Radially symmetric solutions of a chemotaxis model in the critical case

Piotr BILER
Instytut Matematyczny，Uniwersytet Wrocławski， pl．Grunwaldzki 2／4，50－384 Wrocław，Poland； Piotr．Biler＠math．uni．wroc．pl

1 The formulation of the problem

This is a report on a joint work with Grzegorz Karch（Wrocław），Philippe Laurençot（Toulouse）and Tadeusz Nadzieja（Zielona Góra），cf．a part of published results in［5］．

We investigate properties and large time asymptotics of radially sym－ metric solutions of a parabolic－elliptic model of chemotaxis（the simplified Keller－Segel system）either in a disc of \mathbb{R}^{2} or in the whole plane \mathbb{R}^{2} ，in the subcritical and critical cases．

Denoting by $u=u(x, t) \geq 0$ the density of microorganisms（e．g．amoe－ bae），and by $\varphi=\varphi(x, t)$ the concentration of a chemoattractant secreted by themselves，the simplified Keller－Segel system we study herein reads

$$
\begin{align*}
u_{t} & =\nabla \cdot(\nabla u+u \nabla \varphi) \tag{1.1}\\
\varphi & =E_{2} * u \tag{1.2}
\end{align*}
$$

with the space variable x ranging either in $B(0, R) \equiv\left\{x \in \mathbb{R}^{2},|x|<R\right\}$ ， $R>0$ ，or \mathbb{R}^{2} ，and the time variable $t \in(0, \infty)$ ．Here $E_{2}(z)=\frac{1}{2 \pi} \log |z|$
denotes the fundamental solution of the Laplacian in \mathbb{R}^{2}, so that (1.2) leads to the Poisson equation $\Delta \varphi=u$. The system is supplemented with either the no flux boundary condition

$$
\begin{equation*}
\frac{\partial u}{\partial \bar{\nu}}+u \frac{\partial \varphi}{\partial \bar{\nu}}=0 \tag{1.3}
\end{equation*}
$$

where $\bar{\nu}$ denotes the unit normal vector field to the boundary of $B(0, R)$, or a suitable decay condition $u(x, t) \rightarrow 0$ as $|x| \rightarrow \infty$ implying the integrability condition $\int_{\mathbb{R}^{2}} u(x, t) d x<\infty$. Moreover, an initial condition

$$
\begin{equation*}
u(x, 0)=u_{0}(x) \geq 0 \tag{1.4}
\end{equation*}
$$

is added. After a suitable reduction, see [5, (1.5)-(1.7)] (or [4]), the problem may be posed as a nonlinear nonuniformly parabolic equation for the cumulated mass variable $M(s, t)=\int_{B(0, \sqrt{s})} u(x, t) d x$

$$
\begin{equation*}
M_{t}=4 s M_{s s}+\frac{1}{\pi} M M_{s} \tag{1.5}
\end{equation*}
$$

with a nondecreasing continuous initial condition

$$
\begin{equation*}
M(s, 0)=M_{0}(s) \tag{1.6}
\end{equation*}
$$

on either the interval $(0,1)$ or the half-line $(0, \infty)$, together with the boundary conditions:

$$
\begin{equation*}
M(0, t)=0, \quad M(1, t)=\widehat{M} \tag{1.7}
\end{equation*}
$$

or

$$
\begin{equation*}
M(0, t)=0, \quad M(\infty, t)=\widehat{M}, \tag{1.8}
\end{equation*}
$$

respectively. We study the problem (1.5)-(1.6) and either (1.7) or (1.8) when the total mass parameter \widehat{M} belongs to the interval $[0,8 \pi]$.

As it is well known, in the supercritical case $\widehat{M}>8 \pi$ there occurs a lost of the boundary condition at $s=0: \lim _{s \rightarrow 0} M(s, t)>0$ for $t \geq T$ with some
$T>0$, cf. e.g. [2], [11]. This is interpreted as a blow up of solutions of the original chemotaxis system (at $x=0$ for radially symmetric solutions)

$$
\lim _{t \not T_{T}}\|u(t)\|_{H^{1}}=\lim _{t \not \subset T}|u(t)|_{L^{p}}=\lim _{t / T} \int_{\Omega} u(x, t) \log u(x, t) d x=\infty
$$

for each $p>1$, cf. [4, 3, 6]. A fine description of blowing up solutions is fairly complicated, see [12], but for radially symmetric solutions the situation is much simpler. The degeneracy of the elliptic operator $4 s M_{s s}$ at $s=0$ does not allow the diffusion to compensate the growth induced by the convection term $\frac{1}{\pi} M M_{s}$ and $M(0, t) \neq 0$ for $t>T$ holds. On the one hand, we will show that, in the critical case $\widehat{M}=8 \pi$, the blow up in the disc does not take place in a finite time but occurs in infinite time, i.e. the whole mass concentrates at $s=0$ as $t \rightarrow \infty$. We also obtain some temporal decay estimates on $|M(t)-8 \pi|_{L^{1}}$ for large times. On the other hand, if $\widehat{M} \in[0,8 \pi)$, we show the exponential convergence of $M(t)$ towards the unique stationary solution to (1.5)-(1.7) in the disc. The situation is completely different in the case of the whole plane.

2 (Sub)critical case in the disc

The problem (1.5)-(1.7) on (0,1) is well posed whenever $\widehat{M} \in[0,8 \pi]$.
Theorem 2.1 Consider $\widehat{M} \in[0,8 \pi]$ and a continuous nondecreasing function M_{0} satisfying

$$
\begin{equation*}
M_{0}(0)=0 \quad \text { and } \quad M_{0}(1)=\widehat{M} \tag{2.1}
\end{equation*}
$$

There exists a unique function $M \in \mathcal{C}\left([0, \infty) ; L^{2}(0,1)\right) \cap \mathcal{C}_{s, t}^{2,1}((0,1) \times(0, \infty))$ such that

$$
\begin{align*}
& 0 \leq M(s, t) \leq \widehat{M}, M_{s}(s, t) \geq 0 \text { for }(s, t) \in(0,1) \times(0, \infty) \tag{2.2}\\
& M^{*}(t) \equiv \inf _{s \in(0,1)} M(s, t)=0 \text { a.e. in }(0, \infty) \tag{2.3}
\end{align*}
$$

and

$$
\begin{align*}
M_{t} & =4 s M_{s s}+\frac{1}{\pi} M M_{s}, \quad(s, t) \in(0,1) \times(0, \infty), \tag{2.4}\\
M(1, t) & =\widehat{M}, \quad t \in(0, \infty) \tag{2.5}\\
M(s, 0) & =M_{0}(s), \quad s \in(0,1) \tag{2.6}
\end{align*}
$$

Moreover, if there is $\delta \in(0,1)$ such that $M_{0}(s) \leq(8 \pi s) / \delta$ for $s \in(0,1)$, then $M^{*}(t)=0$ for each $t \geq 0$. Observe that if the derivative of M_{0} is finite: $M_{0, s}(0)<\infty$, then the above condition on M_{0} is satisfied with a suitable $\delta>0$.

The idea of the proof of Theorem 2.1 is to consider a uniformly parabolic regularized problem

$$
\begin{align*}
M_{\varepsilon, t} & =4(s+\varepsilon) M_{\varepsilon, s s}+\frac{1}{\pi} M_{\varepsilon} M_{\varepsilon, s},(s, t) \in(0,1) \times(0, \infty) \tag{2.7}\\
M_{\varepsilon}(0, t) & =\widehat{M}-M_{\varepsilon}(1, t)=0, \quad t \in(0, \infty) \tag{2.8}\\
M_{\varepsilon}(s, 0) & =M_{0 \varepsilon}(s), \quad s \in(0,1) \tag{2.9}
\end{align*}
$$

This problem has a unique solution

$$
M_{\varepsilon} \in \mathcal{C}([0,1] \times[0, \infty)) \cap \mathcal{C}_{s, t}^{2,1}((0,1) \times(0, \infty))
$$

and we infer from (2.1), (2.7)-(2.8), and the comparison principle that

$$
\begin{equation*}
0 \leq M_{\varepsilon}(s, t) \leq \widehat{M} \text { and } M_{\varepsilon, s}(s, t) \geq 0 \text { for }(s, t) \in[0,1] \times(0, \infty) \tag{2.10}
\end{equation*}
$$

Moreover, classical parabolic regularity results imply that

$$
\begin{equation*}
\left\|M_{\varepsilon}\right\|_{C_{s, t}^{2+\alpha, 1+\alpha / 2}([\delta, 1] \times[\tau, T])} \leq C(\alpha, \delta, \tau, T) \tag{2.11}
\end{equation*}
$$

for each $T>0, \tau \in(0, T)$ and $\alpha \in(0,1)$, where $0<C(\alpha, \delta, \tau, T)<\infty$ is a constant depending on α, δ, τ and T but independent of $\varepsilon \in(0,1)$.

The key estimate which allows us to control the behavior of solutions for small $s>0$ is

$$
\begin{equation*}
0 \leq \int_{0}^{T} \int_{0}^{1} \frac{M_{\varepsilon}(s, t)\left(8 \pi-M_{\varepsilon}(s, t)\right)}{s+\varepsilon} d s d t \leq C_{1}(T) \tag{2.12}
\end{equation*}
$$

for every $\varepsilon \in(0,1)$ and a constant $0<C_{1}(T)<\infty$ independent of ε. This is obtained by multiplying (2.7) by $-\log (s+\varepsilon)$ and integrating over $(0,1)$. Here we use crucially the relation $0 \leq M_{\varepsilon} \leq \widehat{M} \leq 8 \pi$.

The behaviour of M_{ε} for small times can be inferred from the estimate

$$
\begin{equation*}
\int_{0}^{T} \int_{0}^{1}(s+\varepsilon)\left|M_{\varepsilon, s}(s, t)\right|^{2} d s d t+\int_{0}^{T}\left\|M_{\varepsilon, t}(t)\right\|_{H^{-1}}^{2} d t \leq C_{2}(T) \tag{2.13}
\end{equation*}
$$

for every $\varepsilon \in(0,1)$ and a constant $0<C_{2}(T)<\infty$ independent of ε.
The above estimates permit us to pass to the limit $\varepsilon \rightarrow 0$ with the approximate solutions M_{ε} and obtain a solution M.

In fact, for each continuous increasing initial data $M^{*}(t)=0$ holds for every $t \in(0, \infty)$, not merely for a.e. t. Moreover there is a regularizing parabolic effect for (1.5) on the derivatives of solutions. Namely, the estimate $M_{s}(s, t) \leq C / t$ holds for each $s>0$ and $t>0$. These properties are shown by a local comparison with self-similar solutions discussed in Section 3.
Remark. Using the methods above, similar existence and regularity results can be obtained for the "star problem" considered in [6, Theorem 1(i)] and describing a cloud of self-attracting particles in the gravitational field of a fixed point mass ("star"). Namely, the equation (1.5) with the boundary conditions $M(0, t)=m^{*} \in(0,4 \pi), M(1, t)=\widehat{M} \leq 8 \pi-m^{*}$, and suitable initial conditions, has global solutions satisfying properties similar to those in Theorem 2.1.

Since (1.5) is a convection-diffusion equation, we anticipate that it may enjoy some contraction property with respect to some L^{1}-norm. We actually show the following L^{1}-stability property for solutions.

Theorem 2.2 If M, \bar{M} are two solutions to (1.5)-(1.7) (as in Theorem 2.1) with initial data M_{0} and \bar{M}_{0} satisfying (2.1) with the same $\widehat{M}, \widehat{M} \in[0,8 \pi]$, then $t \longmapsto|\varrho(M(t)-\bar{M}(t))|_{L^{1}}$ is a nonincreasing function of time for each
nonnegative, nonincreasing and concave weight $\varrho \in W^{2, \infty}(0,1)$. Furthermore, if $\widehat{M} \in[0,8 \pi)$,

$$
\begin{equation*}
|M(t)-\bar{M}(t)|_{L^{1}} \leq 2\left|M_{0}-\bar{M}_{0}\right|_{L^{1}} e^{-(4-(\widehat{M} / 2 \pi)) t} \tag{2.14}
\end{equation*}
$$

To prove Theorem 2.2 we consider the difference $N=M-\bar{M}$ which satisfies the equation

$$
\begin{equation*}
N_{t}=\frac{\partial}{\partial s}\left(4 s N_{s}+\frac{1}{2 \pi} N(M+\bar{M}-8 \pi)\right) \tag{2.15}
\end{equation*}
$$

with $N(0, t)=N(1, t)=0$ for a.e. $t \in(0, \infty)$. We prove the $L^{1}((0,1) ; \varrho(s) d s)$ contraction property of solutions. For $\delta \in(0,1)$ and $r \in \mathbb{R}$, we use a convex approximation of $r \longmapsto|r|$, e.g.,

$$
\Phi_{\delta}(r) \equiv\left\{\begin{array}{ccc}
\frac{1}{\delta}\left(|r|-\frac{\delta}{2}\right)^{2} & \text { if } & |r| \in[0, \delta] \\
|r|-\frac{3}{4} \delta & \text { if } & |r| \in(\delta, \infty)
\end{array}\right.
$$

We multiply (2.15) by $\varrho \Phi_{\delta}^{\prime}(N)$ and integrate over $(0,1)$ to obtain

$$
\begin{aligned}
& \frac{d}{d t} \int_{0}^{1} \varrho(s) \Phi_{\delta}(N) d s \\
= & \left.4 s \varrho(s) N_{s} \Phi_{\delta}^{\prime}(N)\right|_{0} ^{1}+\left.\frac{1}{2 \pi} \varrho(s) \Phi_{\delta}^{\prime}(N) N(M+\bar{M}-8 \pi)\right|_{0} ^{1} \\
& -\int_{0}^{1} 4 s \varrho(s) \Phi_{\delta}^{\prime \prime}(N) N_{s}^{2} d s-\int_{0}^{1} 4 s \varrho^{\prime}(s) \Phi_{\delta}^{\prime}(N) N_{s} d s \\
& -\frac{1}{2 \pi} \int_{0}^{1} \varrho(s) \Phi_{\delta}^{\prime \prime}(N) N_{s} N(M+\bar{M}-8 \pi) d s \\
& -\frac{1}{2 \pi} \int_{0}^{1} \varrho^{\prime}(s) \Phi_{\delta}^{\prime}(N) N(M+\bar{M}-8 \pi) d s \\
\leq & -\frac{1}{2 \pi} \int_{0}^{1} \varrho(s) \Phi_{\delta}^{\prime \prime}(N) N N_{s}(M+\bar{M}-8 \pi) d s \\
& -\frac{1}{2 \pi} \int_{0}^{1} \varrho^{\prime}(s) \Phi_{\delta}^{\prime}(N) N(M+\bar{M}-16 \pi) d s \\
& +4 \int_{0}^{1} s \varrho^{\prime \prime}(s) \Phi_{\delta}(N) d s+4 \int_{0}^{1} \varrho^{\prime}(s)\left(\Phi_{\delta}(N)-N \Phi_{\delta}^{\prime}(N)\right) d s .
\end{aligned}
$$

Observe that N_{s} belongs to $L^{\infty}\left((0, \infty) ; L^{1}(0,1)\right), M, \bar{M}$ and N are bounded, and $r \longmapsto r \Phi_{\delta}^{\prime \prime}(r)$ is bounded and converges a.e. towards zero as $\delta \rightarrow 0$. Thus, the Lebesgue dominated convergence theorem ensures that the first term of the right-hand side of the above inequality converges to zero as $\delta \rightarrow 0$. On the other hand, both $r \longmapsto \Phi_{\delta}(r)$ and $r \longmapsto r \Phi_{\delta}^{\prime}(r)$ converge uniformly towards $r \longmapsto|r|$ on \mathbb{R}. Thanks to the boundedness of M, \bar{M} and N, we can pass to the limit as $\delta \rightarrow 0$ in the other terms of the above inequality, and end up with

$$
\begin{align*}
\frac{d}{d t} \int_{0}^{1} \varrho(s)|N| d s \leq & -\frac{1}{2 \pi} \int_{0}^{1} \varrho^{\prime}(s)|N|(M+\bar{M}-16 \pi) d s \\
& +4 \int_{0}^{1} s \varrho^{\prime \prime}(s)|N| d s \tag{2.16}
\end{align*}
$$

Since $M+\bar{M} \leq 2 \widehat{M} \leq 16 \pi$ and ϱ^{\prime} and $\varrho^{\prime \prime}$ are both nonpositive, the right-hand side of (2.16) is nonpositive, from which the first assertion of Theorem 2.2 follows.

We now turn to the decay rate (2.14) and assume that $\widehat{M} \in[0,8 \pi)$. We take $\varrho(s)=2-s$ in (2.16). Since $M+\bar{M} \leq 2 \widehat{M}<16 \pi$, we infer from (2.16) that
$\frac{d}{d t} \int_{0}^{1}(2-s)|N| d s \leq \frac{1}{2 \pi} \int_{0}^{1}|N|(2 \widehat{M}-16 \pi) d s \leq \frac{\widehat{M}-8 \pi}{2 \pi} \int_{0}^{1}(2-s)|N| d s$, whence

$$
\int_{0}^{1}(2-s)|N(t)| d s \leq \int_{0}^{1}(2-s)|N(0)| d s e^{-(4-(\widehat{M} / 2 \pi)) t}
$$

from which (2.14) readily follows.
An immediate consequence of (2.14) with $\bar{M}=M_{b}$ - the (unique) steady state such that $M_{b}(1)=\widehat{M}$, i.e.

$$
\begin{equation*}
M_{b}(s)=8 \pi \frac{s}{s+b}, \quad s \in(0,1), \quad \text { with } \quad b=\frac{8 \pi}{\widehat{M}}-1>0 \tag{2.17}
\end{equation*}
$$

is the exponential decay

$$
\left|M(t)-M_{b}\right|_{L^{1}} \leq 2\left|M_{0}-M_{b}\right|_{L^{1}} e^{-(4-(\widehat{M} / 2 \pi)) t}
$$

The exponential decay rate does not hold true for the critical case $\widehat{M}=8 \pi$ but the following weaker assertion is available

$$
\begin{equation*}
|M(t)-8 \pi|_{L^{1}} \leq \frac{8 \pi}{t} \tag{2.18}
\end{equation*}
$$

For the proof, we put $N(s, t)=M-8 \pi, \varrho(s)=2-s$. We notice that N solves

$$
\begin{equation*}
N_{t}=\frac{\partial}{\partial s}\left(4 s N_{s}+\frac{1}{2 \pi} N M\right) \tag{2.19}
\end{equation*}
$$

with $N(0, t)=-8 \pi$ and $N(1, t)=0$ for a.e. $t \in(0, \infty)$. Keeping the notations from the proof of Theorem 2.2, we multiply (2.19) by $\varrho \Phi_{\delta}^{\prime}(N)$ and integrate over $(0,1)$ to obtain

$$
\begin{aligned}
& \frac{d}{d t} \int_{0}^{1} \varrho(s) \Phi_{\delta}(N) d s \\
\leq & -\frac{1}{2 \pi} \int_{0}^{1} \varrho(s) \Phi_{\delta}^{\prime \prime}(N) N N_{s} M d s-\frac{1}{2 \pi} \int_{0}^{1} \varrho^{\prime}(s) \Phi_{\delta}^{\prime}(N) N M d s \\
& +4 \int_{0}^{1} s \varrho^{\prime \prime}(s) \Phi_{\delta}(N) d s+4 \int_{0}^{1} \varrho^{\prime}(s) \Phi_{\delta}(N) d s,
\end{aligned}
$$

since Φ_{δ}^{\prime} vanishes on a neighbourhood of 0 and $M^{*}(t)=0$, so the boundary terms vanish. We then proceed as in the proof of (2.16) to pass to the limit as $\delta \rightarrow 0$ and end up with

$$
\frac{d}{d t} \int_{0}^{1} \varrho(s)|N| d s \leq \frac{1}{2 \pi} \int_{0}^{1} \varrho^{\prime}(s)(8 \pi-M)|N| d s
$$

i.e.

$$
\frac{d}{d t} \int_{0}^{1}(2-s)|N| d s \leq-\frac{1}{2 \pi} \int_{0}^{1}|N|^{2} d s
$$

We infer from the Cauchy-Schwarz inequality that

$$
\frac{d}{d t} \int_{0}^{1}(2-s)|N| d s \leq-\frac{1}{2 \pi}\left(\int_{0}^{1}|N| d s\right)^{2} \leq-\frac{1}{8 \pi}\left(\int_{0}^{1}(2-s)|N| d s\right)^{2}
$$

whence

$$
|M(t)-8 \pi|_{L^{1}} \leq \int_{0}^{1}(2-s)|N(t)| d s \leq \frac{8 \pi}{t+4 \pi\left|8 \pi-M_{0}\right|_{L^{1}}^{-1}}
$$

3 The problem in the whole plane

The equation (1.5) for $s \in(0, \infty)$ is invariant under the space-time scaling

$$
\begin{equation*}
s \longmapsto R s, \quad t \longmapsto R t, \quad R>0 \tag{3.1}
\end{equation*}
$$

This property has important consequences for the analysis of the problem (1.5)-(1.6) on $(0, \infty) \times(0, \infty)$.

The global in time existence of solutions of that problem can be proved using the ideas of regularizations of the nonlinear term in [11]. An alternative way is to use our previous construction in Theorem 2.1 and the scaling property (3.1) of (1.5). More precisely, if $0 \leq M_{0} \nearrow \widehat{M} \leq 8 \pi$ is a subcritical initial data, then we consider its restriction to the interval ($0, R$). Rescaling M_{0} to $M_{0 R}$ defined on $(0,1), M_{0 R}(s / R)=M_{0}(s) \leq \widehat{M}$ for $s \in(0, R)$, we construct the solution M_{R} of (1.5)-(1.7) with the initial condition $M_{R}(s, 0)=M_{0 R}(s)$. For each $s \in(0,1)$ the functions $M_{0 R}(s) \leq \widehat{M}$ increase with $R \nearrow \infty$ so that, by the comparison principle, $M_{R}(s, t) \leq \widehat{M}$ are also increasing with respect to R. The functions $\widetilde{M_{R}}(s, t)=M_{R}(s / R, t / R)$ defined for $(s, t) \in(0, R) \times(0, \infty)$ solve the equation (1.5) with $\widetilde{M_{R}}(s, 0)=M_{0}(s), s \in(0, R)$. To obtain a global in time solution with analogous regularity properties as in Theorem 2.1, we perform the passage with $\widetilde{M_{R}}$ to the limit $R \rightarrow \infty$.

Since (1.5) is invariant under the scaling (3.1) it is natural to consider selfsimilar solutions of (1.5), i.e. those satisfying $M(R s, R t) \equiv M(s, t)$ for each $R>0$. They have the form $M(s, t)=m(s / t)$ for a function m. The existence of self-similar solutions in the range $\widehat{M} \in[0,8 \pi)$ has been established in,
e.g., [2] and [10] (not necessarily radially symmetric case of the chemotaxis system).

Let us briefly recall the reasoning from [2, Prop. 3, i)]. For $M(s, t)=$ $2 \pi \zeta(s / t)(1.5)$ reads

$$
\begin{equation*}
\zeta^{\prime \prime}+\frac{1}{4} \zeta^{\prime}+\frac{1}{2 y} \zeta \zeta^{\prime}=0 \text { with } y=\frac{s}{t} \tag{3.2}
\end{equation*}
$$

The change of variables $\tau=\frac{1}{2} \log y, v(\tau)=2 y \frac{d \zeta}{d y}(y), w(\tau)=\zeta(y)$ transforms (3.2) into the nonautonomous problem for (u, v) in the plane

$$
\begin{align*}
v^{\prime} & =(2-w) v-\frac{e^{2 \tau}}{2} v, \quad w^{\prime}=v, \quad \quad,=\frac{d}{d \tau} \\
v(-\infty) & =0, w(-\infty)=0 \tag{3.3}
\end{align*}
$$

Evidently, $\lim _{\tau \rightarrow \infty} w(\tau)<4$ because the function $(w-2)^{2}+2 v$ is strictly decreasing along the phase trajectories of the above system.

We consider also an autonomous system

$$
\underline{v}^{\prime}=(2-\underline{w}) \underline{v}-\varepsilon \underline{v}, \quad \underline{w}^{\prime}=\underline{v}
$$

where $\varepsilon>0, \underline{v}=\underline{v}_{\varepsilon}, \underline{w}=\underline{w}_{\varepsilon}$, with the same condition at $\tau=-\infty$. A comparison of these vector fields gives the relation $\underline{w}(\tau) \leq w(\tau)$ for all $\tau \leq \tau_{\varepsilon}$ with $e^{2 \tau_{\varepsilon}}=2 \varepsilon$. Since $\underline{w}(\tau)=2(2-\varepsilon) A e^{(2-\varepsilon) \tau}\left(1+A e^{(2-\varepsilon) \tau}\right)^{-1}$ with an arbitrary $A>0$ is a solution of the auxiliary system, so $\underline{w}\left(\tau_{\varepsilon}\right)=2(2-$ ع) $A(2 \varepsilon)^{1-\varepsilon / 2}\left(1+A(2 \varepsilon)^{1-\varepsilon / 2}\right)^{-1}$ and $\sup Z=\lim _{y \rightarrow \infty} \zeta(y)=\sup w(\tau) \geq$ $\lim \sup _{\varepsilon \rightarrow 0, \tau \leq \tau_{\varepsilon}, A>0} \underline{w}(\tau)=4$.

We prove that the asymptotics of general solutions of (1.5)-(1.6), (1.8) for $0<\widehat{M}<8 \pi$ is described by that of self-similar solutions, i.e.

$$
0 \leq \frac{m(s / t)-M(s, t)}{m(s / t)} \rightarrow 0 \text { as } t \rightarrow \infty
$$

Here m denotes the self-similar solution with $m(\infty)=\widehat{M}$. The proof involves analysis of the family of suitable scalings of the solution M, and the
uniqueness property of self-similar solutions with a given mass $\widehat{M} \in[0,8 \pi)$. A related result for the original chemotaxis system has been recently announced in [8].

Looking at the problem on a finite interval (0,1), one might suspect that $M(s, t) \rightarrow 8 \pi$ as $t \rightarrow \infty$ but for $s \in(0, \infty)$ the picture is much more complicated. First of all, nontrivial solutions of the steady state problem (1.5)-(1.6), (1.8) on $(0, \infty)$ exist for $\widehat{M}=8 \pi$ (only!) and are parametrized by $b>0$:

$$
\begin{equation*}
M_{b}(s)=8 \pi \frac{s}{s+b}, \quad b>0 \tag{3.4}
\end{equation*}
$$

Second, if M_{0} satisfies the condition $\int_{0}^{\infty}(8 \pi-M(s, t)) d s<\infty$, the solution $M(., t)$ converge pointwise to 8π as $t \rightarrow \infty$, but does not converge to 8π in the L^{1} sense. Indeed, for those solutions (they correspond to solutions u of the original chemotaxis system (1.1)-(1.2) possessing the second moment, i.e. $\left.\int_{\mathbb{R}^{2}}|x|^{2} u(x, t) d x<\infty\right)$ we have

$$
\frac{d}{d t} \int_{0}^{\infty}(8 \pi-M(s, t)) d s=32 \pi-\frac{(8 \pi)^{2}}{2 \pi}=0
$$

since $4 s M_{s}(s, t) \rightarrow 0$ as $s \rightarrow 0$ and as $s \rightarrow \infty$. To prove the above, we begin with M_{0} such that $\left(8 \pi-M_{0}\right)$ has compact support in $[0, \infty)$. From the construction of M as the limit of $\widetilde{M_{R}}$'s, it is easy to conclude using comparison principle that $M(s, t) \rightarrow 8 \pi$ for each $s>0$ when $t \rightarrow \infty$. The remaining part follows from the L^{1} contraction property $|M(t)-\bar{M}(t)|_{L^{1}} \leq$ $\left|M_{0}-\bar{M}_{0}\right|_{L^{1}}$ proved as in Theorem 2.2 with $\varrho(s) \equiv 1$. Indeed, M_{0} such that $\left(8 \pi-M_{0}\right) \in L^{1}(0, \infty)$ can be approximated by initial data with $\left(8 \pi-M_{0}\right)$ of compact support. Combining monotonicity properties of M^{\prime} 's and the L^{1} contraction property, the desired pointwise convergence follows.

To prove the stability of steady states (3.4), we will interprete (1.5) as a nonlinear Fokker-Planck type equation considered in [1], and we will employ a family of Lyapunov functionals for the dynamical system associated with (1.5)-(1.6), (1.8) in the $L^{1}(0, \infty)$-metric.

Theorem 3.1 The function $\mathcal{W}_{b}(M)=\int_{0}^{\infty} w_{b}(M(s, t)) d s$, where the entropy density w_{b} is defined as

$$
\begin{equation*}
w_{b}(M)=M \log \frac{M}{M_{b}}+(8 \pi-M) \log \frac{8 \pi-M}{8 \pi-M_{b}} \tag{3.5}
\end{equation*}
$$

is finite for each M such that $\left(M-M_{b}\right) \in L^{1}(0, \infty), M_{b_{1}} \leq M \leq M_{b_{2}}$ for some $b_{1}>b>b_{2}>0$. Moreover, this is nonincreasing along the trajectories $M(t)=M(., t)$ of the dynamical system (1.5)-(1.6), (1.8)

$$
\begin{equation*}
\frac{d \mathcal{W}_{b}}{d t} \leq-\frac{1}{2 \pi} \int_{0}^{\infty} s M(8 \pi-M)\left|\frac{\partial}{\partial s}\left(\log \frac{M}{8 \pi-M} \frac{8 \pi-M_{b}}{M_{b}}\right)\right|^{2} d s \leq 0 \tag{3.6}
\end{equation*}
$$

This implies that if M_{0} is such that $W_{b}\left(M_{0}\right)<\infty$ and $\left(M_{0}-M_{b}\right) \in L^{1}(0, \infty)$ for some $b>0$, then $\lim _{t \rightarrow \infty} \mathcal{W}_{b}(t)=0$, and therefore (by a Csiszár-Kullback type lemma)

$$
\lim _{t \rightarrow \infty}\left|M(t)-M_{b}\right|_{L^{1}}=0
$$

Local attracting property of the stationary solutions M_{b} is a rather weak property. In particular, this does not give any information on the asymptotic behavior of solutions starting from data like, e.g., $M_{0}(s)=8 \pi \frac{s}{s+2+\cos s}$ which satisfy the relation $M_{3} \leq M_{0} \leq M_{1}$, but $M_{0}-M_{b} \notin L^{1}(0, \infty)$ for any $b>0$. All this shows that the long time behavior of solutions in the critical case may be extremely complicated and even chaotic.

Remark. The problem of the chemotaxis (1.1)-(1.4) in the whole plane in the subcritical case $\widehat{M}<8 \pi$, without radial symmetry assumptions, has been recently studied in [9]. In particular, the authors proved the global in time existence of solutions using logarithmic Sobolev inequalities.

Using the approach via radially symmetric decreasing rearrangements in [7] we might use the results here to give an alternative construction of global in time solutions for $\widehat{M} \leq 8 \pi$, and to give a flavor of the diversity of locally attracting solutions for the problem without radial symmetry. Indeed, results from [7] imply that, roughly speaking, the existence of solutions of (1.1)-(1.4)
is controlled by the existence of solutions to the radially symmetric problem given by (1.5)-(1.6), (1.8) with the initial condition M_{0} obtained from the radially symmetric decreasing rearrangement of u_{0}.

4 Supercritical case in \mathbb{R}^{2}

Let us recall some results from the preprint [11] (Theorems 2.7, 3.5, 4.4) related to the supercritical case of equation (1.5) on $(0, \infty)$, i.e. for $\widehat{M}>8 \pi$.

First, the classical solution of (1.5) (that possesses the second moment - which was not explicitly stated in [11], cf. [3], [4]) blows up in a finite time: there is $0<T<\infty$ such that $\lim _{t / T} M(s, t) \geq 8 \pi$ for each $s>0$. This means that the boundary condition at $s=0$ is lost, $M^{*}(t)$ jumps to 8π instantaneously at $t=T$.

Moreover, there exists a continuation of $\left.M, M \in \mathcal{C}^{\infty}(0, \infty) \times(0, \infty)\right)$, past the blow up time T, satisfying (1.5), (1.6) for all $t>0$, and the quantity $M^{*}(t)$ strictly increases for $t>T$. Such a global in time smooth solution - a continuation of the classical solution for $t<T$ - is unique in $\mathcal{C}^{\infty}((0, \infty) \times(0, \infty))$, and satisfies $\lim _{t \rightarrow \infty} M(s, t)=\widehat{M}$ for each $s \geq 0$. Moreover, $\lim _{t \rightarrow \infty} M^{*}(t)=\widehat{M}$: the whole mass concentrates at the origin in the infinite time, unlike the critical $\widehat{M}=8 \pi$ (nontrivial steady states exist) and subcritical cases $M^{*}<8 \pi$ (mass spreads to infinity).

Acknowledgements. The preparation of this paper was partially supported by the KBN (MNI) grant 2/P03A/002/24, and by the EU network HYKE under the contract HPRN-CT-2002-00282.

References

[1] A. Arnold, P. A. Markowich, G. Toscani, A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equi-
librium for Fokker-Planck type equations, Comm. Partial Diff. Eq. 26 (2001), 43-100.
[2] P. Biler, Growth and accretion of mass in an astrophysical model, Appl. Math. (Warsaw) 23 (1995), 179-189.
[3] P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles III, Colloq. Math. 68 (1995), 229-239.
[4] P. Biler, D. Hilhorst, T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles II, Colloq. Math. 67 (1994), 297-308.
[5] P. Biler, G. Karch, Ph. Laurençot, T. Nadzieja, The $8 \pi-$ problem for radially symmetric solutions of a chemotaxis model in a disc, 1-20, Topol. Methods Nonlinear Anal., to appear.
[6] P. Biler, T. Nadzieja, A nonlocal singular parabolic problem modelling gravitational interaction of particles, Adv. Differential Equations, 3 (1998), 177-197.
[7] J. I. Diaz, T. Nagai, J.-M. Rakotoson, Symmetrization techniques on unbounded domains: application to a chemotaxis system on \mathbb{R}^{N}, J. Differential Equations 145 (1998), 156-183.
[8] J. Dolbeault, personal communication, September 2005.
[9] J. Dolbeault, B. Perthame, Optimal critical mass in the two dimensional Keller-Segel model in \mathbb{R}^{2}, C. R., Math., Acad. Sci. Paris 339 (2004), 611-616.
[10] Y. Naito, T. Suzuki, Self-similar solutions to a nonlinear parabolicelliptic system, Proceedings of Third East Asia Partial Differential Equation Conference, Taiwanese J. Math. 8 (2004), 43-55.
[11] M. Primicerio, B. Zaltzman, Global in time solution to the KellerSegel model of chemotaxis, 1-18, preprint 2003.
[12] T. Suzuki, "Free Energy and Self-Interacting Particles", PNLDE 62, Birkhäuser: Boston, Basel, Berlin, 2005.

