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REVERSE INEQUALITIES ASSOCIATED WITH TSALLIS RELATIVE
OPERATOR ENTROPY VIA GENERALIZED KANTOROVICH

CONSTANT

Takayuki Furuta 古田孝之 (東京理大 理)

\S 1. Introduction

A capital letter means an operator on a Hilbert space $H$ . An operator $X$ is said to be

strictly positive (denoted by $X>0$ ) if $X$ is positive definite and invertible. For two strictly

positive operators $A$ , $B$ and $p\in[0, 1]$ , $p$-power mean $A\#_{\mathrm{P}}B$ is defined by

$A\# pB$
$=A^{\frac{1}{2}}(A^{\frac{-1}{2}}BA^{\frac{-1}{2}})^{p}A^{\frac{1}{2}}$

and we remark that $A\# pB$ $=A^{1-p}B^{p}$ if $A$ commutes with $B$ .

Very recently, Tsallis relative operator entropy $T_{p}(A|B)$ in Yanagi-Kuriyama- uruichi

[17] is defined by

(1.1) $T_{p}(A|B)= \frac{A^{\frac{1}{2}}(A^{\frac{-1}{2}}BA^{\frac{-1}{2}})^{p}A^{\frac{1}{2}}-A}{p}$ for $p\in(0, 1]$

and $T_{p}(A|B)$ can be written by using the notion of $A\# pB$ as follows:

(1.1’) $T_{p}(A|B)= \frac{A\# pB-A}{p}$ for $p\in(0,1]$ .

The relative operator entropy $S^{\Lambda}(A|B)$ in [3] is defined by

(1.2) $\hat{S}(A|B)=A^{\frac{1}{2}}(\log A^{\frac{-- 1}{2}}BA^{\frac{-1}{2}})A^{\frac{1}{2}}$

as an extension of [15].

On the other hand, the genaralized Kantrovich constant $K(p)$ is defined by

(1.3) $K(p)= \frac{(h^{p}-h)}{(p-1)(h-1)}(\frac{(p-1)}{p}\frac{(h^{p}-1)}{(h^{p}-h)})^{p}$

for any real number $p$ and $h>1$ . Also $S(p)$ is defined by

(1.4) $S(p)= \frac{h^{A}\overline{h}\mathrm{P}\overline{-1}}{e\log h\overline{h}^{L}\mathrm{p}-\overline{1}}$

for any real number $p$ . In particular $S(1)= \frac{h^{\frac{1}{h-1}}}{e\log h^{\frac{1}{h-1}}}$ is said to be the Specht ratio and

$S(1)>1$ is well known
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Theorem A. Let $A$ be strictly positive operator satisfying $MI\geq A\geq mI>0_{f}$ where

$M>m>0$ . Put $h= \frac{M}{m}>1$ . Then the following inequalities hold:

(1.5) $(Ax, x)^{p}\geq(A^{p}x, x)\geq K(p)(Ax, x)^{p}$ for any $1\geq p>0$ .

(1.6) $S(1)\Delta_{x}(A)\geq(Ax, x)\geq\triangle_{x}(A)$ .

(1.7) $K(p)\in(0, 1]$ for $p\in[0, 1]$ .

(1.8) $K(0)=K(1)$ $=1$ .

(1.9) $S(1)=e^{K’(1)}=e^{-K’(0)}$ .

where the deter minant $\triangle_{x}(A)$ for strictly positive operator $A$ at a unit vector $x$ is defined
by $\Delta_{x}(A)=\exp\langle((\log A)x, x)\rangle$ and (1.6) is shown in [4],

(1.8) and (1.9) of Theorem A are shown in [8, Proposition 1] and (1.7) is shown in [9].

52 Two reverse inequalities involving Tsallis relative operator entropy $T_{p}(A|B)$

via generalized Kantorovich constant $K(p)$

At first we shall state the following two reverse inequalities involving Tsallis relative

operator entropy $T_{p}(A|B)$ via generalized Kantorovich constant $K(p)$ .

Theorem 2.1. Let $A$ and $B$ be strictly positive operators such that Mil $\geq A\geq m_{1}I>0$

and $M_{2}I\geq B\geq m_{2}I>0$ . Put $m= \frac{m_{2}}{M_{1}}f$ $M= \frac{M_{2}}{m_{1}}$ , $h= \frac{M}{m}=\frac{M_{1}M_{2}}{\overline{m_{1}}m_{2}}>1$ and $p\in(0, 1]$ . Let
(I be norm alized positive linear map on $B(H)$ . Then the following inequalities hold:

(2.1) $( \frac{1-K(p)}{p})$ I $(A)\beta_{p}\Phi(B)+\Phi(T_{p}(A|B))\geq T_{p}(\Phi(A)|\Phi(B))\geq\Phi(T_{p}(A|B))$

and

(2.2) $F(p)\Phi(A)+\Phi(T_{p}(A|B))\geq T_{p}(\Phi(A)|\Phi(B))\geq\Phi(T_{p}(A|B))$

where $K(p)$ is the generalized Kantorovich constant defined in (1.3) and

$F(p)= \frac{m^{p}}{p}(\frac{h^{p}-h}{h-1})(1-K(p)^{\frac{1}{p-1}})\geq 0$ .

Remark 2.1. We remark that the second inequality of (2.1) of Theorem 2.1 is shown in
[6] along [3] and the first one of (2.1) is a reverse one of the second one and also the second
inequality of (2.2) is as the same as the second one in (2.1) and the first one of (2.2) is a
reverse one of the second one. We shall give simple proofs of (2.1) and (2.2) including its
reverse inequality, respectively, via generalized Kantorovich constant $K(p)$ in (1.3)
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We state the following result to prove Theorem 2.1.

Proposition 2.2. Let h $>1$ and let $g(p)$ be defined by:

$g(p)= \frac{h^{p}-h}{h-1}+(1-p)(\frac{h^{p}-1}{p(h-1)})^{\overline{\mathrm{p}}-\overline{1}}B$ for $p\in[0, 1]$ .

Then the following results hold:

(i) $g(0)= \lim_{parrow 0}g(p)=0$ .

(ii) $g(p)= \frac{h^{p}-h}{h-1}(1-K(p)^{\frac{1}{\mathrm{p}-1}})\geq 0$ for all $p\in[0, 1]$ .

(iii) $g’(0)= \lim_{parrow 0}g’(p)=\log S(1)$ .

(iv) $\lim=\log S(1)\underline{g(p)}$ .
$parrow 0p$

Also we need the following result to prove Theorem 2.1.

Theorem B. Let $A$ and $B$ be strictly positive operators on a Hilbert space $H$ such

that $M_{1}I\geq A\geq m_{1}I>0$ cvnd $M_{2}I\geq B\geq m_{2}I>0$ . Put $m= \frac{m2}{M_{1}}$ , $M= \frac{M_{2}}{m_{1}}$ and

$h= \frac{M}{m}=\frac{M_{1}M_{2}}{m_{1}m_{2}}>1$ . Let $p\in$ $(0, 1)$ and also let (I be normalized positive linear map on

$B(H)$ . Then the following inequalities hold:

(i) $\Phi(A)\#_{\mathrm{P}}\Phi(B)\geq\Phi(A\# pB)$ $\geq K(p)\Phi(A)\#_{\mathrm{P}}\Phi(B)$

(ii) $\Phi(A)\# p\Phi(B)\geq\Phi(A\#_{\mathrm{P}}B)\geq\Phi(A)\# p\Phi(B)-f(p)\Phi(A)$

where $f(p)=m^{p}|| \frac{h^{p}-h}{h-1}+(1-p)(\frac{h^{p}-1}{p(h-1)})^{\overline{\rho}-\overline{1}}|\mathrm{A}|$ and $K(p)$ is defined in (1.3).

The right hand side inequalities of (i) and (ii) of Theorem $\mathrm{B}$ follow by [14, Corollary 3.5]

and the left hand side of (i) is well known [13].

Q3 Two results by Furuichi-Yanagi-Kuriyama which are useful to prove our

results in \S 6

Throughout this section, we deal with $n\mathrm{x}$ $n$ matrix. A matrix $X$ is said to be strictly

positive definite matrix (denoted by $X>0$ ) if $X$ is positide definite and invertible. Let $A$

and $B$ be positive definite matrices. Tsallis relative entropy $D_{p}(A||B)$ in Furuichi-Yanagi-

Kuriyama [5] is defined by

(3.1) $D_{p}(A||B)= \frac{\mathrm{T}\mathrm{r}[A]-\mathrm{T}\mathrm{r}[A^{\mathit{1}-p}B^{p}]}{p}$ for $p\in(0,1]$ .

Umegaki relative entropy $S(A, B)$ in [16] is defined by
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(3.2) $S(A, B)=\mathfrak{R}$ [ $A(\log$ A-log $B)$ ] for $A$ , $B>0$ .

Theorem C. (Genaralized Peierls-Bogoliubov inequality [5]) Let $A$ , $B>0$ and also let

$p\in(0, 1]$ . Then the following inequality holds:

(3.3) $D_{p}(A||B) \geq\frac{\mathrm{T}\mathrm{r}[A]-(\mathrm{T}\mathrm{r}[A])^{1-\mathrm{p}}(\mathrm{R}[B])^{\mathrm{p}}}{p}$ .

Theorem D[5]. Let A, B $>0$ . The following inequality holds:

(3.4) -Tr $[\mathrm{T}_{\mathrm{p}}(A|B)]\geq D_{p}(A||B)$ for $p\in(0,1]$ .

We remark that (3.4) implies $-\mathrm{T}\mathrm{r}[\hat{\mathrm{S}}(A|B)]$ $\geq S(A, B)$ which is well known in [11],[12],[2]

and [5].

Q4 A result which unifies Theorem C and Theorem D in \S 3

Also throughout this section, we deal with $n><n$ matrix. In this section, we shall state

the following Proposition $\mathrm{E}$ which unifies Theorem $\mathrm{C}$ and Theorem $\mathrm{D}$ in \S 3.

Proposition E. Let A, B $>0$ and also let p $\in(0,$1]. Then the following inequalities

hold:

(4.1) Tr[(l $-p)A+pB$] $\geq$ $($ Tr $[A])^{1-p}(\mathrm{T}\mathrm{r}[B])^{p}$

$\geq \mathrm{T}\mathrm{r}[A^{1-p}B^{p}]$

$\geq \mathrm{T}\mathrm{r}[A\# pB]$ .

Proposition F. Let A, B $>0$ and also let p $\in(0,$ 1]. Then the following inequalities

hold:

(4.5) -Tr $[\mathrm{T}_{\mathrm{p}}(A|B)]$ $\geq D_{\mathrm{p}}(A||B)$

$\geq\frac{\mathrm{T}\mathrm{r}[\mathrm{A}]-(\mathrm{T}\mathrm{r}[A])^{1-\mathrm{p}}(^{r}\mathrm{b}[B])^{\mathrm{p}}}{p}$

$\geq \mathrm{T}\mathrm{r}[A -B]$ .

Needless to say, the first inequality of (4.5) of Proposition $\mathrm{F}$ is just (3.4) of Theorem $\mathrm{D}$

and the second one of (4.5) is just (3.3) of Theorem $\mathrm{C}$ , and also Proposition $\mathrm{E}$ is nothing

but another expression form of Proposition F.

Proposition $\mathrm{F}$ yields the following result by putting $parrow \mathrm{O}$ .

Proposition G. Let A, B $>0$ . Then the following inequalities hold:

(4.6) -Tr $[\hat{\mathrm{S}}(A|B)]\geq S(A, B)$
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$\geq$ Tr [$A$ ( $\log$ Tr[A] $-\log$ Tr[B])]

$\geq$ Tr$[A-B]$ .

Q5 Related counterxamples to several questions caused by the results in \S 4

Also throughout this section, we deal with $n\mathrm{x}$ $n$ matrix too. We shall give related

counterxamples to several questions caused by the results in Q4

Remark 5.1. The following matrix inequality (AG) is quite well known as the matrix

version of (4.2) and there are a lot of references (for example, [13],[7]):

(AG) $(1-p)A+pB\geq A\#_{P}B$ holds for $A$ , $B>0$ and $p\in(0, 1]$ .

Suggested by the matrix inequality (AG), the second inequality and the third one on $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$

inequality $(4,1)$ of Proposition $\mathrm{E}$ , we might be apt to suppose that the following matrix

inequalities as more exact precise estimation than (AG) : let $A$ , $B>0$ and $p\in(0, 1]$ ,

$(\mathrm{A}\mathrm{G}- 1^{7})$
$(1-p)A+pB\geq B^{E}2A^{1-p}B^{E}2\geq A\# pB$

and

$(\mathrm{A}\mathrm{G}- 2^{7})$
$(1-p)A+pB\geq A^{\underline{1}-A^{1-}}2B^{p}A^{--_{2}\mathrm{A}}\geq A\# pB$ .

But we have the following common counterexam ple to (AG).) and $(\mathrm{A}\mathrm{G}- 2^{7})$ .

Remark 5.2. (i). If $A$ and $B$ are positive definite matrices and $p\in(0, 1]$ , then the

following inequality $holds$:

(5.2) $D_{p}(A||B)\geq ib[A -B]$ .

We remark that (5.2) is shown in the proof of [5, (1) of Proposition 2.4] and the second

inequality and the third one of (4.5) of Proposition $\mathrm{F}$ yield the inequality (5.2), that is, the

second inequality and the third one of (4.5) of Proposition $\mathrm{F}$ are somewhat more precise

estimation than (5.2).

(ii). Also we recall the following result [1, Problem IX.8.12]:

If $A$ and $B$ are strictly positive matrices, then the following inequality holds:

(5.3) $\mathrm{T}\mathrm{r}[A(\log A-\log B)]\geq \mathrm{T}\mathrm{r}[A-B]$ .

We remark that the second inequality and the third one of (4.6) of Proposition $\mathrm{G}$ imply

(5.3) since $S(A, B)=\mathrm{T}\mathrm{r}$ [$A(\log$ A-log $B)$ ], that is, the second inequality and the third one

of (4.6) are somewhat more precise estimation than (5.2).
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Suggested by (5.3), we might be apt to expect that the following matrix inequality:

(5.3-1?) $A^{\frac{1}{2}}(\log A-\log B)A^{\frac{1}{2}}\geq A-B$ .

so that it turns out that (5.3-1?) does not hold.

Q6. Two $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ reverse inequalities associated with $-\mathrm{T}\mathrm{r}[T_{p}(A|B)]$ and $D_{p}(A||B)$

via generalized Kantorovich constant $K(p)$

As an application of Theorem 2.1 we shall show the following two $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ reverse inequal-

ities associated with $-Tr[T_{p}(A|B)]$ and $D_{p}(A||B)$ via generalized Kantorovich constant

$K(p)$ .

Theorem 6.1.
Let $A$ and $B$ be strictly positive definite matrices such that $M_{1}I\geq A\geq m_{1}I>0$ and

$M_{2}I\geq B\geq m_{2}I>0$ . Put $m= \frac{m_{2}}{M_{1}}$ , $M= \frac{M_{2}}{m_{1}}$ and $h= \frac{M}{m}=\frac{M_{1}M_{2}}{m_{1}m_{2}}>1$ and $p\in(\mathrm{O}, 1]$ . Then

the following inequalities hold:

(6.1) $( \frac{1-K(p)}{p})(’\mathrm{b}[A])^{1-\mathrm{p}}(\mathrm{T}\mathrm{r}[B])^{\mathrm{p}}+D_{p}(A||B)$

$\geq-\mathrm{T}\mathrm{r}[T_{p}(A|B)]$

$\geq D_{p}(A||B)$

(6.2) $F(p)(’\mathrm{b}[A])+D_{p}(A||B)$

$\geq-\mathrm{T}\mathrm{r}[\mathrm{T}_{p}(A|B)]$

$\geq D_{p}(A||B)$

where $K(p)$ is the generalized Kantorovich constant defined in (1.3) and

$F(p)= \frac{m^{p}}{p}(\frac{h^{p}-f\iota}{h-1})(1-K(p)^{\frac{1}{\mathrm{p}-1}})\geq 0$.

Corolleiry 6.2. [10] Let $A$ and $B$ be strictly positive definite matrices such that $M_{1}I\geq$

$A\geq m_{1}I>0$ and $M_{2}I\geq B\geq m_{2}I>0$ . Put $h= \frac{M_{1}M_{2}}{m_{1}m_{2}}>1$ . Then the following inequality

hold:

(6.5) $\log S(1)\ulcorner \mathrm{R}[A]+S(A, B)$

$\geq-\mathrm{b}[\hat{S}(A|B)]$

$\geq S(A, B)$

where $S(1)$ is the Specht ratio defined in (1.4) and the first inequality is the reverse one of
the second in equalty.
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The complete paper with proofs will appear elsewhere.
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