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1 Introduction

The linear complementarity problem (LCP) is to find a vector $x\in R^{n}$ such that

$Ax+p\geq 0$ , $x\geq 0$ , $x^{T}(Ax+p)=0$ ,

where $A\in R^{n\mathrm{x}n}$ and $p\in R^{n}$ . This problem is generally denoted as LCP $(A,p)$ . The LCP
has a significant number of applications in engineering and economics [4, 5, 8]. In prac-
tice, due to several types of uncertainties such as weather, material trade, loads, supply,

demand, cost, etc., the data in the LCP can only be estimated based on limited informa-

tion. Suppose that $M(\omega)\in R^{n_{7}}q(\omega)\in R^{n}$ , for $\omega$ $\in\Omega\subseteq R^{m}$ , are random quantities on a
probability space $(\Omega, \mathcal{F},\mathcal{P})$ , where the probability distribution $\mathcal{P}$ is known. In order to
take the stochastic uncertainty into account appropriately, deterministic formulations of
the stochastic linear complementarity problem (SLCP)

$M(\omega)x+q(\omega)\geq 0$ , $x\geq 0$ , $x^{T}(M(\omega)x+q(\omega))=0$ , $\omega$
$\in\Omega$ (1.1)

have been studied. In this paper, we consider two existing deterministic formulations.
Let us denote

$y(x, \omega):=M(\omega)x+q(\omega)$ .

Let $\phi$ : $R^{2}arrow R$ be a function, called an $NCP$ function, which satisfies

$\phi(a, b)=0$ $\Leftrightarrow$ $a$ $\geq 0$ , $b\geq 0$ , $ab=0$ . (1.2)

Then it is easy to verify that for each $\iota v$
$\in\Omega$ , $x_{\omega}$ is a solution of (1.1) if and only if it is

an optimal solution of the following minim ization problem with zero objective value:

$\min_{x\in R_{+}^{n}}||\Phi(x, \omega)||^{2}7$ (1.3)

where $R_{+}^{n}:=\{x\in R^{n}|x\geq 0\}$ and

$\Phi(x_{7}\omega):=(\begin{array}{l}\phi(y_{1}(x,\omega),x_{1})\vdots\phi(y_{n}(x,\omega),x_{n})\end{array})$ .
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In the literature of linear complementarity problems, $||\Phi(x, \omega)||$ is called a residual for
LCP(U(u), $q(\omega)$ ), since $x_{\mathrm{t}t}$ solves LCP $(M(\omega), q(\omega))$ if and only if it solves $\Phi(x,\omega)=0$.

On the other hand, from the literature of stochastic optimization, $||\Phi(x, \omega)||^{2}$ can be

regarded as a random cost function for LCP(M(\mbox{\boldmath $\omega$}), $q(\omega)$ ). In this sense, a deterministic

formulation for the SLCP called the expected residual minimization problem in [3] may

be regarded as an expected total cost minimization problem [1, 10, 14] for (1.3).

\bullet Expected Residual Minimization (ERM) Formulation [3]:

Find a vector $x\in R_{+}^{n}$ that minim izes the expected total residual defined by an NCP

function:
$\min_{x\in R_{+}^{n}}f(x):=E[||\Phi(x, \omega)||^{2}]$ , (1.4)

where $E[||\Phi(x,\omega)||^{2}$ is the expectation function of the random function $||\Phi(x,\omega)||^{2}$ .

The expectation function of the random function $y(x, \omega)$ yields another deterministic

formulation [9] for SLCP, which may be called the expected value formulation.. Expected Value (EV) Formulation [9] :

Find a vector $x\in R^{n}$ such that

$\overline{y}(x):=E[y(x, \omega)]\geq 0$ , $x\geq 0$ , $x^{T}\overline{y}(x)=0$ . $(1.5\rangle$

Let
$\overline{M}=E[M(\omega)]$ and $\overline{q}=E[q(\omega)]$

be the expectation matrix and vector of the random matrix $M$ ( $\cdot$ ) and vector $q(\cdot)$ , respec-

tively, Then $\overline{y}(x)=Illx$ $+\overline{q}$ and the EV formulation (1.5) is to find a solution of the
$\mathrm{L}\mathrm{C}\mathrm{P}(\overline{M},\overline{q})$ .

Let $S_{ERM}$ and $Sev$ be the solution sets of the $\mathrm{E}\mathrm{R}\mathrm{M}$ formulation (1.4) and EV formu-

lation (1.5), respectively. It is shown in [6] that if $S_{EV}$ is bounded for any $\overline{q}$ , then $S_{ERM}$

is bounded for any $q(\cdot)$ . However, the converse is not true in general.

The LCP has been studied for more than a half century. We have rich theoretical

results on the existence of solutions for the LCP, which provide a powerful framework for

developing efficient algorithms to solve the LCP. In particular, because of many important

applications, the monotone LCP has been studied most extensively. In this PaPer, we
focus our attention on the SLCP (1.1) with the expectation matrix $\overline{M}$ being a positive

semi-definite matrix, i.e.,
$x^{T}\overline{M}x\geq 0$ for all $x\in R^{n}$ .

We call (1.1) a monotone SLCP if $\overline{M}$ is a positive semi-definite matrix.

Obviously, if $M(\omega)$ is a positive semi-definite matrix for all $\omega$ $\in\Omega$ , then $\overline{M}$ is a positive

semi-definite matrix. However, the expectation matrix $\overline{M}$ being a positive semi-definite

matrix does not implies that

$\mathcal{P}${$\omega\in\Omega|M(\omega)$ is positive semi-definite} $>0$ .
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Although the positive definiteness of $\overline{M}$ does not ensure the existence of an $\omega$
$\in\Omega$

such that $\mathrm{M}(\mathrm{c}\mathrm{o})$ is positive semi-definite, we find that the monotone $\mathrm{L}\mathrm{C}\mathrm{P}(\overline{M},\overline{q})$ serves as
an important tool in the study of the monotone SLCP with the ERM formulation..

This paper is organized as follows: In Section 2, we study the existence of solutions

for the ERM formulation of the monotone SLCP based on the monotone LCP $(\overline{M},\overline{q})$ .
In Section 3, we investigate the robustness of the ERM formulation. In Section 4, we
give a procedure to generate a test problem of monotone SLCP which allows the user to

specify the size of the problem, the condition number of the expectation matrix $\overline{M}$ and

the number of active constraints at a global solution of the ERM formulation. We report

numerical results for hundreds of test problems by using a semismooth Newton-type

method with a descent direction line search.
In this paper, $||\cdot||$ denotes the Euclidean norm $||\cdot||_{2}$ . For any positive integer $s$ and a

vector $z\in R^{s}$ , we denote $[z]_{+}= \max(0, z)$ , where the maximum is taken component-wise.

For a subset $J\underline{\mathrm{C}}\{1,2, \ldots, s\}$ , $ZJ$ denotes the subvector of 2 with components $z_{j}$ , $j\in J$ .

2 Existence of solution

In this section, we study the relation between the EV formulation LCP $(\overline{M},\overline{q})$ and the

ERM formulation of the monotone SLCP. First, we summarize some results on the exis-
tence of a solution for a deterministic monotone $\mathrm{L}\mathrm{C}\mathrm{P}$ . Recall that a square matrix $A$ is
called an $R_{0}$ matrix if the solution set of LCP $(A,0)$ consists of the origin only.

Lemma 2.1 Suppose that A is a positive semi-definite matrix.

2.[4] if the $LCP(A, b)$ is feasible, $\mathrm{i}.e.$ , there is a vector $x\geq 0$ such that $Ax+b\geq 0_{\mathrm{Z}}$ then
it has a solution.

2.[4] The $LCP(A, b)$ has a nonempty and bounded solution set for any $b$ if and only if
$A$ is in addition an $R0$ matrix.

3,[2] The solution set of $LCP(A, b)$ is nonempty and bounded if and only if $LCP(A, b)$

has a strictly feasible point, $\mathrm{i}.e.$ , there is a vector $x>0$ such that $Ax+b>0$ .

Recall that $M(\cdot)$ is called a stochastic $R_{0}$ matrix if

$x\geq 0$ , $M(\omega)x\geq 0$ , $x^{T}M(\omega)x=0$ , $a.e$ . $\Rightarrow$ $x=0$ .

The ERM formulation (1.4) utilizes an NCP function that possesses the property
(1.2). There are a variety of functions that satisfy (1.2). Among them, the most popular
NCP functions are the $1‘ \min$” function $\phi_{1}$ and the Fischer-Burmeister (FB) function $\phi_{2}$ ,
which are defined by

$\phi_{1}(a,b):=\min(a,b)$
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and
$\phi_{2}(a, b):=a+b-\sqrt{a^{2}+b^{2}}$ ,

respectively.
The FB function has a number of nice properties. Among others, a distinctive proP-

erty from the $\mathrm{t}‘\min$
” function is that $||\Phi(\cdot, \omega)||^{2}$ defined by the FB function is continuously

differentiate everywhere. However, the FB function lacks flexibility in dealing with the

monotone LCP. Some other merit functions and NCP functions have nice properties in

dealing with monotone LCP $[2, 11]$ . Here, we consider a version of the penalized FB NCP

function given in [2]

$\phi_{3}(a, b):=\lambda(a+b-\sqrt{a^{2}+b^{2}})+(1-\lambda)a+b+$ , (2.1)

where A $\in$ $(0, 1)$ .
The ERM formulation (1.4) defined by the “$\min$” function and the penalized FB

function has different properties in regard to smoothness and boundedness. When we

discuss their different properties, we use $\Phi_{1}(x,\omega)$ , $f1(x)$ , and $\Phi_{3}($$, $\omega)$ , $f3$ ($) to distinguish

the functions $\Phi(x)$ and $f(x)$ defined by the “$\min$}’ function $\phi_{1}$ and the penalized FB

function $\phi_{3}$ , respectively. When we discuss the ERM formulation (1.4) defined by any of

the NCP functions, we use the notations $\Phi(x,\omega)$ and $f(x)$ .
Assumption I. $f(x)$ is finite and continuous at any $x\in R_{+}^{n}$ .
This assumption holds if $M(\omega)$ and $q(\omega)$ are measurable functions of $\omega$ with the

following property
$E[(||M(\omega)||+||q(\omega)||)^{2}]<\infty$ .

2.1 “$\min$” function

In this subsection, we consider the ERM formulation (1.4) defined by the “$\min$” function.

Lemma 2.2 if $\Omega=\{\omega_{1},\omega_{2}, \ldots, \omega N\}$ , then for any random matrix $M(\cdot)$ and vector $q(\cdot)$ ,

the solution set $S_{ERM}$ of the $ERM$ formulation (1.4) defined by the $” \min^{l}$’ function is

nonempty.

Theorem 2.1 Assume that $\overline{M}$ is a positive semi-definite matrix. ij there are $\overline{x}\geq 0$ and

$\hat{x}>0$ such that
$\min_{1\leq\dot{x}\leq n}\{\hat{x}_{i}, (\overline{M}\hat{x}+\overline{q})_{i}\}>\sqrt{f_{1}(\overline{x})}:=\overline{\gamma}_{\dot{r}}$ (2.2)

then the level set
$D_{1}(\overline{\gamma}):=\{X|fi (x)\leq\overline{\gamma}^{2}\}$

is nonempty and bounded.

Corollary 2.1 Under the assumptions of Theorem 2.1, the solution set $S_{ERM}$ of the

$ERM$ formulation (1.4) defined by the $\mathrm{f}l\min’$
’ function is nonempty and bounded.
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Remark 2.1 ij $\overline{M}$ is positive definite, then $\overline{M}$ is an $R_{0}$ matrix. From Lemma 2.1, there

is an $\hat{x}>0$ such that $\overline{M}\hat{x}>0$ . This implies that for any $\gamma>0$ , there is a $\lambda>0$ such
that $\min${ $\lambda\hat{x}_{i}$ , (AW$\hat{x}+\overline{q}$)} $\geq\gamma$ . Hence by Theorem 2.1, $M-$ being positive definite implies

that the level set $D_{1}(\gamma)$ is bounded for any $\gamma>0$ and thus the solution set $S_{ERM}$ of the
$ERM$ formulation (1.4) defined by the $” \min$” function is nonempty and bounded.

2.2 Penalized FB function

In this subsection, we consider the ERM formulation (1.4) with the penalized FB NCP
function $\phi_{3}$ defined by (2.1).

Theorem 2.2 if the monotone $LCP(\overline{M},\overline{q})$ has a nonempty and bounded solution set,

then for any $\gamma\geq 0$ , the level set

$D_{3}(\gamma):=\{x|f_{3}(x)\leq\gamma\}$

is bounded.

Corollary 2.2 if the monotone $LCP(\overline{M},\overline{q})$ has a nonempty and boundea solution set,
then the $ERM$ formulation (1.4) defined by the penalized $FB$ function $\phi \mathrm{s}$ has a nonempty

and bounded solution set.

Remark 2.2 Let $\Omega_{0}\subseteq\Omega$, $M_{0}=E[M(\omega)1\{\omega\in\Omega_{0}\}]$ and $q_{0}=E[q(\omega)1\{\omega\in\Omega_{0}\}]$ . From

$E[||\Phi(x,\omega)1\{" J\in\Omega_{0}\}||]\leq E[||\Phi(x, \omega)||]$, (2.3)

we can weaken the assumption (2.2) in Theorem 2.1 by assuming that $M_{0}$ is positive

semi-definite and there are $\overline{x}\geq 0_{\}}\hat{x}>0$ such that

$\min_{1\leq i\leq n}\{\hat{x}_{i}, (M_{0}\hat{x}+q\mathrm{o})_{i}\}>\sqrt{f_{1}(\overline{x})}$ .

Moreover, we can weaken the assumption of Theorem 2.2 by assuming that the monotone
$LCP(M_{0}, q\mathrm{o})$ has a nonempty and bounded solution set.

2.3 Regularization

To establish the solvability of the ERM formulation (1.4) for the monotone SLCP without
assuming the boundedness of the solution set of the monotone LCP(M, $\overline{q}$), we consider
a regularized version of (1.4). For $\epsilon>0$ , let

$y(x, \omega, \epsilon):=(M(\omega)+\epsilon \mathrm{i})x+q(\omega)$

and

$\Phi(x, \omega, \epsilon):=(\begin{array}{l}\phi(y_{1}(x,\omega,\epsilon),x_{1})\vdots\phi(y_{n}(x,\omega,\epsilon),x_{n})\end{array})$ .
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The regularized problem for (1.4) is defined as

$\min_{x\in R_{+}^{n}}f(x, \epsilon):=E[||\Phi(x, \omega, \epsilon)||^{2}]$ . (2.4)

We will study the behavior of the sequence $\{x_{\epsilon_{k}}\}$ of solutions to (2.4) for an arbitrarily

chosen positive sequence $\{\epsilon_{k}\}$ tending to zero, In the following, to simplify the notation,

we will denote $\{\epsilon\}$ and $\{x_{\epsilon}\}$ for $\{\epsilon k\}$ and $\{x_{\epsilon_{k}}\}$ , respectively,

Theorem 2,3 Suppose $\overline{M}$ is positive semi-definite. Then for any $\epsilon>0$ , the regularized

problem (2.4) has a nonempty and bounded solution set $S_{ERM_{\epsilon}}$ . Let $x_{\epsilon}\in S_{ERM_{\epsilon}}$ for each
$\epsilon>0$ . Then every accumulation point of the sequence $\{x_{\epsilon}\}$ is contained in the set $S_{ERM}$ .

We should clarify the meaning of the conclusion of Theorem 2.3. The result applies

regardless of whether the sequence $\{x_{\epsilon}\}$ has an accumulation point or not, In the case

where $\{x_{\epsilon}\}$ has an accumulation point, the ERM formulation has a solution. In the

opposite case, we do not know if it has a solution. Now, we show that if the monotone
$\mathrm{L}\mathrm{C}\mathrm{P}(\overline{M},\overline{q})$ has a solution, then $\{x_{\epsilon}\}$ has an accumulation point, and thus the ERM

formulation has a nonempty solution set $S_{ERM}$ and every accumulation point of $\{x_{\epsilon}\}$ is

contained in $S_{ERM}$ . To establish this result, we use Li’s error bound [12] for the monotone

LCP.

Lemma 2.3 [12] Suppose that $A$ is positive semi-definite. Then there is a constant $c>0$

such that
$||x- \overline{x}(x)||\leq c(||\min(x, Ax+p)||+[x^{T}(Ax+p)]\vdash)$ , (2.5)

where $\overline{x}(x)$ is a closest solution of $LCP(A, p)$ to $x$ under the norm $||\cdot$ $||$ .

Theorem 2.4 Suppose the monotone $LCP(\overline{M},\overline{q})$ has a solution. Then the sequence
$\{x_{\epsilon}\}$ is bounded.

3 Robust solution

The EV formulation and the ERM formulation take into account all random events and

give decisions under uncertainty. In general, the decisions may not be the best or may

be even infeasible for each individual event. However, in many cases, we have to take

risk to make a priori decision based on limited information of unknown random events.

Naturally, one wants to know how good or how bad the decision given by a deterministic

formulation can be. In this section, we study the robustness of solutions of the ERM

formulation (1.4) for the monotone SLCP.
Let $\overline{\Phi}:=E[\Phi(x,\omega)]$ . For any $x$ , by taking expectation in

$||\Phi(x,\omega)||^{2}=||\overline{\Phi}(x)||^{2}+2\overline{\Phi}(x)^{T}(\Phi(x, \omega)-\overline{\Phi}(x))+||\Phi(x,\omega)-\overline{\Phi}(x)||^{2}$ ,
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we find
$f(x)=E[||\Phi(x,\omega)||^{2}]=||\overline{\Phi}(x)||^{2}+E[||\Phi(x,\omega)-\overline{\Phi}(x)||^{2}]$ .

Note that the second term

$E[||\Phi(x, \omega)-\overline{\Phi}(x)||^{2}]$ $=$ $E[\mathrm{t}\mathrm{r}(\Phi(x,\omega)-\overline{\Phi}(x))(\Phi(x,\omega)-\overline{\Phi}(x))^{T}]$

$=$ $\mathrm{t}\mathrm{r}E[(\Phi(x,\omega)-\overline{\Phi}(x))(\Phi(x, \omega)-\overline{\Phi}(x))^{T}]$

is the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ of the covariance matrix of the random function $\Phi(x, \omega)$ .
Since $\Phi(x, \omega)=0$ if and only if $x$ solves LCP(M $(\omega)$ , $q(\omega)$ ), and the ERM formulation

(1.4) is equivalent to

$\min_{x\in R_{+}^{n}}||\overline{\Phi}(x)||^{2}+E[||\Phi(x, \omega)-\overline{\Phi}(x)||^{2}]$
, (3.1)

an optimal solution of the ERM formulation (1.4) yields a high mean performance of the

SLCP and has a minimum sensitivity with respect to random parameter variations in

SLOP. Therefore, the ERM formulation (1.4) can be regarded as a robust form relation
for SLCP.

Now, we investigate the relation between a solution of the ERM formulation and a
solution of LCP $(M(\omega), q(\omega))$ for $\omega\in\Omega$ . First, we give a new error bound for monotone

LCP which uses the sum of the “$\min$” function $\phi_{1}\langle a$ , $b$) and the penalized FB function
$\phi_{3}(a, b)$ . The idea comes from the error bound given by Mangasarian and Ren [13]. Let
SOL(A, $p$) denote the solution set of LCP(A, $p$), and define the distance from a point $x$

to the set SOL(A, $p$) by dist(r, SOL(A, $p$)) $:=||x-\overline{x}(x)||$ , where $\overline{x}(x)$ is a closest solution
of $\mathrm{L}\mathrm{C}\mathrm{P}(\mathrm{A}\mathrm{p}| p)$ to $x$ under the norm $||\cdot||$ . ’Let

$\Psi_{1}(x):=||\min(x, Ax+p)||$

and
$s(x)|.=||[-Ax-p, -x, x^{T}(Ax+p)]_{+}||$ .

Lemma 3.1 [1 $\mathit{3}f$ Suppose that $A$ is positive serni-defin$\mathrm{i}te$ and SOL(A, $p$) $\neq\emptyset$ . Then
there is a constant $c>0$ such that

dist(x, SOL(A, $p)$ ) $\leq c(\Psi_{1}(x)+s(x))$ , $x\in R^{n}$ .
Lemma 3.2 $Lei$ $\psi(a, b)=[-b, -a, ab]_{+}$ . Then we have $||\psi(a, b)||\leq|\phi_{3}(a,$ $b\rangle$ $|$ for any
$a\geq 0$ and $b\in R$ .

From Lemma 3.2, it is easy to see that for any $x\geq 0$ ,

$s(x)\leq\Psi_{3}(x):=||(\phi_{3}(x_{1}, (Ax+p)_{1})$ , $\ldots$ , $\phi_{3}(x_{n}, (Ax+p)_{n}))||$ .

Moreover, it is know $\mathrm{n}$ that there is a constant $\kappa>0$ such that

$\Psi_{1}(x)\leq\kappa\Psi_{3}(x)$ , $x\in R^{n}$ .

Using these inequalities with Lemma 3.1, we obtain the following new global error bounds
for the monotone LCP(A, $p$).
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Theorem 3.1 Let the monotone $LCP(A,p)$ have a nonempty solution set $SOL(A,p)$ .

Then both $\Psi_{1}+$ V3 and V3 provide global error bounds for the monotone $LCP$ on $R_{+}^{n}$ ,

that is, there are positive constants $\alpha_{1}$ and $\alpha_{2}$ such that

dist(r, SQL(A, $p)$ ) $\leq\alpha 1(\Psi_{1}(x)+\Psi_{3}(x))\leq\alpha 2\Psi 3(x)$ , $x\in R_{+}^{n}$ .

To give error bounds for SLCP, we assume that $M(\omega)$ is a positive semi-definite matrix

and LCP(W(u), $q(\omega)$ ) has a nonempty solution set for every $\omega\in\Omega$ . This assumption

holds in many applications. For instance, consider the stochastic quadratic program

$\min$ $\frac{1}{2}z^{T}Qz+c^{T}z$

s.t $A(\omega)z\geq b(\omega)$ , $z$ $\geq 0$ ,

where $Q$ is a positive definite matrix. The KKT conditions for this quadratic program

yield the SLCP involving the random matrix

$M(\omega)=(\begin{array}{ll}Q -A(\omega)^{T}A(\omega) 0\end{array})$ .

Clearly this is a positive semi-definite matrix for each $\omega$ .

Theorem 3.2 Assume that $\Omega=$ { $\omega_{1}$ , u2 . . . , $\omega N$ } $\subset R^{m}$ and, for every $\omega$ $\in\Omega$ , $M(\omega)$ is

a positive semi-definite matrix and $LCP(M(\omega), q(\omega))$ has a nonempty solution set Then

there are positive constants $\beta_{1}$ and $\beta_{2}$ such that

$E$ [dist ( $x$ , SOL(M(u), $q(\omega)))$ ] $\leq\beta_{1}(\sqrt{f_{1}(x)}+\sqrt{f_{3}(x)})\leq\beta_{2}\sqrt{f_{3}(x)}$, $x\in R^{n}+\cdot$

Theorem 3.2 particularly shows that for $x^{*}\in S_{ERM}$ ,

$E[ \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(x^{*}, \mathrm{S}\mathrm{O}\mathrm{L}(M(\omega), q(\omega)))]\leq\beta_{2}\sqrt{f_{3}(x^{*})}=\beta_{2}\min_{x\in R_{+}^{n}}\sqrt{f_{3}(x)}$ . (3.2)

Unlike an error bound for the determ inistic LCP, the left-hand side of (3.2) is in general

positive at a solution of the $\mathrm{E}\mathrm{R}\mathrm{M}$ formulation (1.4). Nevertheless, the inequality (3.2)

suggests that the expected distance to the solution set SQL(M (u), $q(\omega)$ ) for $\omega$ $\in\Omega$ is

also likely to be small at $\’\in S_{ERM}$ . In other words, we may expect that a solution of

the ERM formulation (1.4) has a minimum sensitivity with respect to random parameter

variations in SLCP. In this sense, solutions of (1.4) can be regarded as robust solutions

for SLCP.

4 Numerical experiments

We have conducted some numerical experiments to investigate the properties of solutions

of the ERM formulation (1.4) for monotone SLCP. In particular, we have made compar-

ison of the ERM formulation with the EV formulation (1.5) in terms of the measure
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of optimality and feasibility as well as that of reliability, which are defined through a
quadratic programming formulation of SLCP.

We start with some preliminary materials about calculations of gradients and Hessian

matrices of functions $f1$ and $f_{3}$ in the ERM formulation (1.4).

4.1 Gradient and Hessian

If the strict complementarity condition holds with probability one at $\mathrm{x}$ , then $f_{1}$ is twice

continuously differentiable at $x$ . In this case, the gradient $g_{1}(x)$ of $f1$ is given by

$g_{1}(x)=E[M(\omega)^{T}(\mathrm{i}-D(x,\omega))(M(\omega)x+q(\omega))+(\mathrm{i}+D(x,\omega))x]$

and the Hessian matrix $G_{1}(x)$ of $f1$ is given by

$G_{1}(x)=E[M(\omega)^{T}(\mathrm{i}-D(x,\omega))M(\omega)+\mathrm{i}+D(x,\omega)])$

where $D(x,\omega)=$ diag(sign(M(a;)a: $+q(\omega^{\backslash })-x$ )).

The function $f_{3}$ defined by (2.1) with A $\in(0,1)$ is continuously differentiable at any
point $x\in R^{n_{7}}$ and twice continuously differentiable at point $x$ where $P\{\omega|x_{i}=y_{i}(x, \omega)=$

$0$ , $\mathrm{i}=1$ , $\ldots$ , $n$} $=0$ . The gradient $g_{3}(x)$ of $f_{3}$ is given by

$g_{3}(x)=E[\nabla||\Phi_{3}(x,\omega)||^{2}]=2E[V(x,\omega)^{T}\Phi_{3}(x,\omega)]$ ,

where $V(x,\omega)\in R^{n\mathrm{x}n}$ can be computed by Algorithm 1 in [2]. If $f_{3}$ is twice continuously

differentiable at $x$ , then the Hessian matrix $G_{3}(x)$ is given by

$G_{3}(x)=E[ \nabla^{2}||\Phi_{3}(x,\omega)||^{2}]=2E[V(x,\omega)^{T}V(x,\omega)+\sum_{i=1}^{n}U_{i}(x,\omega)(\Phi_{3}(x,\omega))_{i}]$,

where Ui(x, u) $\in R^{n\}\langle n}$ . For each $\mathrm{i}$ , $U_{i}(x,\omega)$ can be computed as follows: Let $\xi_{i}=$

$(x_{i}^{2}+y_{i}(x,\omega)^{2})^{-\frac{3}{2}}$ , $\eta_{i}=\mathrm{s}i\mathrm{g}\mathrm{n}([x_{i}]_{+}[y_{\dot{t}}(x, \omega)]_{+})$ , and $m_{ij}$ be the $(\mathrm{i}, j)$ element of $M(\omega)$ .

Then we put

$(U_{i}(x, \omega))_{k\mathit{1}}=\{$

$-\lambda m_{ik}m_{il}x_{i}^{2}\xi_{i}$ $k\neq i$ , $l\neq i$

$-\lambda m_{ik}(m_{ii}x_{i}^{2}-x_{i}y_{i}(x,\omega))\xi_{i}+(1-\lambda)m_{ik}\eta_{i}$ $k\neq i$ , $l=i$

$-\lambda m_{il}(m_{ii}x_{i}^{2}-x_{i}y_{i}(x,\omega))\xi_{i}+(1-\lambda)m_{il}\eta_{i}$ $k=i$ , $l\neq i$

$-\lambda(m_{ii}x_{i}-y_{i}(x,\omega))^{2}\xi_{i}+2(1-\lambda)m_{ii}\eta_{i}$ $k=i$ , $l=i$ .

4.2 Measure of optimality and feasibility

Different deterministic formulations of SLCP have different optimal solutions. To help
decision makers to select a proper solution, we introduce some measure of optimality and
feasibility for a given point $x\in R_{+}^{n}$ .

As stated in the introduction, the function value $f(x)$ can be regarded as an expected
total cost. Let $x^{*}$ be a solution of (1.4) with $\Omega=\{\omega_{1}, \ldots,\omega_{N}\}$ . By the definition of
ERM formulation, there is no $x\in R_{+}^{n}$ such that

$\mathcal{P}\{\omega|||\Phi(x, \omega)||<||\Phi(x^{*},\omega)||\}=1$.
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Hence $x^{*}$ is a weak Pareto optimal solution of the SLCP in the sense of multi-objective
optimization

$\min_{x\in R_{+}^{n}}$

$(\begin{array}{l}||\Phi(x,\omega_{1})||\vdots||\Phi(x,\omega_{N})||\end{array})$ .

Now we define some measure of optimality and feasibility for a given point $x$ , without

using an NCP function. For a fixed $\omega$ , LCP(M(u), $q(\omega)$ ) is equivalent to the quadratic

program

$\min$ $y(x, \omega)^{T}x$

s.t $y(x,\omega):=M(\omega)x+q(\omega)\geq 0$, $x\geq 0$ (4.1)

in the sense that (4.1) has an optimal solution with zero objective value if and only

if LCP(M(\mbox{\boldmath $\omega$}), $q(\omega)$ ) has a solution, We adopt some ideas of loss functions from the

literature of stochastic programming [1, 10, 14] to problem (4.1), For $x\in R_{+}^{n}$ , let

$\gamma(x,\omega):=||\min(0, y(x, \omega))||+x^{T}[y(x,\omega)]_{+}$ . (4.2)

It is easy to verify that $x_{\omega}$ is a solution of (4.1) if and only if $\gamma(x_{\omega}, \omega)=0$ and $x_{\omega}\geq 0$ ,
provided LCP(J(u), $q(\omega)$ ) has a solution. In (4.2), the first term evaluates violation

of the nonnegativity condition and the second term evaluates the loss in the objective

function of (4.1). For a fixed $x\in R_{+}^{n}$ , the expected total loss is defined by $E[\gamma(x_{7}\omega)]$ .
For two points $x^{*},\overline{x}\in R_{+}^{n}$ , we define the measure of dominance of $x^{*}$ over $\overline{x}$ by

$\pi(x^{*},\overline{x}):=\mathcal{P}\{\omega|\gamma(x^{*},\omega)<\gamma(\overline{x},\omega)\}$ . (4.3)

If $\pi(x^{*},\overline{x})>0.5$ , then $x^{*}$ has more chance to dominate $\overline{x}$ , and so $x^{*}$ may be regarded as

a better point than 1 in the multi-objective optimization problem

$\min_{x\in R_{+}^{n}}$

$(\begin{array}{l}\gamma(x,\omega_{1})\vdots\gamma(x,\omega_{N})\end{array})$ .

In many engineering and economic applications of SLCP, the inequality $y(x,\omega)\geq 0$

describes the safety of the system, and the guarantee of safety is critically important.

Under those circumstances, we may judge that a failure occurs if and only if there is an

index $\mathrm{i}$ such that $y_{i}(x, \omega)<0$ . Let

$y^{\min}(x, \omega):=\min_{1\leq:\leq n}y_{i}(x, \omega)$ .

The reliability of $x$ with a tolerance $\epsilon>0$ is then defined by

$rel_{\epsilon}(x):=\mathcal{P}\{\omega|y^{\min}(x,\omega)\geq-\epsilon\}$ .
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4.3 Test problems

We give a procedure to generate a test problem of the ERM formulation for discretized

monotone SLCP,

$\min_{x\in R_{+}^{n}}f(x):=\frac{1}{N}\sum_{j=1}^{N}\sum_{i=1}^{n}\phi(x_{i}, (M^{j}x+q^{j})_{i})^{2}$ , (4.4)

where $M^{j}=M(\omega^{j})$ and $q^{j}=q(\omega^{j})$ for $j=1$ , $\ldots$ , $N$ and $\Omega=\{\omega^{1}, \ldots, \omega^{N}\}$ .

Let $\hat{x}$ be a nominal point chosen in $R_{+}^{n}$ , which is used as a seed of constructing a set

of test problems and becomes a solution of the ERM formulation (1.4) in some special

cases (see below for the detail). Moreover, the user is required to specify the following

parameters:

$\bullet$ $n$ : the number of variables

. $N$ : the number of random matrices and vectors

. $\mu^{2}(\mu\geq 1)$ : the condition number of the expectation matrix $\overline{M}$

$\bullet$ $n_{x}$ : the number of elements in the index set $J$ $=\{\mathrm{i}|\hat{x}_{i}>0\}$

$\bullet$ $(0, \tau)$ : the range of $\hat{x}_{i}$ for $\mathrm{i}\in J$

$\bullet$ $\#\mathrm{i}_{j}$ : the number of elements in the index set $\mathrm{I}j$ $=\{\mathrm{i}|\hat{x}i=0, (M^{j}\hat{x}+q^{j})_{i}>0\}$ for

each $j$

$\bullet\neq K_{j}$ : the number of elements in the index set 1C3 $=\{\mathrm{i}|xAi =0, (M^{j}\hat{x}+q^{j})_{i}=0\}$

for each $j$

$\bullet$ $(0, \nu)$ : the range of $(M^{j}\hat{x}+q^{j})_{i}$ for $\mathrm{i}\in \mathrm{I}_{j}$ and each $j$

. $[0, \beta)$ : the range of $(M^{j}\hat{x}+q^{j})_{i}$ for $\mathrm{i}\in J$

. $(-\sigma, \sigma)$ : the range of elements of matrix $l\overline{\mathrm{t},}I-M^{j}$ for each $j$

Procedure for generating a test problem of monotone SLCP

1. Randomly generate a vector $\hat{x}\in R_{+}^{n}$ that has $n_{x}$ positive elements in $(0, \tau)$ .

2. Generate a diagonal matrix $D$ whose diagonal elements are determined as

$D_{ii}=\{$

$1/\mu$ $i=1$

$\mu^{\lambda_{i}}$ $i=2$ , $\ldots,n-1$

$\mu$ $i=n$,

where $\lambda_{i}$ , $\mathrm{i}=2$ , $\ldots$ , $n-1$ are uniform variates in the interval (-1, 1).

3. Generate a random orthogonal matrix $U\in R^{n\mathrm{x}n}$ and let $\overline{M}=UDU^{T}$ .
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4. Generate $N$ random matrices $B^{j}\in R^{n\mathrm{x}n}$ , $j=1_{\}}2$ , $\ldots$ , $N$ whose elements are in the

interval $(0, 1)$ . $\mathrm{S}$ et

$M^{j}=\overline{M}+\sigma(B^{j}-B^{N-j+1})$ , $j=1,2$ , $\ldots$ , $N$ .

5. For each $j=1,2$ , $\ldots$ , $N$ , set

$q_{i}\dot{j}=\{$

$(-M^{j}\hat{x})_{i}$ $i\in \mathcal{K}_{j}$

$(-M^{j}\hat{x}+\beta z^{j})_{i}$ $i\in J$

$(-M^{j}\hat{x}+t/z^{j})_{i}$ $i\in$ $\mathrm{I}_{\mathrm{j}}$ ,

where $z^{j}\in R^{n}$ is a random vector whose elements are in the interval $(0,1)$ .

Some aspects of the test problem

$\bullet$ The expectation matrix $\overline{M}=UDU^{T}$ is symmetric positive definite. Its condition

number is $\mu^{2}$ and its eigenvalues are distributed on the interval $[1/\mu, \mu]$ .

$\bullet$ If $\sigma=0$ , then all $M^{j}$ are equal to $\overline{M}=UDU^{T}$ , which is positive definite. For
$\sigma>0$ , $M^{j}$ may not be a positive semi-definite matrix, but $|(\overline{M}-M^{j})_{il}|=\sigma|(B^{j}-$

$B^{N-j+1})_{il}|\leq\sigma$ for ail $\mathrm{i}$ , $l$ $=1$ , $\ldots$ , $n$ .

. If $\neq K_{j}=0$ for all $j=1$ , $\ldots$ , $N$ , then $f1$ is continuously differentiable at $x$ .

$\bullet$ If $\beta=0$ , then $\hat{x}$ is a solution of LCP $(M^{j}, q^{j})$ for all $j=1,2$ , $\ldots$ , N. In this case, $\hat{x}$

becomes a global solution of (4.4) with $f( \hat{x})=\min_{x\in R_{+}^{n}}f(x)=0$ .

. $n-n_{x}$ is the number of active constraints at $\hat{x}$ .

$\bullet$ If $\beta>0$ , then we have in general $f(x)’>0$ . In this case, $\hat{x}$ is not necessarily a solu-

tion of (4.4). However, by Theorem 2.1 and Theorem 2.2, the positive definiteness

of $\overline{M}$ guarantees that the solution set of (4.4) is nonempty and bounded.

4.4 Numerical results

We used the program of Lemke’s method [7] to get a solution $\overline{x}$ of the EV formulation

(1.5). To solve the ERM formulation (4.4), we used a semismooth Newton method with

descent direction line search [5], In particular, we first applied a global descent line

search with the gradient $\nabla f(x)$ to make the function value suficiently decrease and get

a rough approximate solution. Next, we used a local semi-smooth Newton method with

the rough approximate solution as an initial point to get an approximate local optimal

solution. As the ERM problem defined by the “$\min$” function is nonsmooth, in a few

occasions, the method failed to decrease the function value. When it happened, we

restarted the method. All computations were carried out by using MATLAB on a $\mathrm{P}\mathrm{C}$ .
We first tested our program on hundreds of random problems with $\beta=0$ generated

by the procedure in the last subsection with different parameters $(n, N, \mu, n_{x}, \nu, \sigma)$ and
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starting points $x^{0}=le$ where $l$ $=0,10$, $\ldots$ , 50 and $e$ is the $n$-dimensional vector of

ones. Since $\beta=0$ , the solution $x^{*}$ of (4.4) coincides with the nominal point $\hat{x}$ . We have

observed that the average function values and relative errors at computed solutions $\tilde{x}$ of

(4.4) satisfy
$f(\tilde{x})\leq 10^{-26}$ , $\frac{||x^{*}-\tilde{x}||}{||x^{*}||}\leq 10^{-17}$ ,

which indicates that our method works successfully in finding a global solution of (4.4).

Next, for each fixed $(n, n_{x},\beta, \sigma)$ with $\beta>0$ , we used the procedure described in the

previous subsection to generate 100 test problems with the following parameters:

$\tau=20$ , $\mu=10$ , $\nu$ $=15$ , $N=10^{3}$ .

The number of elements in the index set $\mathcal{K}_{j}$ was determined by using a random number as
$\not\simeq\neq K_{j}=$ floor((n $-n_{x}$)rand(l, $N)$ ). The numbers shown in Tables 4.1 and 4.2 are average
values for the 100 problems.

In these tables, $x^{i}$ is the computed solution, where the index $\mathrm{i}=1$ stands for the
“$\min$” function, and $\mathrm{i}=3$ stands for the penalized FB function.

For any $\mathrm{x},$ $\mathrm{x}\in R_{+}^{n}$ , we define $\Gamma(x):=E[\gamma(x,\omega)]$ , $\pi(x,\tilde{x})$ and $rel_{\epsilon}(x)$ as follows:

$\Gamma(x):=\frac{1}{N}\sum_{\dot{\tau}=1,N}^{n},\gamma^{j}(x)$
, $\gamma^{j}(x)=||\min(0, y^{j}(x))||+x^{T}[y^{j}(x)]_{+}$ ,

$\pi(x,\tilde{x}):=\sum_{j=1}p_{j_{2}}$
$p_{j}=\{$

$\frac{1}{N}$ if $\gamma^{j}(x)<\gamma^{j}(\tilde{x})$

0otherwise,

$rel_{\epsilon}(x):= \sum_{j=1}^{N}p_{j}$ , $p_{j}=\{$
$\frac{1}{N}$ if $\min_{1\leq i\leq n}y_{i}^{j}(x)\geq-\epsilon$

0otherwise.

where $y^{j}(x)=M^{j}x+q^{j},j=1$ , $\ldots$ , $N$ .

Table 4.1 Function values and $rel_{\epsilon}$ with $\epsilon=0$ (left) and $\epsilon=1$ (right).

$(n, n_{x}, \beta, \sigma)$ $fi(x^{1})$ $f_{1}$ $(\overline{x})$ $f_{3}(x^{3})$ $f_{3}(\overline{x})$ $rel_{\epsilon}(\overline{x})$ $rel_{\epsilon}(x^{1})$ $re\ell_{\epsilon}(x^{3})$

20, 10, 10, 20 254.87 $2.13\mathrm{e}6$ 447.82 $1.05\mathrm{e}7$ 0, 0 0.55, 0.91 0.55, 0.92
20, 10, 10, 10 241.89 $4.47\mathrm{e}5$ 448.99 $2.13\mathrm{e}6$ 0, 0 0.55, 0.91 0.55, 0.92
20, 10, 5, 10 69.41 $2.62\mathrm{e}5$ 131.64 $1.34\mathrm{e}6$ 0, 0 0.54, 0.96 0.52, 0.93
20, 10, 5, 0 18.89 75.78 32.69 154.36 0.31, 0.37 0.27, 0.60 0.21, 0.51

$40_{2}$ $20$ , 10, 20 527.19 $6.83\mathrm{e}6$ 998.75 $3.01\mathrm{e}7$ 0, 0 0.52, 0.97 0.52, 0.97
40, 20, 10, 10 510.84 $1.90\mathrm{e}6$ 999.39 $8.52\mathrm{e}6$ 0, 0 0.49, 0.85 0.49, 0.84
40, 20, 5, 10 144.06 $1.14\mathrm{e}6$ $270.4\mathrm{S}$ $4.65\mathrm{e}6$ 0, 0 0.52, 0.99 0.50, 0.98
40, 20, 5, 0 39.92 154.24 69.48 311.33 0.17, 0.38 0.21, 0.47 0.16, 0.42
60, 30, 10, 20 759.46 $1.56\mathrm{e}7$ $1.39\mathrm{e}3$ $6.59\mathrm{e}7$ 0, 0 0.49, 0.97 0.50, 0.98
60, 30, 10, 10 752.87 $3.44\mathrm{e}8$ $1.38\mathrm{e}3$ $1.43\mathrm{e}7$ 0, 0 0.45, 0.83 0.45, 0.84
60, 30, 5, 10 219.64 $2.64\mathrm{e}6$ 424.33 $1.09\mathrm{e}7$ 0, 0 0.48, 1.00 0.46, 1.00
60, 30, 5, 0 58.29 $2\mathrm{S}1.16$ 100.56 576.09 0.51, 0.58 0.37, 0.56 0.28, $0.4\mathrm{S}$
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Table 4.2 Relative dominance of solutions based on the stochastic QP formulation

$(n, n_{x}, \beta_{\rangle} \sigma)$ $\pi(x^{1}, \overline{x})$ $\pi(x^{3}, \overline{x})$ $\pi(x^{1}, x^{3})$ $\pi(x^{3}, x^{1})$ $\Gamma(\overline{x})$ $\Gamma(x^{1})$ $\Gamma\langle x^{3})$

20, 10, 10, 20 1 1 0.49 0.51 $3.67\mathrm{e}4$ 518.13 517.91
20, 10, 10, 10 1 1 0.49 0.51 $1.56\mathrm{e}4$ 491.21 490.64
$20_{2}$ $10$ , 5, 10 1 1 0.42 0.57 $1.14\mathrm{e}4$ 241.04 239.05
20, 10, 5, 0 0.50 0.55 0.32 0.60 139.36 84.66 71.00
40, 20, 10, 20 1 1 0.47 0.51 $8.69\mathrm{e}4$ $1.08\mathrm{e}3$ 1. $08\mathrm{e}3$

40, 20, 10, 10 1 1 0.42 0.47 $4.61\mathrm{e}4$ $1.04\mathrm{e}3$ $1.04\mathrm{e}3$

40, 20, 5, 10 1 1 0.42 0.58 $3.03\mathrm{e}4$ 493.10 490.95
40, 20, 5, 0 0.56 0.62 0.36 0.52 277.82 167.82 148.54
60, 30, 10, 20 1 1 0.48 0.51 $1.59\mathrm{e}5$ $1.52\mathrm{e}3$ $1.52\mathrm{e}3$

60, 30, 10, 10 1 1 0.48 0.52 $6.93\mathrm{e}4$ $1.50\mathrm{e}3$ $1.50\mathrm{e}3$

60, 30, 5, 10 1 1 0.42 0.58 $5.80\mathrm{e}4$ 770.57 768.24
60, 30, 5, 0 0.57 0.58 0.42 0.58 552.59 276.76 222.37

As to the reliability $rel_{\epsilon}(x)$ and the expected total loss $\Gamma(x)$ , the solutions $x^{1}$ and $x^{3}$

exhibit significantly better performance than $\overline{x}$ as shown in Tables 4.1 and 4.2. More-

over, as to the measure of optimality and feasibility $\pi(\cdot$ , $\cdot$ $)$ which is defined through the

stochastic quadratic program $(4,1)$ , the solutions $x^{1}$ artd $x^{3}$ dominate $\overline{x}$ in most cases.
From these results, we may conclude that the ERM formulation yields a solution that

has desirable properties in regard to the performance measures related to optimality,

feasibility, and reliability.
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