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1 Introduction
This is a survey of the author’s observations on the discrete-time analogues of It6
formulas. The observations presented here are summarized as follows.

1. As is well known, the standard It6 formula is based on the stochastic inte-
graI, which we do not need in discrete-time framework. To have an equality,
we instead rely on the Fourier series expansion. Detailed explanations will
be given in Section 2.

2. In a parallel way that the standard one describes the Kolmogorov equa-
tion for a given stochastic differential equation, the discrete It6 formula
gives a finite difference equation for a given approximating equation (Euler-
Maruyama, for example) of SDE. This observation leads to a computational
framework of Monte-Carlo simulations of the finite difference scheme for
partial differential equations in a high dimension. (Section 33)

3. The algebraic nature of the discrete It6 calculus fits well to the so-called
lattice framework (for approximations) in mathematical finance. The It6
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formula reveals that it is nothing but a variant ofEuier-Maruyama scheme,

(Section 2.6 and Section 3.2)

2 Discrete It6 formulas

2.1 Fujita’s It6 formula

Let us start with Fujita’s Discrete It6 Formula (DIF for short) [3] for the simple
random walk;

$W_{k}=\tau_{1}+\tau_{2}+\cdots+\tau_{k}$, (2.1)

where $\{\tau_{1}$ , $\ldots$ , $\tau_{t}$, $\ldots$

$\}$ is a Bernoulli sequence such that $\mathrm{P}(\tau_{k}=\pm 1)=1/2$. By a
simple algebra, we have

$F( \tau_{k})=\frac{\{F(+1)-F(-1)\}}{2}\tau_{k}+\frac{\{F(+1)+F(-1)\}}{2}$ (2.2)

for every $F$ : $\{-1, +1\}arrow$ R. A DIF for $f$ : $\mathrm{Z}arrow \mathrm{R}$ is obtained by regarding
$f(W_{t+1})=f(Wt+\tau_{t})$ as a function on $\{-1, +1\}$ and applying (2.2) to it:

$f(W_{t+1})-f(X_{t})=f(W‘+\tau_{t+1}\rangle-f(W_{t})$

$= \frac{f(W_{t}+1)-f(W_{t}-1)}{2}\tau_{t+1}+\frac{f(W_{t}+1)+f(W_{t}-1)}{2}-f(W_{t})$ .

The starting point is to regard (2.2) as Fourier expansion of $F$ with respect to the
orthonormal basis $\{1, \tau_{k}\}$ .

2.2 The first generalization

Let $\xi$ be a real valued random variable with $\mathrm{E}[\xi]=0$ and $\mathrm{V}\mathrm{a}\mathrm{r}[\xi]$ $=\mathrm{E}[\xi^{2}]<\infty$ .
Let $v$ be its law and choose an orthonormal basis $\{H_{n} : n\in \mathrm{N}\}$ of the Hilbert space
$L^{2}(\mathrm{R}, v)$ by expanding $H_{0}\equiv 1$ , Hx(x) $=X/\sqrt{\mathrm{V}\mathrm{a}\mathrm{r}[\xi]}$. Then the DIF for the random
walk (the sum of independent copies of $\xi$)

$W_{t_{\mathrm{k}}}=\xi_{1}+\xi_{2}+\cdots+\xi_{k}$ , $(k\in \mathrm{Z})$

would be the following orthogonal expansion of $f(W_{\mathrm{k}+\mathrm{t}}‘+\cdot)-f(W_{t_{k}})$.
$f(W_{t_{k+1}})-f(W_{t_{k}})=f(W_{t_{k}}+\xi_{k+1})-f(W_{t_{k}})$

$= \frac{1}{\mathrm{E}[|\xi|^{2}]}(\int f(W_{\iota_{k}}+x)xv(dx))(W_{t_{k+1}}-W_{k}‘)$

$+ \frac{1}{t_{k+1}-t_{k}}(\int\{f(W_{t_{k}}+x)-f(W_{k}‘)\}v(dx))$
$(\mathrm{t}\mathrm{h}\mathrm{e}-t_{k})(2.3)$

$+ \sum_{n\simeq 2}^{\infty}(\int f(W_{t_{k+1}}+x)H_{n}(x)_{1’}(dx))H_{n}(\xi_{k+1})$.
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Here $f$ is a bounded measurable function.
When $\xi$ is Gaussian, $\{H_{n}\}$ could be the Hermite polynomials (up to constants).

Further, if $\mathrm{E}[\xi_{k}^{2}]=t_{k}-t_{k-1}$ , then $W$ can be a Brownian motion.

2.3 A multi-dimensional extension
The DIF for a multi-dimensional random walk $\mathrm{W}=$ $(W^{1}$ , ..., $W^{n})$, where $W_{t_{k}}^{j}-$

$W_{k-1}^{j}‘=\xi_{k}^{j}$, can be obtained through the expansion in the tensor product $\otimes_{j}L^{2}(v_{J})$ .
Here the law of $\xi^{j}$ is denoted by $v_{j}$ . Letting $v_{0}$ be a trivial measure, we get a DIF
of $(t,\mathrm{W})$ as

$f(t_{k+1}, \mathrm{W}_{t_{k+1}})-f(t_{k},\mathrm{W}_{t_{k}})$

$= \sum_{j}\frac{1}{\mathrm{E}[|\xi^{j}|^{2}]}$ ( $\int f(t_{k+1}, W_{t_{k}}^{1}+x_{1}, \ldots, W_{k}^{j},+x_{j}, \ldots)x_{\mathrm{i}}v_{j}(dx_{j})$) $(W_{t_{k+1}}^{\mathit{1}}-W_{t_{k}}^{j})$

$+ \frac{1}{t_{k+1}-t_{k}}$ ($\int\{f(t_{k+1}, \mathrm{W}_{t_{k}}+\mathrm{x})-f(t_{k},\mathrm{W}_{t_{k}})\}v_{1}\otimes$ $\cdots\emptyset v_{n}(d\mathrm{x})$) $(t_{k+1}-t_{k})$

$+ \sum_{l_{1}+\cdots+l_{n}\geq 2}(\int f(t_{k+1},\mathrm{W}_{t_{k}}+\mathrm{x})H_{l_{1}}^{1}(x_{1})\cdots H_{l_{n}}^{n}(x_{n})v_{1}(dx_{l})\cdots v_{n}(dx_{n})$

$.H_{l_{1}}^{1}(\xi_{t_{k+1}}^{1})$ . . . $H_{l_{n}}^{n}(\xi_{t_{k+1}}^{n}))$ .

Here $f$ is a bounded measurable function on $\mathrm{R}^{n+1}$ .
Now one sees that, in a sense, our DIF gives a discrete and conditioned chaos

expansion (even when $\xi$
”

$\mathrm{s}$ are not Gaussian). The O-th and the 1st chaoses consist
of the main terms and the higher order terms correspond to the correction terms,
when one wants to get the standard It6 formula by letting At $:=t_{k+1}-t_{k}$ to 0.

2.4 DIF for solutions to stochastic difference equations
Let $\mathrm{X}$ be the solution of a stochastic difference equation innovated by W. That is,

$\mathrm{X}_{l_{k+1}}=\mathrm{X}_{\iota_{k}}+F(\mathrm{X}_{t_{k}},t_{k+1} -t_{k},\mathrm{W}_{t_{k+1}}-\mathrm{W}_{t_{k}})$ (2.4
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for some vector field $F$ : $\mathrm{R}^{n}\mathrm{x}$ $\mathrm{R}^{n+1}arrow \mathrm{R}^{n}$ . The DIF for ($t$ , X) would be

$f(t_{k+1},\mathrm{X}_{t_{k+1}})-f(t_{k},\mathrm{X}_{tk})$

$= \sum_{j}\frac{1}{\mathrm{E}[|\xi^{j}|^{2}]}(\int f(t_{k+1},\mathrm{X}_{t_{k}}+F(\mathrm{X}_{t_{k}},\Delta t, \mathrm{x}))x_{j}v_{j}(dx_{j}))(W_{t_{k+1}}^{j}-W_{t_{k}}^{j})$

$+ \frac{1}{t_{k+1}-t_{k}}$ ($\int\{f(t_{k+1}, \mathrm{X}_{t_{k}}+F(\mathrm{X}_{\mathrm{f}_{k}},\Delta_{t},\mathrm{x}))-f\{tk,X(i)\}$ $\otimes\cdots\otimes v_{n}(d\mathrm{x})$) $(t_{k+1}-t_{k})$

$+ \sum_{l_{1}+\cdot+l_{n}\geq 2}(\int f(t_{k+1}, \mathrm{X}_{\iota_{k}}+F(\mathrm{X}_{t_{k}},\Delta t,\mathrm{x}))H_{l_{1}}^{1}(x_{1})\cdot$
. . $H_{l_{n}}^{n}(x_{n})v_{1}(dx_{1})$ . . . $vn(dx))$

$.H_{l_{1}}^{1}(\xi_{t_{k*1}}^{1})\cdots H_{l_{n}}^{n}(\xi_{t_{k+1}}^{n}))$ .
(2.5)

When $F$($\mathrm{x},$
$\Delta t$, y) is affine in $\mathrm{y}$ as

$F$($\mathrm{x}$, At, y) $=\sigma(\mathrm{x})\mathrm{y}\sqrt{\Delta t}+\mu(\mathrm{x})\Delta t$, (2.6)

where $\sigma$ : $\mathrm{R}^{n}arrow \mathrm{R}^{n}\otimes$ $\mathrm{R}^{n}$ and $\mu$ : $\mathrm{R}^{n}arrow \mathrm{R}^{n}$, and when $\mathrm{W}$ is a Brownian motion,
then (2.4) can be seen as an Euler-Maruyama scheme of a stochastic differential
equation

$d\mathrm{X}=(\tau(\mathrm{X})d\mathrm{W}+\mu(\mathrm{X})dt$.
Still many classes, including higher order schemes and approximation schemes to
SDE driven by L\’evy processes, can be also written in the form of (2.4).

2.5 DIF for a class of weak approximation schemes

For a weak approximation scheme in a Brownian eases, we introduce another
framework. If we define an $n$-dimensional random walk $\mathrm{W}=$ $(W^{1}$ , ..., $W^{n})$ by
$W_{\iota_{k}}^{j}-W_{t_{k-1}}^{j}=H_{j}(\xi_{k})\Gamma\Delta t$, the $(2,4)$ will work as a weak approximation scheme,
based on the fact that

$\sqrt{\Delta t}(\sum_{t_{k}\leq}‘ H_{1}(\xi_{t_{k}}),$ $\cdots$ , $\sum_{t_{k}\leq t}H_{n}(\xi_{t_{k}})]$ , $t$ $\geq 0$

converges in law to the $d$-dimensional Wiener process due to the martingale cen-
tral limit theorem (see, e.g. [2, Chapter 7])
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In this ffamework, the DIF for $(t,\mathrm{X})$ becomes

$f(t_{k+1}, \mathrm{X}_{t_{k+1}})-f(t_{k},\mathrm{X}_{t_{k}})$

$= \sum_{j=1}^{n}\frac{1}{\sqrt{\Delta t}}$ ($\int f(t_{k+1},\mathrm{X}_{t_{k}}+F(\mathrm{X}_{t_{k}},\Delta t,\mathrm{H}(x)))$ Il $l$) $v(dx))(W_{k+1}^{j}‘-W_{t_{k}}^{j})$

$+ \frac{1}{\Delta t}$ $( \int \mathrm{f}f$($t_{k+1},\mathrm{X}_{k}‘+F$ ($\mathrm{X}_{t_{k}}$ ,At, $\mathrm{H}(\mathrm{x})-f(t_{k},\mathrm{X}_{t_{k}})\}$ $v(dx)$) $(t_{k+1}-t_{k})$

(2.7)

$+ \sum_{l\succ n}$ ($\int f$($t_{k+1},\mathrm{X}_{\tau_{k}}+F$($\mathrm{X}_{t_{k}}$ , At, $\mathrm{H}(\mathrm{x})$)) $H(x)v(dx)$) $H_{l}(\xi_{t_{k+1}})$ ,

where we have denoted $\mathrm{H}(\mathrm{x})=(H_{1}(x), \ldots, H_{n}(x))$ .

2.6 DIF for complete markets
If $\# G$ $=n+1$ in section 3.1 then $\{H_{0}$ , ..., $H_{n}\}$ spans the whole space and the correc-
tion terms in (2.7) disappear. That is, the DIF becomes symbolically equivalent to
the standard one. This is because the cardinality of the martingale basis of $\mathrm{W}$ is
equal to the dimension of the state space of itself, as is the case with the standard
Brownian motions.

From a perspective ofmathematical finance, this property is closely related to
completeness of the markets modeled by the stochastic process.

Roughly speaking, a market is said to be complete if every good has a unique
price that excludes arbitrage opportunities. In many models in financial engineer-
ing the market is assumed to be complete to avoid discussing too much about the

$\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{e}\mathrm{s}/\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{f}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}\mathrm{s}$ of individuals.
Discrete-time complete market models are studied in [1] using aDIF.

2.7 Supplementary remarks for section 2
We remark that:

I) This idea, namely conditioned Fourier expansion of the increments can be
applied to more general cases. It can be “random walks on a $\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{h}/\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}/\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{i}\mathrm{s}\mathrm{h}$

space , discrete-time Markov chains on a manifold”, or “general semi-
martingales”, etc.

$\mathrm{I}\mathrm{I})$ It is also notable that our DIF holds irrespective of the distributions, as far
as the reference measures are equivalent.

III) To the best of the author’s knowledge, discrete Ito’s formula was pioneered
by T. Szabados [8].
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$\mathrm{I}\mathrm{V})$ Discrete stochastic calculus, which have more emphasis on chaos expan-
sions, has been studied by many, A nice exposition [4] on this topic is avail-
able.

3 Stochastic Numerics from the Perspective of Dis-
crete It6 Calculus

3.1 Reduction to finite difference schemes

When $v$ is concentrated on a finite set $G=\{g_{1}, \ldots,g_{l}\}$ , then

$u_{T}^{N}(t, x)=E[/(Xr)|X; =x]$ , $t=t_{0},t_{\mathrm{I}}$ , $\ldots$ , $t_{N}$ , $(t_{N}=T,\Delta t\equiv 1/N)$

solves a finite difference equation

$(\partial_{t}^{N}+L^{N})u=0$ with terminal condition $u_{T}(T, x)=f(x)$, (3.1)

where
$\partial_{t}^{N}u(t,x)=N\{u(t, x)-u(t-1/N,x)\}$

and
$L^{N}u(t, \mathrm{x})=N\sum_{i=1}^{l}\{u(t,\mathrm{x}+F(\mathrm{x}, 1/N,\mathrm{H}(g_{i})))-u(t,\mathrm{x})\}v(g_{i})$.

This means that if $\partial_{t}^{N}+L^{N}$ is consistent 1 with a differential operator $\partial_{t}+L$ ; i.e.

$\int_{t}^{T}(\partial_{t}^{N}+L^{N})\varphi dsarrow\int_{p}^{T}(\partial_{t}+L)\varphi ds$ as $Narrow\infty$ for any smooth $\varphi$, (3.2)

$u^{N}$ converges to a smooth solution $u$ of $(\partial_{t}+L)u=0$ .
Following standard arguments in the context of the finite difference scheme,

we illustrate what is going on here. For the solution $v$

$(\partial_{t}^{N}+L^{N})v=\Phi$, $\mathrm{v}(T)=0$ , (3.3)

we have a discrete Feynman-Kac formula:

$v(t_{k},x)= \sum_{l=k}^{N}\mathrm{E}[\Phi(t_{l},\mathrm{X}_{t;})|\mathrm{X}_{t_{k}}=x]$.

lSee, e.g. [6]
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Suppose that the smooth solution $u$ exists. Then $u-u^{N}$ is a solution to (3.3) with
$\Phi=\{(\partial_{t}^{N}+L^{N}) -(\partial_{t}+L)\}u$. Therefore,

$|u^{N}(t,x)-u(t,x)| \leq\sum|\mathrm{E}[\{(\partial_{t}^{N}+L^{N})-(\partial_{t}+L)\}u(t_{l},X_{t_{l}})|X_{t}=x]\}$,

and the consistency (3.2) gives the convergence.
Namely it acts as a finite difference approximation of the partial differential

equation. Note that the problem ofthe rate convergence in the $\mathrm{E}\mathrm{u}\mathrm{l}\mathrm{e}\mathrm{r}rightarrow \mathrm{M}\mathrm{a}\mathrm{r}\mathrm{u}\mathrm{y}\mathrm{a}\mathrm{m}\mathrm{a}$

scheme :
$\mathrm{E}[f(\mathrm{X}_{t}^{N})]arrow \mathrm{E}[f(\mathrm{X}_{T}\rangle]$

reduces to the same problem in (3.2), which can be easily calculated in many
cases.

3.2 Completeness makes it slow
As we remarked in section 2,6, the cases where $\# G$ $=1+$ the dimension ofthe state
space is of special interest since it serves as a complete market model. However,
if one considers them to be a discretization, by the Euler-Maruyama scheme, of a
continuous-time (complete market) model, one is obliged to pay some costs.

Theorem 3.1 ([1]), The unique prices ofEuropean claims in discrete-time $comrightarrow$

plete markets converge to the ones in the corresponding continuous complete mar-
ket as the time-step At tends to 0. The order ofconvergence is at least $\sqrt{\Delta t}$ and it
cannot be improved when n $\geq 2$ .

Roughly speaking, this is because the set $G$ with $\# G$ $=n+1$ cannot support
any $n$-dimensional random variable which has the same moments up to degree
three with the increment of $n$ -dimensional Brownian motion, when $n\geq 2$ . For
details, see $[\mathrm{i}]$ .

3.3 “Infinite” difference scheme
The argument in section 3.1 is still valid for a general $)’$ by putting

$L^{N}f( \mathrm{x})=N\int f(\mathrm{x}+F(\mathrm{x},N^{-1}, \mathrm{H}(\mathrm{y})))v(dy)$ (3.4)

for the SDE’s in section 25.
We propose the following implementations.

1. Let $v$ be the Lebesgue measure on $[0, 1]$ .

2. Let $F$ be as (2.6) (Euler-Maruyama)
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3. Take the Walsh system as an ONB. Here by the Walsh system we mean the
group generated by

$\tau_{n}(x)=\{$

+1 if2k $\leq 2^{n}x<2k+1$ fork $=0,$ 1, $\ldots,2^{n-1}-1$ ,

-1 otherwise,

$n=1,2$, $\cdots$ . Note that $\tau_{1}$ , $\ldots,\tau_{n}$ , $\ldots$ are nothing but a Bernoulli sequence.
We can take, for example,

$\mathrm{H}$ $=$ $(\tau_{1},\tau_{2},\tau_{3},\tau_{1}\tau_{2}\tau_{3},\tau_{4},\tau_{5},\tau_{1}\tau_{2}\tau_{4},\tau_{1}\tau_{2}\tau_{5},\tau_{1}\tau_{2}\tau_{3}\tau_{4}\tau_{5}, \ldots.)$.

(Just avoid using those with the even-number length.)

4. Simulate the path $\mathrm{X}$ by a Monte-Carlo/Quasi Monte-Carlo uniform sequence
in $[0, 1)^{N}$ .

This method is meant to be a Monte-Carlo simulation scheme ofhigh-dimensional
finite difference scheme. It is almost dimension-fiee. In fact, the dimension $n$ can
be effectively very large; around 3000, as is reported in [7],

3.4 Supplementary remarks for section 3

The correspndence of the general Markov chian approximation by (2.4) to finite-
difference shemes can be generalized to non-linear cases. This generalization
includes the Kushner’s correspondence (see e.g. [5]).
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