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A survey on asymptotic evaluations of Wiener functional expectations

Shinzo Watanabe, Ritsumeikan University

1 Introduction.

Since the Wiener measure was established by N. Wiener as a mathematical model

of Brownian motion in 1923, a rigorous theory of integrations on a function space

started. In this report, we would review on the problem of evaluating the behavior
of the Wiener measure expectation $E(F_{\epsilon}(w))$ as $\epsilon$ $arrow 0$ , where $\{F_{\epsilon}(w), \epsilon >0\}$ is

a family of Wiener functionals parametrized by $\epsilon$ $>0$ . There have been so many

problems of this kind and many important methods have been introduced. Here,

we would choose a topic related to Schilder’s theorem in 1966 (cf. [Sc]), which is

concerned with a Laplace method on Wiener space.
First, we recall a Laplace method in a finite dimensional Gaussian measure in-

tegration, of which a proof can be easily provided by an application of elementary

differential and integral calculus. Let $\mu(dx)=(2\pi)^{-d/2}\exp\{-\frac{|x|^{2}}{2}\}dx$ , $x\in \mathrm{R}^{d}$ , be the

d-dimensional standard Gaussian distribution. We consider the following integral

parametrized by $\epsilon>0$ :

$I( \epsilon)=\int_{\mathrm{R}^{d}}g(\epsilon x)\exp\{\frac{f(\epsilon x)}{\epsilon^{2}}\}\mu(dx)$ .

We assume the following conditions on functions $f$ and $g:\mathrm{R}^{d}arrow \mathrm{R}$ .

(A. 1.1) $f(x)$ is continuous and $\lim\sup|x|arrow\infty|f(x)|/|x|^{\mathit{2}}$ $< \frac{1}{2}$ .

$g(x)$ is continuous and $|g(x)|=O(e^{K|x|^{2}})$ as $|x|arrow\infty$ for some $K>0$ .

(A.1.2) Setting $F(x)=|x|^{2}/2-f(x)$ and $M_{F}= \{x\in \mathrm{R}^{d}|F(x)=\min_{y\in \mathrm{R}^{dF(y)\}}}$ , $M_{F}$

is a singleton; $M_{F}=\{x_{0}\}$ , $f(x)$ is $\mathrm{C}^{2}$ at $x_{0}$ , $g(x0)\neq 0$ and $\det(I-\partial^{2}f(x_{0}))=$

$\det\partial^{2}F(x_{0}))>0$ . Here, $\partial^{2}f=(_{\overline{\overline{\partial x}^{i}\partial x^{p}}}^{\partial^{2}f})$ is the Hessian of $f$ .

Then we have

$I(\epsilon)\sim$ . $g(x_{0})$ . $\exp\{-\frac{F(x_{0})}{\epsilon^{2}}\}$ as $\epsilon$ $arrow 0$ .

Furthermore, if $f(x)$ and $g(x)$ are smooth near $x_{0}$ , then, for any $n=1,2$ , $\ldots$ ,

$\exp\{\frac{F(x_{0})}{\epsilon^{2}}\}I(\epsilon)=\mathrm{c}_{0}+c_{1}\epsilon^{2}+\cdots$
$c_{n}\epsilon^{2n}+O(\epsilon^{2n+2})$ as $\epsilon$ $arrow 0$
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with $c_{0}= \frac{1}{\sqrt{\det(I-\partial^{2}f(x_{0}))}}$ , and $c_{n}$ can be computed explicitly in compoments of

$\partial^{k}f(x_{0})$ and $\partial^{f}g(x_{0})$ .
A proof can be carried out by writing $I(\epsilon)=I_{1}(\epsilon)+I_{2}(\epsilon)$ , where

$I_{1}( \epsilon)=\int_{|ex-x_{0}|\leq\delta}g(\epsilon x)\exp\{\frac{f(\epsilon x)}{\epsilon^{2}}\}\mu(dx)$

and
$I_{2}( \epsilon)=\oint_{|\epsilon x-x_{\mathrm{O}}|>\delta}g(\epsilon x)\exp\{\frac{f(\epsilon x)}{\epsilon^{2}}\}\mu(dx)$

for a $>0$ . Then $I_{2}(\epsilon)$ can be estimated as

$|I_{2}( \epsilon)|\leq K\exp\{-\frac{F(x_{0})}{\epsilon^{2}}-\frac{\alpha}{\epsilon^{2}}\}$ for all $\epsilon\in(0,\epsilon_{0})$

for some $K:=K(\delta)>0$ , $\alpha:=\alpha(\delta)>0$ and $\epsilon_{0}:=\epsilon_{0}(\delta)>0$ . We have

$I_{1}( \epsilon)=(2\pi)^{-d/2}e^{-F(x\mathrm{o})/\epsilon^{2}}\int_{|\epsilon x|\leq\delta}g(\epsilon x+x_{0})\exp\{-\frac{F(\epsilon x+x_{0})-F(x_{0})}{\epsilon^{2}}\}dx$

and the asymptotic expansion of the integral in the RHS can be easily obtained,

2 Schilder’s asymptotic formula on Wiener functional expectations

The asymptotic formula in the finite dimensional case as given above has been
extended by Schilder ([Sc]) to the case of integrals on Wiener space. Let $(W, H, P)$

be an abstact Wiener space (AWS); $W$ is a real separable Banach space, $H\subset W$ is
the Cameron-Martin subspace and $P$ is the Borel probability on $W$ such that the
family $\{l(w)|l\in W^{*}\subset H^{*}\}$ is a Gaussian system with mean 0 and covariance
$E(l(w)l’(w))$ $=\langle l, l’\rangle_{H}*$ . Thus, we may think of $P$ a standard Normal distribution on
the Hilbert space $H$ realized on a suitable enlarged space $W$ . As usual, the dual $H^{*}$

is identified with $H$ by the Riesz theorem. A typical example is the J-dimensional
Wiener space in which

$W_{0}(\mathrm{R}^{\mathrm{d}}):=$ { $w;[0,$ $T]\ni t\vdasharrow w(t)$ $\in \mathrm{R}^{d}$ , continuous, $w(0)=0$ },

with the usual maximum norm $||w||= \max_{0\leq t\leq T}|w(t)|$ ,

$H= \{h\in \mathrm{W}_{0}(\mathrm{R}^{\mathrm{d}})|h(t)=\int_{0}^{t}\dot{h}(s)ds,\dot{h}\in L^{2}([0, T]arrow \mathrm{R}^{d})\}$ , $||h||_{H}=||\dot{h}||_{L^{2}}$

and $P$ is the $d$-dimensional Wiener measure on it. Here $T$ is a positive constant;
sometimes, the time interval is taken to be $[0, \infty)$ and then $W_{0}(\mathrm{R}^{d})$ is a R\’echet
space with a family of maximum (semi)norms on subintervals.

Scilder’s theorem on the AWS $(W, H, P)$ can be stated in the same way as the
formula given in Introduction if the differential calculus is understood in the sense
of Frechet differential calculus on the Banach space $W$ .
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Let $f=f(w)$ and $g=g(w)$ be real-valued continuous functions on the Banach
space $W$ and consider the following Wiener functional integral parametrized by
$\epsilon$ $>0$ :

$I(\epsilon)=E||g$(er) $\exp\{\frac{f(\epsilon w)}{\epsilon^{2}}\}||$ $:= \int_{W}g(\epsilon w)\exp\{\frac{f(\epsilon w)}{\epsilon^{2}}\}P(dw)$.

We assume the following conditions on functions $f$ and $g:Warrow$ R.

(A.2.1) $\lim\sup_{||w||arrow\infty}|f(w)|/||w||^{2}<$ a for some $\alpha>0$ such that $E(e^{\alpha||w||^{2}})<\infty$ .

$\mathrm{g}(\mathrm{w})=O(e^{K||w||^{2}})$ as $||w||arrow \mathrm{o}\mathrm{o}$ for some $K>0$ .

(A.2.2) Setting
$F(h)=|h|_{H}^{2}/2-f|_{H}(h)$ , $h\in H$ , and $M_{F}= \{h\in H|F(h)=\min_{\hslash’\in H}F(h’)\}$ ,
$M_{F}$ is a singleton; $M_{F}=\{h_{0}\}$ , $f(w)$ is $\mathrm{C}^{2}$ at $h_{0}$ , $g(h_{0})\neq 0$ and
$\det(I-A_{2}[h_{0}])>0$ .

Here, A2 $[h_{0}]$ : $Harrow H$ is a linear $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ class operator defined as follows: By (A.2.1),
we have

$f(h_{0}+\epsilon w)$ $=f(h_{o})+ \frac{\epsilon^{2}}{2}D^{2}f(h_{0})[w]+o(\epsilon^{2})$ as $\epsilon$ $arrow 0$

and, if $D^{2}f(h_{0})[w]=c_{0}\oplus c_{1}(w)\oplus c_{2}(w)$ is the Wiener chaos decomposition of
the quadratic form $D^{2}f(h_{0})[w]$ on $W$ , then $c_{1}=0$ , $c_{2}(w)$ $=(A_{2}[h_{0}]w, w)$ where
$A_{2}[h_{0}]$ : $Harrow H$ is a linear $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ class operator and $c_{0}=\mathrm{t}\mathrm{r}(A_{2}[h_{0}])$ . Note that

$E[e^{\frac{1}{2}D^{2}f(h_{0})[w]}]=e^{\frac{1}{2}\mathrm{t}\mathrm{r}(A_{2}[h_{0}])}(\det_{2}(I-A_{2}[h_{0}]))^{-1/2}=(\det(I-A_{2}[h_{0}]))^{-1/2}$

where $\det_{2}$ denotes the Carleman-Fredholm modified determinant. Now Scilder’s
theorem can be stated as follows

$I( \epsilon)\sim\exp\{-\frac{F(h_{0})}{\epsilon^{2}}\}g(h_{0})E[e^{\frac{1}{2}D^{2}f(h_{0}\}[w]}]$ as $\epsilonarrow 0$ .

Also, the asymptotic expansion can be obtained when $f$ and $g$ are smooth on $W$ in
the sense of Fr\’echet differential calculus on W.

A crucial point 1n the proof is to justify the localization : $I(\epsilon)=I_{1}(\epsilon)+I_{2}(5)$

as in the case of finite dimension. The justification is based on Schilder’s large
deviation: If $F\subset W$ is closed and $G\subset W$ is open, then we have

$\lim_{\epsilonarrow}\sup_{0}2\epsilon^{2}\log P(\epsilon w\in F)\leq-$ inf $\{||h||_{H}^{2} ; h\in F\}$

and
$\lim_{\epsilon\prec}\sup_{0}2\epsilon^{2}\log P$ (gu $\in G$) $\geq-$ inf $\{||h||_{H}^{2} ; h\in G\}$ .

Cf. e.g., [DS].
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3 Asymptotic formula on “conditional” Wiener functional expectations

Thanks to the Malliavin calculus, we can discuss the conditional expectations for
smooth functional, smooth in the sense of Malliavin, as a surface integral on a
hypersurface imbedded in Wiener space. Formally, we consider the following integral
parametrized by $\epsilon>0$ ;

$I( \epsilon)=E|||g(\epsilon w)\exp\{\frac{f(\epsilon w)}{\epsilon^{2}}\}\delta_{x}(\Phi(\epsilon w))\ovalbox{\tt\small REJECT}$

where $f$ and $g:Warrow \mathrm{R}$, $\Phi:Warrow \mathrm{R}^{n}$ are Wiener functionals and $\delta_{x}(\cdot)$ is the

$\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{o}\mathrm{f}g(\in w)\exp\{\frac{[(\epsilon w\}\mathrm{i}\mathrm{t}\mathrm{h}}{\epsilon^{2}}.7^{\mathrm{o}_{\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{h}\mathrm{y}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}\{w\in W|\Phi(\in w)=x\}\mathrm{i}\mathrm{n}W.\mathrm{W}\mathrm{e}}}\mathrm{D}\mathrm{i}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{d}\mathrm{e}\mathrm{l}\mathrm{t}\mathrm{a}\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}_{\mathrm{o}\mathrm{n}\mathrm{W}}1\mathrm{e}\mathrm{a}\mathrm{t}x\in \mathrm{R}^{n}.\mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s}\mathrm{m}\mathrm{a}\mathrm{y}\mathrm{b}\mathrm{e}\mathrm{r}\mathrm{e}\mathrm{g}\mathrm{a}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{d}\mathrm{a}s\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}$

would particularly like to include the case where Wiener functionals involved are
116 functionals; the case which is important in applications to heat kernels, security
price models in a financial market, etc. It6 functionals are usually not continuous on
$W$ so that Schlder’s theorem as given in Section 2 is not applicable. Indeed, since,
the map $w\in Warrow$ ew $\in W$ is singular with respect to the Wiener measure, the
functionals like $f(\epsilon w)$ and $g(\epsilon w)$ are usually meaningless. Also, since $P(H)=0$, the
restictions to the Cameron-Martin space like $f|_{H}$ of $g|_{H}$ are meaningless, as well.

For It6 functionals $f(w)$ , we can define $f(\epsilon w)$ and $f(h)$ for $h\in H$ in a natural
way; just replace the Wiener path $tarrow w(t)$ by $t$ $arrow\epsilon w(t)$ and $t$ $arrow h(t)$ which
are semimartingale paths, anyway. Also, It6 functionals are smooth in the sense
of Malliavin-Sobolev differential calculus on Wiener space and the expression like
$\delta_{x}(\Phi(\epsilon w))$ can be justified as an element in the Sobolev space with negative differ-
entiability index, in other words, someting like Schwartz distributions on Wiener
space. The surface integral is well defined by quasi-sure analysis and disintegration
theory as are developed in e.g. [M], [AM], [Su], [L]. In this way, we can develop
a rather satisfactory asymptotic theory for conditional Wiener functional expecta-
tions as above. We would formulate an asymptotic formula in the following way; we
refer to [IW] the notions and notations in the Malliavin calculus, Sobolev spaces of
(generalized) Wiener functionals and asymptotic expansions, in particular.

Let $f(w;\epsilon)$ be a real valued Wiener functional parametrized by $\epsilon>0$ , smooth
in the sense $f\in \mathrm{D}^{\infty}$ for every $\epsilon>0$ such that it has the following asymptotic
expansion for every $h\in H$ ,

$f(w+ \frac{h}{\epsilon};\epsilon)=f_{0}[h]+\epsilon f_{1}[h](w)+\epsilon^{2}f_{2}[h](w)+\cdots$ $\epsilon^{n}f_{n}[h](w)+\cdots$ ,

where $f_{n}[h](w)\in C_{0}\oplus C_{1}\oplus\cdots\oplus C_{n}$ . Here, $\mathrm{C}_{n}$ denotes the space of homogeneous
Wiener chaos (It6’s multiple Wiener integrals) of order $n$ in the Wiener chaos ex-
pansion $L_{2}= \oplus\sum_{n=0}^{\infty}\mathrm{C}_{n}$ of square-inegrable Wiener functionals. In particular, $f_{0}[h]$

$\mathrm{i}\mathrm{B}$ constant in $w$ so that it is a function of $h\in H$ . We assume that it is continuous
in $h\in H$ . We assume also that $h\in Harrow f_{n}[h](w)\in L_{2}$ is continuous for every $n$ .

Consider another real functional $g(w; \epsilon)$ and also an $\mathrm{R}^{n}$-valued Wiener func-
tional $\Phi(w;\epsilon)$ , both parametrized by $\epsilon$ $>0$ , smooth and have the same asymptotic
expansion as $f(w;\epsilon)$ . We assume
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(A3.1) Letting $X(w;\epsilon)=(f(w;\epsilon), g(w:\epsilon)_{7}\Phi(w;\epsilon))$ and $X_{0}[h]=(f\mathrm{o}[h],g_{0}[h], \Phi_{0}[h])$ ,
the following principle of large deviations holds: If $F\subset \mathrm{R}\mathrm{x}$ $\mathrm{R}\mathrm{x}$ $\mathrm{R}^{n}$ is closed and
and $G\subset \mathrm{R}\mathrm{x}$ $\mathrm{R}\mathrm{x}$ $\mathrm{R}^{n}$ is open, then we have

$\lim_{\epsilon\prec}\sup_{0}2\epsilon^{2}\log P(X(w;\epsilon)\in F)\leq-\inf\{||h||_{H}^{2} ; X_{0}[h]\in F\}$

and
$\lim_{\epsilonarrow}\sup_{0}2\epsilon^{2}\log P(X(w;\epsilon)\in G)\geq-$ inf$\{||h||_{H}^{2} ; X_{0}[h]\in G\}$ .

(A.3.2) The Malliavin covariance $\langle$ $D\Phi^{i}(w;\epsilon)$ , $D\Phi^{\mathrm{j}}(w;\epsilon))_{H}$ of $\Phi(w;\epsilon)$ satisfies, for
some neighborhood $U_{x}$ of $x\in \mathrm{R}^{n}$ ,

$1_{U_{x}}( \Phi(w;\epsilon))\cdot\det\langle D\Phi^{i}(w;\epsilon), D\Phi^{j}(w;\epsilon)\rangle_{H}^{-1}\in\bigcap_{1<p<\infty}L_{\mathrm{p}}$
for every $\epsilon$ $>0$ .

The assumpion (A.3.2) guarantees that $\delta_{x}(\Phi(w;\epsilon))$ can be defined as a gener-
alized Wiener functional in some Sobolev space of negative differentiability index.

(A.3.3) We set $K_{x}=$ $\{h\in H|\Phi_{0}[h]=x\}$ and assume that it is not empty.
Assume further that

$K_{x}^{m\tilde{x}n}:= \{h\in K_{x}| \frac{1}{2}||h||_{H}^{2}-f_{0}[h]=,\min_{h\in K_{x}}\frac{1}{2}||h’||_{H}^{2}-f_{0}[h’]\}$

is a compact manifold of dimension, $\dim K_{x}^{\min}=m$ , regularly imbedded in $H$ .

Remark 3.1. By the Hilbertian inner product of H, $K_{x}^{\min}$ is a Riemannian mani-
fold. The assumption (A.3.3) admits the case that $K_{x}^{\min}$ consists of a finite number
ofpoints. We refer this as the case of $\dim K_{x}^{\min}=0$ . In Section 1 and Section 2, we
stated the results in the case when the minimizing manifold is a singleton; of course,
a generalization as in this section is possible, as $well$

(A.3.4) $\det\langle\Phi_{1}^{i}[h], \Phi_{1}^{j}[h]\rangle_{H}>0$ for every $h\in K_{oe}^{\min}$ . Here, $\Phi_{1}^{i}[h]\in H$ represents the
first order Wiener chaos $\Phi_{1}^{i}[h](w)$ $\in \mathrm{C}_{1}$ .

By the Lagrange multipier principle, we see that for every $h\in K_{x}^{\min}$ , there exists
a unique $p(h)\in \mathrm{R}^{n}$ such that $h-f_{1}[h]=(p(h), \Phi_{1}[h])_{\mathrm{R}}^{n}$ .

(A.3.5) The following holds for every $h\in K_{x}^{\min}$ : for any $k\in H$ , $k$ $\neq 0$ such that
$\langle\Phi_{1}^{i}[h], k\rangle_{H}=0$, $\mathrm{i}=1$ , $\ldots$ , $n$ , and $k[perp] K_{x}^{\min}$ ,

$\frac{1}{2}||k||_{H}^{2}-\langle f_{2,2}[h], k\otimes k\rangle_{H\otimes H}-(p(h), \langle\Phi_{2,2}[h], k\otimes k\rangle_{H\otimes H})_{\mathrm{R}^{n}}>0$ .

Here, $f_{2,2}[h]\in H\otimes H$ and $\Phi_{2,2}[h]\in H\otimes H\otimes \mathrm{R}^{n}$ represent the $C_{2}$ compact of
$f_{2}[h](w)$ and $\Phi_{2}[h](w)$ : respectively
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Theorem 3.1.

$I( \epsilon):=E[g(w;\epsilon)\exp\llcorner\{\frac{f(w\cdot\epsilon)}{\epsilon^{2}},\}\delta_{x}(\Phi(w;\epsilon))\ovalbox{\tt\small REJECT}=\epsilon^{-(n+m)}e^{-\%}$$(c_{0}+c_{1}\epsilon+c_{2}\epsilon^{2}+\cdots)$

where $\mathrm{a}=\frac{1}{2}||h||^{2}-f_{0}(h)=\min\{\frac{1}{2}||h||^{2}-f_{0}(h);h\in K_{x}\}$ , $h\in K_{x}^{\min}$ , and $c_{0}$ is given
by the integral:

$\int_{K_{x}^{\min}}g_{0}[h]E[\exp\{\frac{1}{2}f_{2}[h](w)+\frac{1}{2}(p(h), \Phi_{2}[h](w))_{\mathrm{R}^{n}}\}\delta_{0}(\Phi_{1}[h](w),\mathrm{i}[h](w))]\omega(dh)$ .

Here, $\omega(dh)$ is the Riemannian volume on $K_{x}^{\min}$ (which degenerates to the counting
measure when $\dim K_{x}^{\min}=0$) and $\mathrm{i}[h](w):=\Sigma e_{\iota}(w)\cdot$ $e_{i}$ , the sum being taicen over
an $ONB\{e_{i}\}$ in the tangent space $T_{h}(K_{x}^{\min})(\subset H)$ , so that $\delta_{0}(*$ , $\cdot$ $)$ is the Dirac delta
function at $(0, 0)$ on $\mathrm{R}^{n}\cross$ $T_{h}(K_{x}^{\min})$ .

For details and examples, cf. [TW].

References

[AM ] H. Airault and P. Malliavin, Int\’egration geometrique sur l’espace de
Wiener, Bull Sc. math. (2), 112(1988), 3-52

[DS] J. D. Deuschel and D. Stroock, Large Deviations, Academic Press(1989)

[IW] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Dif-
fusion Processes, Second Edition, North-Holland/Kodansha, Amster-
$\mathrm{d}\mathrm{a}\mathrm{m}/\mathrm{T}\mathrm{o}\mathrm{k}\mathrm{y}\mathrm{o}$ , 1988

[L] P. Lescot, Un theoreme de desintegration en analyse quasi-sure, S\’em.
Probab. XXVII, LNM 1557, Springer(1991), 256-275

[M] P. Malliavin, Stochastic Analysis, Springer, 1997

[Sc] M. Schilder, Some asymptotic formulas for Wiener integrals, Trans.
Amer. Math. Soc. 125(1966), 63-85

[Su] H. Sugita, Positive generalized Wiener functions and potential theory
over abstract Wiener spaces, Osaka J. Math. 25(1988), 665-698

[TW] S. Takanobu and S. Watanabe, Asymptotic expansion formulas of the
Schilder type for a class of conditional Wiener functional integrations,
in Asymptotic problems in probability theory: Wiener functionals an $d$

asymptotics, eds. Elworthy and Ikeda, Pitman Research Notes in Math.
284, Longman(1993), 194-24


