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Types of von Neumann algebras arising from
boundary actions of hyperbolic groups

大阪教育大学 岡安 類 (OKAYASU Rui)
Osaka Kyoiku University

1 Introduction
In this report, we discuss the joint work with Masaki Izumi and Sergey

Neshveyev. A non-degenerate finitely supported probability measure on
a non-elementary hyperbolic group defines a quasi-invariant harmonic
measure on the boundary of the group. The corresponding von Neumann
algebra is well-known to be an injective factor of type III. We discuss
what can be said about the $\mathrm{S}$-invariant of the factor, or in other words,
about the ratio set of the orbit equivalence relation on the boundary.

2 Preliminary

2.1 Martin and Poisson boundaries

We first introduce the notations of Martin and Poisson boundaries. We
refer the reader to e.g. [W] for details.

Let $\Gamma$ be a countable discrete group and $\mu$ a finitely supported prob-
ability measure on $\Gamma$ . We assume that $\mu$ is non-degenerate in the sense
that the semigroup generated by the support of $\mu$ coincides with $\Gamma$ .
The measure $\mu$ defines a random walk on $\Gamma$ with transition probabili-
ties $p(x, y)=\mu(x^{-1}y)$ . The $n$-step transition probabilities are given by

$p^{(n)}(x, y)=\mu^{(n)}(x^{-1}y)$ ,

where $\mu^{(n)}$ is the $n$-fold convolution of $\mu$ with itself. We assume that the
random walk is transient, that is, the Green function

$G(x, y)= \sum_{n=0}^{\infty}p^{(n)}(x, y)$

is finite for every $x$ , $y\in\Gamma$ .
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The Martin kernel is defined by

$K(x, y)= \frac{G(x,y)}{G(e,y)}$ ,

where $e\in\Gamma$ is the unit element. The Martin compactification $\overline{\Gamma}$ of
$\Gamma$ is the smallest compactification such that $\Gamma\subset\overline{\Gamma}$ is discrete and the
functions $K(x, \cdot)$ , $x\in\Gamma$ , extend to continuous functions on $\overline{\Gamma}$ . The
Martin boundary is $\partial_{M}\Gamma=\overline{\Gamma}\backslash \Gamma$ . The left action of $\Gamma$ on itself extends to
a continuous action on $\overline{\Gamma}$ .

Let $\Omega=\prod_{n=0}^{\infty}\Gamma$ be the path space of our random walk. For any point
$g\in\Gamma$ we have the Markov measure $\mathbb{P}_{g}$ defined on paths starting at $g$ . For
Ps-a.e. path $\underline{x}=\{x_{n}\}_{n\geq 0}\in\Omega$ the sequence $\{x_{n}\}_{n\geq 0}$ converges to a point

on the boundary, so we get a measurable map $\Omegaarrow\partial_{M}\Gamma$ . We denote by
$\nu_{g}$ the image of $\mathbb{P}_{g}$ under this map. The measure space $(\partial_{M}\Gamma, \nu_{e})$ is called
the Poisson boundary of $\Gamma$ . We will write $lJ$ instead of $\nu_{e}$ . The measures
$\{\iota/_{g}\}_{g\in\Gamma}$ are mutually equivalent, and we have

$K(g, \omega)=\frac{d_{l/_{g}}}{d\nu}(\omega)=\frac{dg_{lJ}}{d\nu}(\omega)$ ,

where $glJ$ is the measure defined by $g\iota/(X)=\nu(g^{-1}X)$ .

2,2 Hyperbolic groups

We next recall basic facts about hyperbolic groups. We refer the reader
to e.g. [GH] for details. Let $\Gamma$ be a finitely generated group with a sym-
metric finite set $S$ of generators. We denote by $|g|$ the word length and

by $\mathrm{d}\{\mathrm{x},$ $y$ ) $=|x^{-1}y|$ the word metric with respect to $S$ . We denote the
ball with center $x$ and radius $r$ by

$B(x, r)=\{g\in\Gamma|d(x, g)\leq r\}$ .

For a subset $\triangle\subset\Gamma$ , we write

$N(\triangle, r)=\{g\in\Gamma|d(g, \triangle)\leq r\}$ .

The Gromov product is defined by the formula

$(x|y)_{z}= \frac{1}{2}\langle d(x, z)+d(y, z)-d(x, y))$
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for $x$ , $y$ , $z$ $\in\Gamma$ . When $z$ is the unit element $e$ , we simply write $(x|y)=$

$(x|y)_{e}$ .
Let a $\geq 0$ . The group $\Gamma$ is said to be $\delta$-hyperbolic if

$(x|y) \geq\min\{(x|z), (y|z)\}-\delta$

for every $x$ , $y$ , $z\in\Gamma$ . One says that $\Gamma$ is hyperbolic if there is $\delta\geq 0$ such
that $\Gamma$ is J-hyperbolic.

If $\Gamma$ is $\delta$-hyperbolic, then every geodesic triangle $\triangle=\{\alpha, \beta, \gamma\}$ in $\Gamma$ is
$4\delta$-slim, that is,

a $\subset N(\beta\cup\gamma, 4\delta)$ , $\beta\subset N(\gamma\cup ce, \mathit{4}\delta)$ , $7\subset N(\alpha\cup\beta, 4\delta)$ .

A sequence $\{x_{i}\}_{i\geq 1}$ in $\Gamma$ is said to converge to infinity if

.,$\lim_{jarrow\infty}(x_{i}|x_{j})=\infty$ .

Two sequences $\{x_{i}\}_{i\geq 1}$ and $\{y_{l}\}_{i\geq 1}$ converging to infinity are said to be
equivalent if

$\lim_{\dot{\iota},jarrow\infty}(x_{i}|y_{j})=\infty$ .

The Gromov boundary $\partial\Gamma$ is defined as the set of equivalence classes
of sequences converging to infinity. If $p$ is a point in $\partial\Gamma$ , we say that a
sequence $\{x_{i}\}_{i\geq 1}$ in $\Gamma$ converges to $p$ if this sequence belongs to $p$ . The
Gromov product $(p|q)$ for $p$ , $q\in\Gamma\cup\partial\Gamma$ is defined by

$(p|q)= \sup\lim_{i_{J}arrow},\inf_{\infty}(x_{i}|y_{l})$

where the $\sup$ above runs over all sequences $\{x_{\mathrm{i}}\}_{i\geq 1}$ converging to $p$ and
$\{y_{i}\}_{i\geq 1}$ converging to $q$ .

Recall that $\Gamma\cup\partial\Gamma$ is compact equipped with the base $\{B(x, r)\}\cup$

$\{V_{r}(p)\}$ , where
14 $(p)=\{q\in\Gamma\cup\partial\Gamma|(q|p)>r\}$ .

For $p$ , $q\in\Gamma\cup\partial\Gamma$ , we denote by $[p, q]$ the set of all geodesic segments
(or rays, lines) between $p$ and $q$ .
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3 Main result
We always assume that $\Gamma$ is a non-elementary hyperbolic group (that

is, it does not have a cyclic subgroup of finite index) and consider a
random walk on it defined by a finitely supported non-degenerate proba-

bility measure $\mu$ . Then its Martin boundary coincides with the Gromov
boundary by a result of Ancona [A].

We denote by $\mathfrak{R}(\Gamma, \mu)=\mathfrak{R}(\Gamma, \partial\Gamma, \nu)$ the orbit equivalence relation de-
fined by the action of $\Gamma$ on $(\partial\Gamma\iota/)\}$ .

Recall that the ratio set $r(\Gamma, \partial\Gamma, \nu)$ consists of all $\lambda\geq 0$ such that for
any $\epsilon$ $>0$ and any subset $A\subset$ Dr of positive measure there are $g\in\Gamma$

and $B\subset A$ with positive measure such that $gB\subset A$ and

$\lambda e^{-\epsilon}<\frac{dg^{-1}\nu}{d\nu}(\omega)<\lambda e^{\epsilon}$ for $\omega$ $\in B$ .

Note that $\mathfrak{R}(\Gamma_{7}\mu)$ is ergodic, amenable and of type III by $\lfloor\ulcorner \mathrm{K}$]. Hence
$\{0, 1\}\subset \mathrm{K}(\mathrm{r}, \partial\Gamma, \nu)$ , and $r$ ( $\Gamma$ , or, $\nu$ ) $\backslash \{0\}$ is a closed multiplicative sub-
group of $(0, +\infty)$ . One says that $\mathfrak{R}(\Gamma, \mu)$ is of type IIIO, $\mathrm{I}\mathrm{I}\mathrm{I}_{\lambda}(0<\lambda<1)$

or IIIi depending on whether this group is {1}, $\{\lambda^{n}\}_{n\in \mathbb{Z}}$ or $(0, +\infty)$ . Re-

call also that for $0<\lambda\leq 1$ there is only one amenable ergodic equivalence

relation of type IIIa-
We can now formulate our main result.

Theorem 1 Let $\Gamma$ be a non-elementary hyperbolic group and $\mu$ be $a$

finitely supported non-degenerate probability measure on 1, Then $\mathfrak{R}(\Gamma, \mu)$

is never of type $III_{0}$ ,

We will briefly explain how we prove the above theorem in next two
sections.

4 An observation
It is known that every infinite order element $g\in\Gamma$ acts on &F as a

hyperbolic homeomorphism, i.e., there are exactly two fixed points $g^{+}$ and
$g^{-}$ in $\partial\Gamma$ such that $g^{+}$ is stable and $g^{-}$ is unstable. For any open subsets
$U^{\pm}\subset\partial\Gamma$ with $g^{+}\in U^{+}$ and $g^{-}\in U^{-}$ , it holds that $g^{n}(\partial\Gamma\backslash U^{-})$

$\subset U^{+}$
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for sufficiently large $n\geq 0$ . If $h\in\Gamma$ then $g^{n}harrow g^{+}$ and $g^{-n}h\prec g^{-}$ as
$narrow+\infty$ .

For any infinite order element $g\in\Gamma$ we define

$r(g)=K(g^{-1},g^{+})$ .

Note that being a non-zero positive harmonic function, $K(\cdot, \xi)$ is nowhere
vanishing, so that $r(g)>0$ . We can also write

$r(g)$ $= \lim_{narrow\infty}\frac{G(e,g^{n+1})}{G(e,g^{n})}=\lim_{narrow\infty}G(e, g^{n})^{1/n}$

$= \lim_{narrow\infty}\frac{F(e,g^{n+1})}{F(e,g^{n})}=\lim_{narrow\infty}F(e, g^{n})^{1/n}$

$=$ $\sup_{n}F(e, g^{n})^{1/n}$ .

We put $r(g)=1$ for any finite order element $g\in\Gamma$ .

Lemma 2 The function r on $\Gamma$ is a class function satisfying $r(g^{k})=$

$r(g)^{k}$ for k $\in$ N. if $\mu$ is symmetric, then $r(g)=r(g^{-1})$ .

Example 3 Consider the simple random walk defined by the canonical
symmetric generating set $S$ of the free group $\mathrm{F}_{N}$ . Then

$F(e, s)= \frac{1}{2N-1}$

for $s\in S$ , see e.g. [$L$ , Section $2\mathrm{a}$]. It follows that

$F(e, g)=(2N-1)^{-|g|}$

for any $g\in \mathrm{F}_{N}$ . We can then conclude that

$r(g)=(2N-1)^{-\ell_{\mathit{9}}}$ ,

where $\ell_{g}$ is the minimal length of elements in the conjugacy class of $g$ .

Lemma 4 if g $\in\Gamma$ is an infinite order element, then $0<r(g)<1$ .

Hence to prove Theorem 1, it suffices to show that

$r\langle g)\in r(\Gamma, \partial\Gamma, \nu)$ .
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We now fix an infinite order element $g\in\Gamma$ . Let $\epsilon$ $>0$ . For any non-
empty open subset $U\subset\partial\Gamma$ , since the action of $\Gamma$ on $\partial\Gamma$ is minimal, there
is $h\in\Gamma$ such that $hg^{+}\in U$ . Note that $(hgh^{-1})^{+}=hg^{+}$ . Then thanks to
the cocyle property, we have

$\frac{dhg^{-1}h^{-1}\nu}{d\nu}(hg^{+})=K(hg^{-1}h^{-1}, hg^{+})=K(g^{-1}, g^{+})=r(g)$.

Since $K(hg^{-1}h^{-1}, \cdot)$ is continuous on $\partial\Gamma$ , there exists a open neighbour-
hood $V$ of $hg^{+}$ such that $V\cup hg^{-1}h^{-1}V\subset U$ and

$r(g)e^{-\epsilon}< \frac{dhg^{-1}h^{-1}\nu}{d\nu}(\omega)<r(g)e^{-\epsilon}$

for any $\omega\in V$ .

Therefore by the above observation, to prove Theorem 1, it suffices to

replace the above topological arguments by measurable ones. For our
purpose, next results play important roles in the proof. The proof is
inspired by Bowen’s computation of the ratio set of a Gibbs measure in
[ $\mathrm{B}$ , Lemma 8], (See also Theorem 7.)

5 Key results

5.1 Multiplicativity of the Green function along geodesic

segments

For any points $x$ , $y$ and $z$ we have $F(x, z)G(z, y)\leq G(x, y)$ , where

$F(x, z)= \frac{G(x,z)}{G(z,z)}$

is the probability that a path starting at $x$ hits $z$ . The main technical

result of Ancona [A] needed to identify the Martin boundary of a hyper-

bolic group with its Gromov boundary is that up to a factor the converse
inequality is also true if $z$ lies on a geodesic segment $\alpha\in[x, y]$ . We

need a slightly stronger result saying that the same is true for the re-

striction of the random walk to any subset containing a sufficiently large

neighbourhood of the segment. This is essentially contained in [A].

For a subset $\mathrm{A}\subset\Gamma$ consider the induced random walk on A (to be

precise, to get a random walk we have to add a cemetery point to $\Delta$).



80

We denote the corresponding quantities using the subscript $\Delta$ , so we write
$G_{\Delta}$ and $F_{\Delta}$ .

Theorem 5 There exist $R_{0}>0$ and $C\geq 1$ such that if $x$ , $y\in\Gamma$ and
$v\in\Gamma$ lies on a geodesic segment a $\in[x, y]$ , then

$G_{\Delta}(x, y)\leq CF_{\Delta}(x, v)G_{\Delta}(v, y)$

for any $\triangle\subset\Gamma$ containing $N(\alpha, R_{0})$ .

5.2 The Holder condition of the Martin kernel

In [L] Ledrappier proves that in the case of a free group the Martin
kernel is Holder continuous, which is a discrete analogue of a result of
Anderson and Schoen [AS]. We need to extend this result to hyperbolic
groups to attain our purpose.

Theorem 6 There exist $0\leq\tau<1$ and for any $g\in\Gamma$ a constant $H_{g}\geq 0$

such that for $\xi$ , $\eta$
$\in\partial\Gamma$ ,

$|K(g, \xi)-K(g, \eta)|\leq H_{g}\tau^{(\xi 1\eta)}$ .

5.3 A Gibbs-like property of a harmonic measure

For $\xi\in\partial\Gamma$ and $R$ $>0$ , we define $U(\xi, R)$ to be the set of all $\eta\in\partial\Gamma$ such
that for any pair of geodesic rays $\{x(n)\}_{n=0}^{\infty}\in[e, \xi]$ and $\{y(n)\}_{n=0}^{\infty}\in[e, \eta]$ ,
we have

$\lim_{narrow\infty}(x(n)|y(n))>R$.

Remark that the sequence $\{(x(n)|y(n))\}_{n=0}^{\infty}$ is non-decreasing and thus
the above limit always exists. These sets are considered as hyperbolic
versions of cylindric sets.

The following property of the harmonic measure $\nu$ on $\partial\Gamma$ reminds of a
Gibbs measure.

Theorem 7 There exists $D\geq 1$ such that for every $\xi\in\partial\Gamma$ and $\{x(n)\}_{n=0}^{\infty}\in$

$[e, \xi]$ , we have
$\frac{1}{D}\leq\frac{\nu(U(\xi,R))}{F(e,x(R))}\leq D$ for $R$ $\in \mathrm{N}$ .
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