the following manner. First, player $\mathrm{i}$

declares player $j$ the maximum amount of the cost that he / she incurs to construct link $(\mathrm{i}, j)$ .
We denote the declared cost by $x_{ij}(0\leq x_{ij}\leq c)$ . The strategy of player $\mathrm{i}$ is summarized as a
vector $x_{i}=\{x_{ij}\}$ . For convenience, we denote the set of all $xi$ , $\mathrm{i}\in N$ by $x$ . Player $j$ follows the

same procedure and the two players take their actions simultaneously.
Link $(\mathrm{i}, j)$ is constructed if and only if the sum of the declared costs exceeds the construction

cost for the connection. When the link is constructed, the actual cost $c$ is split proportionally to

declared cost $x_{ij}$ . That is, the cost player $\mathrm{i}$ has to pay is $cx_{ij}/(x_{lj}+x_{ji})$ . The resulting network

constructed through the game is given by $G(x)=(N, L(x))$ where $L(x)=\{(\mathrm{i}, j)|xij+xji\geq c\}$ .
In summary, given network $G(x)=(N, L(x))$ , the payoff $r_{i}(x)$ of player $\mathrm{i}$ is

$r_{i}(x)$ $\equiv$

$\sum_{j\in N}\delta^{t_{ij}(G(X\rangle)}-\sum_{j:(i,j)\in L(X)}c\frac{x_{ij}}{x_{ij}+x_{ji}}$
(1)

where 6 is a constant value satisfying $0<\delta$ $<1$ , and $t_{ij}(G(x))$ is the number of links on the
shortest path from $\mathrm{i}$ to $j$ in $G(x)$ . Here we define $t_{ij}(G(x))=$ oo if there is no path between $i$

and $j$ .
The definition of an equilibrium in the non-cooperative setting, i.e., Nash equilibrium, is

given as a strategy profile $x^{*}$ satisfying

$r_{i}(x^{*})\geq r_{i}(x)$ for all $x$ such that $0\leq x_{ik}\leq c$ and $x_{k}=x_{k}^{*}$ for $h$. $\neq \mathrm{i}$ .

4 Non-cooperative Implementation of Efficient Network

One of concerns among NFG researchers is whether or not Nash equilibrium achieves the socially
optimal network. That question is negatively proved in the original Connections Model. Our
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game, on the other hand, guarantees the existence of a cost allocation vector $x^{*}$ for which the

efficient network $G^{*}$ becomes an equilibrium. Before we prove this claim, we give the definition of

efficient networks and an important lemma regarding topologies of efficient networks in possible

conditions.

Definition 4. 1 A network $G^{*}$ is called to be efficient $xfG^{*}= \arg\max_{G}(\sum_{i\in N}\sum_{j\in N}\delta^{t_{ij}(G)}-\sum_{(i,j)\in L}c)$
.

Lemma 4. 1 (Bala and Goyal, 2000)

Case 1: If 2 $(\delta-\delta^{2})>c$, then the efficient network is given by the complete graph of degree
$n$ , where every nod $e$ is directly connected to every other node. We denote it by $K_{n}$ .

Case 2: If $2(\delta-\delta^{2})<c<2\delta+(n-2)\delta^{2}$ , then the efficient network is given by $a$ star graph

of degree $n$ , where there is $a$ center node and all links are between the center node and each other

node. We denote it by $P_{n,\overline{i}}$ where $\overline{\mathrm{i}}$ represents the center node of the network.

Case 3: If $2\delta+(n-2)\delta^{2}<c$ , then the efficient network is given by the empty graph where

there is no link in the network. We denote it by $\emptyset_{n}$ .

The following theorem provide conditions under which the efficient network becomes Nash

equilibrium in Cases 1 through 3 described in Lemm a4. 1 above.

Theorem 4. 1 For any $\delta>0_{f}$ there exists a Nash equilibrium $x^{*}for$ which $G(x^{*})$ is efficient
In fact, the following allocation rules satisfy the claim in Cases 1 through 3 described in Lemma

4. 1, respectively.
Case 1: For any $x_{ij}^{*}$ satisfying $\max(0,$c $-( \delta-\delta^{2}))\leq x_{ij}^{*}\leq\min(\delta-\delta^{2},$c), set $x^{*}ji=c-x^{*}ij$ .

Case 2: For a player $\overline{\mathrm{i}}$ , who eventually becomes the center node, set $X_{i}^{\frac{*}{i}}$ so that $\max(0,$ $c-(\delta+$

(n $-2) \delta^{2}))\leq X_{i}^{\frac{*}{i}}\leq\min(c, 6)(\mathrm{i}\neq\overline{\mathrm{i}})$ . For the other players, set $x_{i\overline{i}}^{*}=c-X_{i}^{\frac{*}{i}}$ and $x_{ij}^{*}=0$ (j $\neq\overline{\mathrm{i}})$ .

Case 3: Set $x_{ij}^{*}=0$ for any pair i,j.

5 Indiscriminate Strong Nash Equilibrium and Its Efficiency

In Theorem 4. 1 one sees that there exist multiple equilibria in Case 1 and Case 2 which

achieve efficient networks. However, there also exist equilibria with inefficient networks. This

fact suggests that in order to predict an outcome of our game it does not suffice to analyze

Nash equilibrium only. Hence, in this section we consider a refinem ent of Nash equilibrium. We

discuss a stronger equilibrium concept, Strong Nash Equilibrium $(\mathrm{S}\mathrm{N}\mathrm{E})\backslash$

’ which allow coalitions

of players to deviate from equilibrium.

In this section we den ote strategy of a coalition $S\subseteq N$ by $xs$ which consists of $|S|\rangle\langle n$

component. We write the set of feasible $x_{S}$ as $X_{S}$ . We first define the concept of the deviation

by a coalition from a strategy
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Definition 5. 1 For a given strategy profile $x\sim\in X_{N}$ and a coalition $S\subseteq N$ , we write $xn-s\in$

xn-s as a vector constituting with components $\overline{x}_{k}$ of $\tilde{x}$ such that $k\in N-S$ .
We call that the strategy $\tilde{x}$ can be deviated from by the coalition $S$ if and only if there exists

a strategy $xs\in Xs$ such that $r_{i}(\hat{x}s,\tilde{x}_{N-}s)\geq r_{\mathrm{z}}(\tilde{x})$ for all $\mathrm{i}\in S$ and $rj(\hat{x}s,\overline{x}_{N-}s)>rj(\overline{x})$ for
at least one player $j\in S$ .

Definition 5. 2 A strategy $x^{*}\in X_{N}$ is called to be in Strong Nash Equilibrium (SNE) if there

is no coalition $S\underline{\subseteq}N$ that can deviate from $x^{*}$ .

In what follows, we examine efficiency of resulting networks in SNE. First, we gives an
example demonstrating that SNE does not necessarily guarantee the resulting network to be

efficient. Secondly, we introduce a class of indiscriminate strategies for which each player declares

the same cost for every adjacent link to the node. Focusing SNGs onto ones with indiscriminate

strategies, it is possible to explicitly identify strategy profiles in equilibrium. Furthermore it is
shown that the resulting network is necessarily efficient.

Before proceeding formal definition of indiscriminate strategies, we give an example in which

SNE generates an inefficient network. Namely SNE alone is not sufficient to obtain efficient
network in equilibrium of NFG of this sort.

Example 5. 1 Consider a game with four players $N=\{1, 2, 3, 4\}$ . Suppose it holds that
$2\delta-2\delta^{3}<c<2\delta+2\delta^{2}(=2\delta+(n-2)\delta^{2})$ . Then, let us consider strategy such that $x_{12}^{*}=$

$c-(\delta-\delta^{3})$ , $x_{21}^{*}=\delta-\delta^{3}$ , $x_{23}^{*}=x_{32}^{*}= \frac{c}{2}$ , $x_{34}^{*}=\delta-\delta^{3}$ , $x_{43}^{*}=c-(\delta-\delta^{3})$ , and $x_{ij}^{*}=0$ for
others. The underlying network corresponding to $x^{*}$ is a straight tandem network 1-2-3-4.
This is in fact inefficient but SNE.

The SNE in Example 5. 1 generates an inefficient network. However, this SNE seems un-
realistic because players 2 and 3 declare different amounts of cost for their adjacent links. Our
game assumes simultaneous move of players and then it seems difficult for the players to predict
the network topology in equilibrium in advance. Therefore it might be difficult for each player
to adjust cost declaration link-by-link. Hence we consider a natural assumption that each player
declares the same amount of cost for $\mathrm{h}\mathrm{i}\mathrm{s}/\mathrm{h}\mathrm{e}\mathrm{r}$ adjacent links.

Definition 5. 3 A strategy $x$ is said to be indiscriminate to adjacent links when for each player
$\mathrm{i}$ , it holds that $x_{ij}=x_{ik}$ for $j$ , $k(\hat{J}\neq k)$ such that $(i, j)\in L(x)$ and $(\mathrm{i}, k)\in L(x)$ .

In what follows, we show that indiscriminate SNE guarantees networks in equilibrium to be
efficient. We for a moment focus on analysis for Case 2 because Cases 1 and 3 are relatively simple
and straight forward. The following lemma characterizes payoffs of players for an indiscriminate
SNE in Case 2.
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Lemma 5. 1 In Case 2,we suppose that $x^{*}$ is an indiscriminate $SNE$. Then, for any player $i$

with no less than ttno links in $G(x^{*})$ , it holds thai

$x_{ij}^{*}\geq\delta-\delta^{2}$

for any link $(\mathrm{i}, j)\in L(x^{*})$ .

By using Lemma 5. 1 we show the following lemma, which guarantees the efficiency of

network derived in indiscriminate SNE.

Lemma 5. 2 In Case 2, let $x^{*}$ be an indistriminate SNE. Then, $G(x^{*})$ is efficient.

Now, we are ready to state the main theorem of this paper, which fully describes the set of

all indiscriminate SNE’s.

Theorem 5. 1 Let C be the set of strategies $x^{*}$ defined as follows.
Case 1: For any $\mathrm{i},$ $j$ pair, set $x_{ij}^{*}= \frac{c}{2}$ .
Case 2: For a given player $\overline{i}$ , assign an arbitary $x \frac{*}{l}$ such that $\max(c-(\delta+(n-2)\delta^{2}), \delta-\delta^{2})\leq x\frac{*}{\mathrm{t}}\leq$

$\min(c, \delta)$ , and set $x_{i} \frac{*}{i}=x_{\overline{i}}^{*}$ for any $\mathrm{i}\neq|\mathrm{i}$ . For other players, set $x_{i\overline{i}}^{*}=c-x \frac{*}{i}$ and $x_{\tau j}^{*}=0$ for $j\neq\overline{\mathrm{i}}$.

Case 3: For any $i$ , $\mathrm{i}$ pair, set $x_{ig}^{*}=0$ .
Then $C$ coincides with the set of all indiscriminate $SNE$ ’s, Furthermore, any strategy in $C$

guarantees the efficiency of the underlying network.

6 Implementation of the Solutions of Cooperative NFG

In this section, we examine a further capability of the indiscriminate SNE. Consider a cooperative

situation where all players jointly construct an efficient network. We can analyze the stable cost

allocation among players for the efficient network by a cooperative game theoretic approach.

Our purpose is to investigate the strong Nash implementation of the solutions of the cooperative

NFG.
Now we define a cooperative game with characteristics function $V=(N, R)$ specified below.

$R(S)$ $=$
$\max_{s}(\sum_{i\in Sj}\sum_{\in S}\delta^{d_{\dot{z}j}(G_{\mathit{3}})}-\sum_{(\mathrm{i},j)\in L_{S}}c)$

where $Gs=(S, L_{S})$ is the set of possible networks formed by members of a coalition $S$ . It is obvi-

ous that the network achieving the value $R(S)$ is the one specified in Lemma 4. 1 with degree $|S|$ .

Of interest is whether a strong Nash solution can always realize a core allocation of game

$V$ , or not. Intuitively SNE and core of the cooperative game resemble each other. However, as
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Jackson and Nouweland (2003) mentioned, it is not obvious how they are related in setting of
network formation game.

This is partially due to the structure of payoff transfer among players. When some players

decide to leave a coalition, the cooperative games require the members of the coalition to form a
new network among them, whereas SNE allows them to maintain links with players outside the
coalition. This observation raises a conjecture that the core includes the set of SNE. One may
have an opposite impression. The core allows extreme flexibility for transferring payoffs among
players although our network formation game only allows sharing$\mathrm{n}\mathrm{g}$ of link cost among each player
pair. Hence the core may not coincide with SNE.

We however prove that any payoff vectors associated with the set of indiscriminate SNE
$C$ are included in the core of the cooperative game $V$. In other words, indiscriminate SNE
generates payoffs in the core of the game $V$ .

Theorem 6. 1 if $\’\in C$ , then $r_{i}(x^{*})$ is a core of cooperative game V.

Theorem 6. 1 shows that indiscriminate SNE always achieves a core allocation of associated
cooperative game. Unfortunately, an indiscriminate strategy which achieves a core allocation is
not necessarily included in SNE. The following is a counter example.

Example 6. 1 Consider a game with three players $N=\{\overline{i}, \mathrm{i}, j\}$ and assume $2\delta>c>2\delta-2\delta^{2}$ .
Now the topology of any efficient network is a star. If $x_{\overline{i}i}^{*}=x \frac{*}{i}j=\frac{c}{2}$

-
$\delta^{2}$ , $x_{i\overline{i}}^{*}=x_{j\overline{\dot{x}}}^{*}= \frac{c}{2}+\delta^{2}$ ,

and $x_{ij}^{*}=x_{ji}^{*}=0$ , then $x^{*}$ is indiscriminate and furthermore becomes a core allocation.
However, since $2\delta>c$ , $\max((c-(\delta +\delta^{2})$ , $\delta-\delta^{2},1=\delta-\delta^{2}$ and $X_{i}^{\frac{*}{i}}= \frac{c}{2}-\delta^{2}<\delta-\delta^{2}$ hold.

By Theorem 5. 1, $x^{*}$ is not an SNE.

7 Concluding Remarks

We have studied an endogenous NFG based on Connections Model originally introduced Jackson
and Wolinsky (1996). Although the original model does not guarantee the efficiency of the
equilibrium network, it is proven that the efficiency and the stability are compatible in our
model. The major problem here is that there also exist equilibria with inefficient networks.

To challenge the problem, we focus on equilibrium with indiscriminate strategies. Then it is
shown that indiscriminate SNE guarantees the efficiency of underlying network. Furthermore,
the set of indiscriminate SNE is fully described in a closed form. Although the indiscriminate
SNE is originally non-cooperative solution, it is in fact included in the core of the associated
cooperative game. This result is a demonstration about relationship between non-cooperative
and cooperative games 1n the framework of endogenous Connections Mode



77

References

Bailey, J.P., 1997. The Econom ics of Internet Interconnection Agreements, in “Internet

Economics” (McKnight, L.W. and Bailey, J.P., eds.). Cambridge: MIT Press, 155-168.

Bala, V. and Goyal, S., 2000. “A noncooperative model of network formation,” Econo-

metrica 68-5, 1181-1229.

Bloch, F. and Jackson, M.O., 2004. “The formation of networks with transfers among
players” Working Paper.

Jackson, $\mathrm{M}.\mathrm{O}$ . and van den Nouweland, A., 2003. “Strongly stable networks” To appear
in Games and Economic Behavior.

Jackson, $\mathrm{M}$ , O. and Wolinsky, A., 1996. “A strategic model of social and economic net-
works,” Journal of Economic Theory 71, 44-74.

Myerson, R., 1977. “Graphs and cooperation in games,” Mathematics of Operations Re-

search 2, 225-229.

Slikker, M. and van den Nouweland, A., 2001. “A one-stage model of link formation and

payoff division,” Games and Economic Behavior 34, 153-175


