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We consider a market model with one riskless security and a certain num-
ber of risky securities. The objective is to find an admissible self-financing in-
vestment strategy that maximizes the expected utility from terminal wealth
at a given maturity and with a power utility function of the risk-averse type.

We assume that the dynamics of the risky assets are affected by “eco-
nomic factors”. We first consider the case where the economic factor evolve
as a finite-state Markov process and then the one where it behaves as a con-
ditionally Gaussian process. We allow these economic factors to be hidden,
i.e. they may not be observed directly in both case. Information about these
factors can therefore be obtained only by observing the prices of the risky
assets.

Our problem is thus considered to be the type of a partially observed
stochastic control problem. In the former case, we determine an equivalent
complete observation control problem, where the new state is given by the
pair (py, ¥;) consisting of the conditional state probability vector p; for the
hidden factor process and of the log-asset prices Y;. In the latter the state
variables are the conditional mean my, the conditional variance II; of the
hidden factor X; and the log prices. The equivalent complete observation
control problems turn out to be of the types of risk sensitive stochastic con-
trol problems. By the method of Dynamic Programming (DP) we obtain
nonlinear HIJB equations. However, applying a transformation that is by
now rather classical, the nonlinear HJB equations are transformed into lin-
ear ones. By means of a probabilistic representation as expectation of a
suitable function of the underlying Markov process, we obtain unique vis-
cosity solutions to the latter PDEs that induce unique viscosity solutions to
the former. This probabilistic representation allows to obtain, on one hand,
regularity results on the basis of classical results on expectations of functions
of diffusion processes; on the other hand it allows to obtain a computational



approach based on Monte Carlo simulation.

Portfolio optimization problems under partial information have been
studied using two kinds of major methodologies, namely Dynamic Program-
ming (DP) and the Martingale Methods (MM). As for MM, confer e.g. [5],
8], [9], [10], [16], [20], [22]. DP approach has benn used in (3], {18] and later
in [13], [15] in relation to risk-sensitive stochastic control problems. Confer
also [17] and [19].

1 Hidden Markov factor model

Let X; be a finite state Markov chain whose state space E = {e1, €2, ..., €}
is assumed to be the set of the unit vectors in R¥.We assume the bond price
59 is governed by the ordinary differential equation:

(1.1) dSo(t) = r(t, 8;)S°(t)dt, S°(0) = &7,

where r(t,S) is a nonnegative bounded function on [0,T] X RY. The other
secutrity prices S, 2 =1,2,..., N, are assumed to satisfy

dSi(t) = Si(t){a*(t, Xe, Se)dt + Y1y o (t, Se)dWY b,

(1.2) . _
§i(0) =5, i=1,..,N,

where W; = (I/Vf) j=1,.,N 18 an N - dimensional standard Brownian motion
process defined on (Q2,.F, P, 7;) independent of X;. Here we assume that
a'(t, X, S) and aj» (t,S) are bounded and, for each ¢ and X, locally Lipschitz
continuous functions in S, o is uniformly non degenerate, i.e. 2*co*z >
clz|?, Vz € RN, 3¢ > 0.

Note that the markov chain X; can be expressed by a martingale M; of
pure jump type such as

dX, = K(£)Xdt + dM,,

(1.3)
Xo = 57

where K (t) is a @ matrix of the Markov chain and £ is a random variable

taking its value on E.

Set
Ge = o(S(u);u < t).

and let us denote by A, (i = 0,1,...,N) the portfolio proportion of the
amount invested in the i-th security relative to the total wealth V; that the
investor possesses. It is defined as follows :

Definition 1.1 (R%(t),h(t)) = (hO(t), R (t),h2(t), ..., KN (1)* is said to be
an invetment strategy if the following conditions are satisfied
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i) h(t) is an RY wvalued G, - progressively measurable stochastic process
such that

N
D R +A0() =
i=1

it) and that

P(/OT Ih(s)|%ds < o0) = 1.

The set of all investment strategies will be denoted by #(T"). When
(RO(t), h(t)*)o<t<T € H(T) we will often write h € H(T') for simplicity. For
given h € H(T) the wealth process V; = V;(h) satisfies

dV i dS“(t)
"‘Z‘ = Zz—oh’()Sz(t)

= KO(E)r(t, Sp)dt + ST hH(E){ai(t, Xe, Se)dt + SI ol S,y dWi}
= r(t,S:)dt + h(t)*(a(t, Xy, St) — r(t, S;)1)dt + h(t)*o(t, S)dWr,
Vo = U

under the assumption of the self-financing condition, where 1 = (1,1,...,1)*.

QOur problem is the following. For a given constant p < 1, u # 0
maximize the expected (power) utility of terminal wealth up to the time
horizon 7', namely

L4 Ik = L penios i) - ME[VT(M p<l, p#0

over the set A(T) of admissible startegies defined later . We consider here
the maximization problem with partial information, since the economic fac-
tors Xz are in general not directly observable and 8o one has to select the
strategies only on the basis of past information of the security prices.

2 Reduction to risk-sensitive stochastic control

Let us set . .
Y/ =1logS;, ¢=0,1,2,..,N,

Y = (YL, Y2, .., YNy and e¥ = (¢¥",...,e"™)*. Then
dY? = R(t,Y;)dt

(2.1) dY; = A(t, Xy, Y,)dt + (¢, Y;)dW,,
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where _. ) .
A't,z,y) = o'(t,z,e¥)— %(aa*)“(t, e¥),

2; (t, y) = U; (ty ey)’ R{t, y) = 77(ta ey)

By Itd’s formula we see that
(22)  dVF = VH{—unlt, Xo, Yi, he)dt + phfS(E Y)AWR), Vo = o
and so,

2
V]':H' — v}a’:e“#fot n(sts,Ys;hs)ds*l’"# fot h;Z(S,Ys)dWs—-MQ— fot h;ZZ*(s,Ys)hsds,

where

1 —
77(*!: z,Y, h) - Tﬁh*zx*(ta y>h - R(t7 y) — h* (A(ir Z, y) - R(tv y)l)a

At(t, 2, ) = a'(t, z, eY).
Therefore our criterion can be written as

L B (h)H] = P Bl T nle X o ha)ds b T WD Y)W, by [ TS Y hads]

Let us introduce a probability measure P on (€, F) defined by

A

dP

dP ::pT1

Fr

where
(23) pT = e f(;rA(t’XhYt)*(22*)“12(13,%)de—%fOT A*(EZ*)—lx‘i(t,Xg,Yt)dt‘

Under this probability measure P
t
Wy = Wy +] 2HED*) T A(s, X5, Ys)ds
0

is a Brownian motion process and the log price process Y; can be rewritten
as

(2.4) dY; = X(t,Y;)dW.
Under the new probability measure our criterion can be written as follows:

-~ *® 2 * *
% E[VH = -1—0“ Ele™# JT n(5,Xs,Ys hs)ds+u f§ BEE(s,Ys)dWs— - [T hEEE (S’YS)hSdsﬁ§1]

7
— LyufeH ST n(5,X5,Ys haYds+ [T Q(s,Xs,Ys,hs)*dYs—5 J§ Q*EE"Q(5,Xs, Yo hs)ds)
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where i
Qt, X4, Yz, he) = (BX*) AL, Xb, Ya) + pihe.

Set

H, = e #Jo 1(5:Xe. Yo ha)dst [y Q(s,Xs, Yo ho)*dYs—3 L QIR Q(5,Xs,Ys s )ds
and X ‘
= FE[H:X;|G4],
where X} = 1,,1(X;). Then

k k
BlHrigr] = ) B[HrX}igrl = Y df
g=1 i=1

and we can see that ¢ satisfies

dgt = (K(t)gs)'dt — un(t, e;, Ve, he)gldt + Q" (¢, ei, Yz, he)d Y3,
(25) |
qz') —_ p’é EP(E:GZ): ’é:l’z”";k,

(cf. [1],[4]) Furthermore we set
(2.6) H,=e™* JEn(8,ps,Ya ha)ds+ [ Q(s,ps,Yahs)*dYe—b [ Q"SI Qsyps,Yoha)ds
where
pr=P(Xy =¢|Gy), i=1,.,k,
and we employ the notation such that

k

Fls,p5s9:B) = f(s,e,u, )P,

t=1

for a given function f(s,z,y,h) on [0,T] x E x RN x RN while the defined
function is the one on [0,T] x Ap_; x RY x RN with the k — 1 dimensional
simplex

Agy = {(dy, ds, ..,dk);dl +da+ ... +dp=1 0<d; <1, i=1, ,k‘}
According to [21] it is known that pi, i = 1,2, .., k, satisfy the equation
dp; = (K (O)pe)'dt+ pi At e, Y2)* = At po, Y3)"|[SS7 HdYs ~ Alt, pe, V2],

Namely,
(2.6)
dps = K(t)p: + D(p)[A(t, V2)" — 1A(t, pr, Y3)*|[E2*]7HdY; — Aty pi, V)],

where A(t,Y) := (A%(t,e;,Y)) is an N x k matrix and D(p) is the diagonal
matrix whose 44 component is p’.



Then we have
d(Hpl) = Hydpi+ pldH, + (H,p');

= (K(t)ﬁtpt)idt — pn(t, ei, Yz, h) Hypldt + ﬁtPiQ*(t, €, Yz, hi)dYs.

By comparing with (2.5), we see that q;': H,p’ and so,

E[Hp|Gr] = Zq'—” = Ar.

Hence we have

Proposition 2.1

J;h; T) = iE[V#] = év“E’[HT] = i-v#E”[ﬁIT].

Now our problem is reduced to the risk-sensitive stochastic control prob-
lem with full information. Indeed, introduce a new probability measure P

with the density
gT — ef[;r Q(8,ps,Ys,hs)* dYs*va Q*ET*Q(8,ps,Ys hs )ds

ST Q5,ps,Yarhs)* S5, Ya)dWe— 3 [T Q*EE*Q(8,ps,Ys ks )ds
€J0 3 Jo

defined by
dP

hry - CT.
ar G

Then under the probability measure P

t
W, = / (RE*) 3 (s, Y2)dYi — [ $i(s, Va) Qs D, Yo, ha)ds
1]

is a standard G, - Brownian motion process. Then

A A 1 - T
éT)#E[HT} = EUME[GXP{“LL] n(saps>n>h5>d8}]
0

and so our problem is maximizing the risk-sensitive criterion

1 . T
(2.8) - Elexp{ f (5,9, Yo, ha)ds},
0

subject to (ps, Y:) on Ag_; x RY governed by :

29) dpe = D(p)A(t,Y2)" — LA(t, pr, Yo)*][BE*)710(t, V2)dWs

+HEK (t)ps + pD(p) [A(t, Ye)* — TA(t, pe, Yi)* he}dt.

and
(2.10) dY, = (4, Ya)dW; + {A(t, p, Y2) -+ uS5* (2, Ye) he bt
defined on the fltered probability space (Q,F, P; Gs).

121



122

3 HJB equation

Now we consider the HIB equation of the risk-sensitive stochastic control
problem (2.8)-(2.10) to find an optimal strategy for the problem maximizing
the expected power utiltity (1.4) at time maturity T" with partial informa-
tion. Set Z := (p,¥Y)* € Ap_1 x RV and

B(s, Z) = (K(s)p, As,p, Y))"

afs, Z) = (D(p)[A*(s,Y) — 1A%(s,p, Y)}(BE*) ' 2(5,Y), (s, Y))"
Bu(s, Z,h) = B(s, Z) + pa(s, Z)X*(s,Y)h

dZ, = PBu(s,Zs;hs)ds +als, Z,)dWs, s € [t,T]
(3.1)
Zt = Z

Let us define the value function of our risk-sensitive stochastic control prob-
lem starting at ¢ up to time horizon T"

(3:2) w(t,z) = sup log Ble#Ji n(sZeha)ds)
AtT)

Then we have

1
(3.3) S J(v; b5 T) = ;vﬂeww, 20 = (po, log So)

The HIB equation of w(t, z) can be written as

b %—’ + strlea* D?w] 4 3 (Vw)*ao*Vuw
+ supp[Bu(t, 2, h)*Vw + py*(t, 2)h — (1 — p)h*ST*A] + pR(t, 2) = 0
w(T,z) =10
where |

v(t,z) = A(t,p,Y) — R(¢, 2)1.

It is easy to see that (3.4) could be written as
5 J G 1 Ltrlaa* D?w] + %Tim(Vw)*aa*V'w + &*Vw + ¥ =0
w(T, z) =0,

where
a(t, 2)2 7t 2)7* (¢, 2)

O(¢,2z) := B(t,z) + 7 f“



U(t,2) = pR(t, 2) + 55“?57* (t,2)(SE*) UL, 2)7(t, 2).

Here we employ the transformation used in [6], [7]. Set

v(t, z) = T )

Then we have

%tﬂ + %tr[aa*Dzv] + @*(t, z2)Vv + -\I’%’:—)U =0
(3.6)
o(T,2) = 1.

It can be easily seen that v(¢, z) is a viscosity solution for (3.6) if and only if
w = (1 — p)logw is a viscosity solution for (3.5). Furthermore the solution
of (3.6) has an expression such that

T
(3.7) oft,2) = Bulexplr— | (s, Zds}]
~H Ji
where
dZs = ®(s,Z)ds + afs, Zs)dW,

(3.8)

Zt = 2,

provided that the stochastic differential equation (3.8) has a unique solution
and (3.7) has a finite value. Under the assumptions in section 1 (3.8) has
a unique solution and v(¢, z) defined by the formula (3.7) turns out to be a
viscosity solution of (3.6). Thus we have the following proposition.

Proposition 3.1 Under the assumptions in section 1 equation (3.5) has a
unique viscosity solution w and it is expressed as w(t,z) = (1 — p)logv,
where v is the function defined by (3.7).

Under stronger assumptions on 7, a’, bf;- such that they are C? functions
with derivatives of polynomial growth we have by Theorem 5.5 in [2] that
o(t, z), and therefore also w(t,z), are of class C? and with derivatives of
polynomial growth. The formal Bellman equation {3.5) becomes thus an
equation having a classical solution. In that case set

Vo(t, z)

h(t, z) = (EX5) 71, 2)[B(L, 2)a* (t, 2) ol 2)

]

and solve
dZs = Bu(s, Zs; h(s, Zs))ds + s, Zs)dW,, s € [0,T), Zo = z.

Then h{t, Z;) turns out to be an optimal strategy.
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4 Conditionally Gaussian case

Let us consider the same problem as above for a market model with the
economic factor X; governed by the stochastic differential equation

(41) dX; = B(t,Xt, Y;j)dt + A(t, Xt, E)th, Xo=z€ Rn,
such that the logprice of the securities is determined by

dYy = r(t, Xy, Y )dt,

(4.2) dY; = A(t, Xy, YV;)dt + S(t, Y;)dW,,

where W; is an N +n dimensional Brownian motion process. Here A(f, z,y),
B(t,z,y) and A(t, z,y) are continuous on [0, 7] x R™ x RY locally Lipshitz
and at most linear growth with respect to y, and r(¢, z,y) is a nonnegative
bounded function. Our criterion is defined as before. Namely

T(v; by T) = }_E[ng] _ lva[empjoTn(t,Xt,Yt,ht)dtwfg‘ hg‘E(t,Yt)th-—ﬁ;hg‘EZ*(t,)Q)htdt]_

Introduce a probability measure P on (2, F) defined by

A

ab|
dp — pT? .
Fr
where

(4.3) pr=ce" ol ALK, Yo (BE7) IS, Ve )aW— 4 [ A*(SE*) LA X0 Ye)dt

Then we have

A T T 2 *
J{v; b T) = %U”E[ﬁ,}le_i‘fo N(6Xe, Yo he)dtdp fo hy E(8Ys)dWe— - hy TX (t,Ys)hedt)

{il

2, T
1 e g )

where
U, = oo Qe X Yo k) dYo -1 [3 Q*SE*Q(s,X,, Y, ks )ds
and
Q(s,z,y,h) = (T=*) L A(t, z,y) + ph.
Set

a(t)(p(t) = " (1) (p(t)) = Bl lonleXeXohaddog, oir ¥, v2)ig,).



Then 1 1
~E(VE] = o Bl (D))

and we can see that ¢(t) satisfies the Modified Zakai equation
i ‘ 6(,0
a(t)((t)) = q(0)(0(0)) + A q(s)(57 + Lo — ()

+uh (SA* Dy + T8 Dyp))ds

i1
+ [ als) (PQIES + (Da) AT + (Dyp) BE) (7).,
0

where
QS = Q(87'7 YS:hS)7 HE :7)(87')y;7h8>
(cf. [13]). We consider a rather specific case such that

A(tv z, y) = AG(t: y) + A1<t’ y)x)

B(t,z,y) = DBolt,y)+Bilt,y)z,  Alt,z,y) = At y)

Namely X; is assumed to be a conditionally Gaussian diffusion process with
conditional mean vector m; and conditinal variance Il;:

Ble/T RG] = exp(vI0"m, - S6TLE), 0 R,

and m; and II; are known to satisfy
(4.4)
dms = B(t,my, Ye)dt + (IIA7 + AL (ED*)"HdY; — AL, my, Yy)dt)
mg = x:= E[Xq]
I, = Bi(t,Y)IL + LBi(t, V)" + AA*(1, V)
(4.5) —(AZ* + ILAD (ST HAD + I A, V)
HO = EKX() - (L‘)(XQ - 93)*]

In a similar way to [13] we can see that the solution of the modified Zakai
equation ¢(¢) has a representation such that

a(t)(p(t)) = T / ot my + T2, Y7)

11,12
e~ 3l dz,

1
(27&')“’/2

125
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where

T, = eng(s,mg,Ys,hs)*dYs—~% E Q@ EEQ(5,ms,Ya,he)ds o 3 (8,6, Ys s )ds

Set .
mz/(zz*)—%(s,y;)dn.
0

Then, under the probability measure P, W, is a standard Brownian motion
process and my and Y; satisfy
dm: = B(t,mys, Yy)dt — (ILAY + AS*)(ED*) LAt me, Vi )dt

(46) H(IL AL + AT (E2%) " 2dW;

(4.7) dY; = (E5*)2dW,.

Thus we are reduced to considering the stochastic control problem with full
information maximizing the criterion:

7

J = 1'2}“1?[6-[5 Q(s,ms,YS,hs)*dYs*% gQ*EE*Q(s,mS,YS,hS)dS*-u fOTn(s,ms,Ys,hs)ds].

Here the state dymnamics is n + N +n X n dimensional process (my, Y3, I1;)
governed by equations (4.6),(4.7) and (4.5).
We confine ourselves to a more specific case such that

Ai(t,y) = Ai(t), X(ty) =2(t), Bi(t,y)=Bi(t), Alty)=A().
Let us introduce a probability measure P defined by
dp

3 ST Q(s,ms, Yo he) Y~ [T Q*EE*Q(s,mes,Yo,hs)ds
dP

g

Then under the probability measure P

1
W, = W, — f (SX*)2Q(s, s, Ys, hs)ds
0

is a standard Brownian motion process and the criterion can be rewritten
as
1 ,= o
J= —v“E[e—“fo n(s,ms,YS,hE)dS]‘
H
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In the present case (4.5) is an ordinary differential equation not dependent
on the observation Y; and itself solved. Therefore our state dynamics is
considered to be {my, Y;) governed by

A = (A(t,ms,Ys) + pST*hy)dt + (ST 7dWs

dme = {B(t,me,Yy) + p(ILAT + AS*)he}dt + (L AT + AT*)(SE7)"3dW;.

Now we have arrived at similar situation to the problem considered in section
2, and 3.
Set

z = (y= m)*r ﬁ(t7 z) = (A(t’m7y)’B(ta m, y))*
C(t) = (1), (ILAT+ATH)(), alt) = (2593, (I AT +AS)(SE)75)".

Then, controlled process is described as:

(4.8) dZs = (B(s, Zs) + pl(s)hs)ds + als)dWs, Z;=z.
Introduce the value function on time interval [t, T':

(4.9) w(t,z) = szlp log E[e"fftT (8, %s,s)ds],

Then,

(4.10) s%p Jw,h;T) = %v‘“ew(o‘z"), 2o = (log Sp, ).

The HJIB equation of the value function is the following.
Gu %tr[aoz*(t)Dzw] + B(t, 2)* Dw + ;Vwae*Vuw

(4.11) + sup, {phiC(t)* Dw ~ pn(s, z,h)} =0

w(T,z) =0,

which can be rewritten as
(4.12)
Bu t Ltrlao*(t)D*w] + B(¢, 2)" Dw

A (t, 2 (BE) () Dw + gy (V) ae (Vu) + pr(t 2)

+§(f%ﬁj7(t7 z)*(22*>_17(ﬁa z) =0

w(T,z) =0,
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where (¢, z) = A(t, 2) — r(t,z)1. Noting that
(OET) )" = aalt)

w(t,z)

1 .
setting v(t, z) = el-k as before we obtain the equation for v(t, 2) :

& 4 Ltraa*(t) D] + B(t, 2)* Dv
bt 2)* (S ¢ Do
(4.13)
gtV 2)* (55*) (8, 2) + pr(t 2) o = 0
v(T,z) = 1.

This is nothing but a linear equation and the solution v(¢, z) has the Feynman-
Kac representation:

(4.14) o(t, ) = B,[eTF IF (s Za)ds)
where p )
U(t,2) = g2 (58) (0 2) + (s 2
and
AZs = {85, 2) + TE—C(8) (B 1(s, Lo} + (o)W, 2= 2.
Now we are in a similar situation to the previous section. Namely, w(t, z)

1
is a viscosity solution to (4.12) if and only if v(t, 2) = eTw(2) ig viscosity

solution to (4.13). Since under the assumptions in the present section (4.13)
has a unique viscosity solution expressed by (4.14) we see that (4.12) has
a unique viscosity solution. Moreover under some regularity assumptions
on the coefficients of (4.13) we can see that v(t,z) in (4.14) is sufficiently
smooth and the solution turns out to be a classical solution. In that case,
by setting

At2) = (EE) 0 2) + 0 Vul, )

= L EE) Yyt 2) + SRVt 2))

and solving stochastic differential equation

dZ; = {6t Z5) + i (t)h(t, Zo)}dt + a(t)dW,

A

Zy = (Yo,mq)" = (log §(0),z)*



we can obtain an optimal strategy

The optimal value is

j = .]_-«UME[C'_#.[[)TU(S»"?S:ES)}.
L

Finally we note that if r(t,z,y) = 7(t), then the present problem is

exactly same as the one studied in [13] and the solution w(%, z) of (4.12) is
obtained by solving two kinds of Riccati equations as was seen in [13].
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