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Abstract

In 1976, Paul Erd6s conjectured that there is an integer vo(r) such that for
every v > vo(r) and v = 1,3 (mod 6), there exists a Steiner triple system of
order v containing no i blocks on i + 2 points for every 1 < i <r. Such an
STS is said to be r-sparse. This article surveys recent developments on the
existence of r-sparse trile systems and related designs.

1 Introduction

A Steiner triple system S of order v, briefly STS(v), is an ordered pair (V,B),
where V is a finite set of v elements called points, and B is a set of 3-element
subsets of V called blocks, such that each unordered pair of distinct elements of V
is contained in exactly one block of B. It is well-known that an STS(v) exists if
and only if v = 1,3 (mod 6); such orders are called admissible.

Let G (n;m) denote a 3-uniform hypergraph of » vertices and m edges, that
is, 3-tuples. Since an STS(v) contains exactly v(v — 1)/6 triples, it can be con-
sidered to be a special G®) (v;v(v—1)/6). In 1976, Erd6s [10] conjectured that
for r > 4, there is an integer vo(r) such that for every v > vo(r), v = 1,3 (mod
6), there exists a Steiner triple system on v elements containing no G0 (k+2;k)
for every 1 < k <r. Such an STS is said to be r-sparse. Since the same pair of
points appear twice in every GO (k+2;k) for 1 < k < 3,every STS(v) is 3-sparse.
Obviously, every r-sparse STS(v), r > 2, is also (r — 1)-sparse.
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The Erd6s r-sparse conjecture, and especially the problem of characterizing
those v for which there exists an r-sparse STS(v) have been studied for a long
time. One direction is regarding the r-sparse conjecture as an extremal problem on
hypergraphs. In fact, Erd6s posed the conjecture as a problem related to extremal
set theory on hypergraphs. Brown, Erd6s and S6s {2] proved:

Theorem 1.1 (Brown, Erdés and Sos) [2] Let L(k, ) be the family of all noniso-
morphic 3-uniform hypergraphs with | edges on k vertices and let ex(n, L(k,l)) be
the largest positive integer m such that there exists a triple system with m triples
on n vertices containing no member of L(k,l). Then,

ex(n, L(k+2,K)) < %-(n- = 1)+ 1),

k+1

Let V(k+2,k) = Ulj‘zz L{j-+2, j). By probabilistic methods, Lefmann, Phelps
and Rodl] [22] showed that for every positive integer &, & > 2, there exists ¢; such
that ex(n, V{(k+2,k)) > c; - n%. They also gave the following theorem.

Theorem 1.2 (Lefmann, Phelps and Rodl) [22] There exists a positive constant
¢ > 0, such that every Steiner triple system of order v contains a G® (k+2;k) for

. logv
somek <c —_Lioglogv‘

On the other hand, a lot of construction techniques for r-sparse STSs of partic-
ular small r and related triple systems have been developed. A G0 (k;!) appearing
in a triple system is often called a “configuration” in recent related papers and so
we shall use the same term here.

A (k,I)-configuration in an STS is a set of [ blocks whose union contains
precisely k points. An STS is r-sparse if and only it contains no (k +2,k)-
configuration for every 1 < k <r. Most of constructions for r-sparse triple systems
and related designs mainly concern with two particular configurations, Pasches
and mitres. The unique (6,4)-configuration, called the Pasch configuration, is
described by six distinct points on four blocks {a,b,c}, {a,d,e}, {f,b,d} and
{f,c,e}. One of two (7,5)-configurations is called the mitre, described by seven
distinct points on five blocks {a,b,e}, {a,c, f}, {a,d,g}, {b,c,d} and {e, f,g};
a is referred to as the centre or central element of the mitre and the unique pair
of blocks with no common point, that is, {b,c,d} and {e, f,g}, is referred to as
the parallel blocks. The other (7,5)-configuration, the mia, is obtained by join-
ing two noncollinear points in a Pasch configuration: {a,b,c}, {a,d,e}, {f,b,d},
{f,c,e} and {g,c,d}. An STS is said to be anti-Pasch or anti-mitre if it contains



no Pasch configuration or mitre configuration, respectively. In particular, an anti-
Pasch STS does not contain a mia configuration. Hence, an STS is 5-sparse if it is
both anti-Pasch and anti-mitre.

As well as in combinatorial design theory, 4- and 5-sparse triple systems are
also important in some applications to information theory (see, for example, Chee,
Colbourn and Ling [5], Johnson and Weller [21], Vasic, Kurtas and Kuznetsov
[29] and Vasic and Milenkovic [30]), and hence constructions for an r-sparse STS
are studied extensively from both sides.

This article briefly surveys recent developments on the existence of r-sparse
trile systems and related designs. In section 2, we briefly give a histrical survey on
4-sparse STSs and related designs. Anti-mitre and 5-sparse STSs are considered
in section 3. In section 4, we list recent results on an STS with higher sparseness.
Mentioned are existence of a 6-spasrse STS, a triple system with highest sparse-
ness at the time of writing, and nonexistence of an STS with high sparseness
having particular automorphisms. Proofs for some unpublished theorems shall be
provided in future papers.

2 4-sparse systems

In this section, we give a brief survey on the developments on the ErdSs r-sparse
conjecture for r = 4. We also remark about 4-sparse STS with additional proper-
ties.

It is known that the unique STS(7), and both nonisomorphic STS(13), contain
Pasch configurations, while the unique STS(9) is anti-Pasch. Also, it is known
that a class of the Netto system is 4-sparse (see Netto [25] and Robinson [26]).

Lemma 2.1 (Robinson [26]) There exists a 4-sparse STS(p®) for prime p =19
(mod 24), and o a nonnegative integer.

It is well-known that the points and lines of AG(n, 3), the n-demensional affine
space, forms the elements and triples of a 4-sparse STS(3").

Brouwer [1] gave a more general construction for prime powers and proved
the following theorem:

Theorem 2.2 (Brouwer [1]) For g = 1 (med 6), g = p%, p & {7,13} a prime,
there is a 4-sparse STS(q) whenever p = 1,3 (mod 8) or o =0 (mod 2).
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The first results on 4-sparse systems for non-prime powers are due to Brouwer
[1] and Doyen [9]. They observed that the Bose construction for triple systems
over the additive group of Z, can generate 4-sparse STS(v) under a certain restric-
tion. Brouwer [1] and Griggs, Murphy and Phelan [19] extended this result and
constructed a 4-sparse STS(v) for all v = 3 (mod 6).

Theorem 2.3 (Brouwer [1] and Griggs, Murphy and Phelan [19]) For allv=3
(mod 6), there exists a 4-sparse STS(v).

Also, Brouwer [1] refined the Erd6s r-sparse conjecture for the case r = 4 to
assert that a 4-sparse STS(v) exists for all v =1 or 3 (mod 6) except v =7 and
13. Many partial results had been developed for this conjecture (see Colbourn and
Rosa [7]). In particular, by developing several new constructions, Ling, Colbourn,
Grannell and Griggs [24] extended substantially the spectrum of 4-sparse triple
systems: ‘

Theorem 2.4 (Ling, Colbourn, Grannell and Griggs [24]) Suppose thatv=1,3
(mod 6) and v # 13,31,67 (mod 72). Then there exists a4-sparse STS (v) provided
thatv €7,13.

To complete the remaining orders stated in the theorem avobe, Grannell, Griggs
and Whitehead [18] developed a construction employing auxiliary designs.

An STS(u,—m) is a triple (U,M,B), where U is a set of points having car-
dinality u, M C U has cardinality m, and B is a collection of triples of points
with the property that every pair of points {a,8}, with a € U, § € U\ M ap-
pears in precisely one triple from B, and no pairs {a, B} with a,§ € M appears
in any triple from B. An STS(u,—m) is said to be m-bipartite if the points
of U\ M can be partitioned into two classes A and B, each of cardinality n,
in such a way that no triple of the design are labelled (M,A,A) or (M,B,B).
While a quadrilateral-free STS(v), that is, an anti-Pasch STS(v) is referred to
as a QFSTS(v), an m-bipartite STS(u, —m) containing no Pasch configuration is
denoted briefly by BQFSTS{u, —m).

Theorem 2.5 (Grannell, Griggs and Whitehead [18]) Suppose that there exist
a 4-sparse STS(2n+ m) and a BQFSTS(2n+ m, —m), where n =3 or n > 5.
Suppose also that there exists a 4-sparse STS(u). Then there exists a 4-sparse
STS(n(u—1)+m).
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For example, to cover the class v = 31 (mod 72), write v = n(u— 1) +m and
consider # = 6t +3, n =12, m = 7. Then, by constructing BQFSTS(31,~7)
directly and applying Theorem 2.5, we can construct a 4-sparse STS of the class.

Grannell, Griggs and Whitehead [18] constructed BQFSTS, which finally com-
plete the remaining classes that were left open in Theorem 2.4, and established the
Brouwer’s conjecture.

Theorem 2.6 (Grannell, Griggs and Whitehead) [18] There exists a 4-sparse
STS(v) ifand only if v=1,3 (mod 6) and v #7,13.

This implies that ErdSs’ conjecture is true for 7 = 4 and vp(4) = 13. In the rest
of this section, we briefly mention the existence of 4-sparse STSs with additonal
properties.

An STS (V,B) is said to be resolvable if there exists a partition P = {P(, P»,..., P }
of B such that each part P; (called parallel class) is a partition of V. A resolvable
STS is also refered to as a Kirkman triple system and is denoted briefly KTS. A
KTS is known to exist for all v = 3 (mod 6).

Chee, Colbourn and Ling [5] showed that 4-sparse KTSs are useful for the
disk storage system called Redundant Ararrys of Independent Disks (RAID) and
constructed such triple systems.

Theorem 2.7 (Chee, Colbourn and Ling) [5] For allv =9 {mod 18), there ex-
ists a 4-sparse KTS(v).

Johnson and Weller [21] point outed the usefulness of 4- and 5-sparse KTSs
in low-density parity-check (LDPC) codes. Construction methods for 4- and 5-
sparse STSs with simple automorphisms, espesially cyclic automorphisms, are
also important in LDPC codes. Such an STS shall be considered in section 4.

3 anti-mitre and 5-sparse systems

In this section, we consider the existence of anti-mitre and 5-sparse Steiner triple
systems. The first results on anti-mitre STSs were obtained by Colbourn, Mendel-
sohn, Rosa and Sirah [6]. They gave a recursive construction called “doubling
construction” and a generalization of the Bose construction for anti-mitre systems.

Theorem 3.1 (Colbourn, Mendelsohn, Rosa and Sirah) [6] If there exists an
anti-mitre STS(v) then there exists an anti-mitre STS(2v+1).
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Theorem 3.2 (Colbourn, Mendelsohn, Rosa and Sirai) [6] There exists an
anti-mitre STS(v) for v=3,9 (mod 18) and v # 9.

They also showed that each Netto system is anti-mitre and conjectured as fol-
lows:

Conjecture 3.3 (Colbourn, Mendelsohn, Rosa and Sirai) [6] There exists an
anti-mitre STS(v) if and only if v=1,3 (mod 6) and v # 9.

Ling [23] and the author [12, 13] presented further results on the existence of
an anti-mitre STS, and eventually Wolfe [31] settled the conjecture.

Theorem 3.4 (Wolfe) [31] There exists an anti-mitre STS(v) ifand only ifv=1,3
(mod 6) and v #9.

Also, much progress had been made on 5-sparse STSs. Let G be an abelian
group. An STS (V,B) is said to be transitive on G if V = G and for every a € G
and {a,b,c} € B, {a+oa,b+a,c+a} € B. If G is the cyclic group, the STS is
said to be cyclic. :

For small orders v, Colbourn, Mendelsohn, Rosa and Sirafi [6] examined
cyclic STS(v), checking whether each system is anti-Pasch, anti-mitre or both.

Theorem 3.5 (Colbourn, Mendelsohn, Rosa and §iréi‘1) [6] For 19<v <97
and v = 1,3 (mod 6), there is a cyclic 5-sparse STS(v) except possibly when
v € {21,25,27,31}. In these cases, there is a cyclic STS(v) which is anti-Pasch
but not anti-mitre, and a cyclic STS(v) which is anti-mitre but not anti-Pasch.

Ling [23] gave a recursive constructions for 5-sparse STSs.

Theorem 3.6 (Ling) [23] If there exists a transitive 5-sparse STS(v), v= 1 (mod
6) and a 5-sparse STS(w), then there exists a 5-sparse STS(vw).

The author [13] generalized the BQSTS construction, that is, Theorem 2.5 and
showed that there exists a 5-sparse STS(v) for all v = 1,19 (mod 54) except for
v = 109. Recently, Wolfe [32] constructed a 5-sparse STS for all v = 3 (mod 6)
and v > 21. He also proved that there exists a 5-sparse STS for, in some sense,
almost all admissible orders.

Let S and T be two subsets of Z™ = {1,2,3,... }. Define the arithmetic density
of § as compared to T as:

x <
4(S:T) = lim H{xesSNT x_n}].
n—e xeT:x<n}
Theorem 3.7 (Wolfe) [32] The arithmetic density of the spectrum of 5-sparse
Steiner triple systems as compared to the set of all admissible orders is 1.



4 Higher sparseness and automorphisms

In this section, we list very recent results on the existence of an STS with higher
sparseness. As far as the author knows, these are all knowledge on r-sparse STSs
for r > 6 at the time of writing this article.

In the previous two sections, we saw that the ErdGs r-sparse conjecture is true
for r =4 and that a 5-sparse STS exists for almost all admissible orders. However,
little is known about the existence of an STS with higher sparseness. In fact, no
example of r-sparse systems is realized for r > 7 (and v > 3), and no affirmative
answer to the r-sparse conjecture is known in this range. In what follows, we
ignore the two trivial systems, that is, STS(1) and STS(3), unless they play a
significant role.

Our primary focus in this section is on relations between group actions on an
STS and its sparseness. An automorphism of an STS(v) = (V,B) is a permutation
on V that maps each block in B to a block of B, and the full automorphism group
is the group of all automorphisms of the STS. A flag of an STS (V,B) is a pair
(x,B) withx €V and B€ B. .

An STS is said to be point-transitive if its full automorphism group contains
a subgroup which acts transitively on the point set. Similarly, we say that an
STS is block-transitive, flag-transitive, 2-transitive, or 2-homogeneous if its full
automorphism group contains a subgroup which acts transitively on the blocks,
flags, ordered pairs of points, or unordered pairs of points, respectively.

Some classical constructions for STSs involving regular actions of GF(g) on
the point set generate 4- and 5-sparse STSs (see Colbourn and Rosa [7]). The
direct product construction for 5-sparse triple systems developed by Ling [23],
that is, Theorem 3.6 employed an abelian group which acts regularly on the point
set. Forbes, Grannell and Griggs [11] discovered a construction method for block-
transitive STSs and found twenty-nine examples of 6-sparse STSs in the residue
class 7 modulo 12, with orders ranging from 139 to 4447. They also developed a
recursive construction similar to Theorem 3.6 for block-transitive 6-sparse STSs
and constructed infinitely many examples of such STSs. No 6-sparse STS other
than these block-transitive systems is known and these have the highest sparseness
at the time of writing.

Frequently, actions of a finite group on a triple system have helped us discover
an r-sparse STS and develop a construction method. In fact, by checking for
r-sparseness the block-transitive STSs arising from one of known constructions,
Forbes, Grannell and Griggs [11] found the first examples of 6-sparse STSs. By
limiting the search to point-transitive STS(v) over cyclic groups, that is, cyclic
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STS(v), Colbourn, Mendelsohn, Rosa and Siraii [6] found a 5-sparse STS(v) for
nearly all admissible v < 100. Most of the known recursive constructions of 7-
sparse STSs for r > 5 employs transitive actions of automorphism groups.

However, the author showed that such an STS can not have high sparseness.
While the Erd8s r-sparse conjecture says that for any r > 4 an r-sparse STS(v)
exists for all sufficiently large admissible v, every point-transitive STS over an
abelian group is at most 12-sparse.

Theorem 4.1 (Fujiwara) [18] For every r > 13, there exists no point-transitive
STS over an abelian group.

A point-transitive STS (V,B) over a group G has a short orbit if there exist
a block B € B and an element x € G such that B* = B and x # 1, the identity
element. (V,B) has a Zs-orbit if B contains a block having the form {a,a",axz},
where x*> = 1. Z3-orbit privent an STS from being high-sparse.

Theorem 4.2 (Fujiwara) [15] Assume that there exists a point-transitive r-sparse
STS over an abelian group G. Further, if the STS has a Zs-orbit, then r < 9.

A cyclic STS(v) can be considered as a point-transitive STS whose full auto-
morphism group contains a cyclic group of order v as a subgroup acting regularly
on the point set. A cyclic STS(v) exists for all admissible v except for 9. Theorem
3.5 provides many examples of cyclic 5-sparse STSs. The author [14] developed
some general recursive constructions for cyclic 4- and 5-sparse STSs, and con-
structed such an STS for infinitely many orders.

Theorem 4.3 (Fujiwara) [14] There exists a cyclic 4-sparse STS(v) for v=3
(mod 6) satisfying one of the condition (i) (v,27) #9, (i) v =0 (mod 7), or (iii)
v=0(mod 5).

Theorem 4.4 (Fujiwara) [14] If there exist a cyclic S-sparse STS(v) and a cyclic
5-sparse STS(w), where vyw =1 (mod 6), then there exists a cyclic 5-sparse
STS(vw).

Theorem 4.5 (Fujiwara) [14] If there exist a cyclic 5-sparse STS(v) ,v=1 (mod
6) and a cyclic 5-sparse STS(w), where v and w are relatively prime, then there
exists a cyclic 5-sparse STS(vw).

However, by Theorems 4.1 and 4.2, we have:



Corollary 4.6 (Fujiwara) [15] For every r > 13, there exists no cyclic r-sparse
STS(v). In particular, when v = 3 (mod 6), no cyclic r-sparse STS(v) exists for
every r 2> 10.

The classification of STSs admitting other types of transitive actions and The-
orem 4.1 gives further nonexistence results on an STS with higer sparseness. The
details shall be presented in a future paper so we only mention the consequence.

Corollary 4.7 (Fujiwara) [15] For every r > 5, there exists no 2-transitive r-
sparse STS.

Corollary 4.8 (Fujiwara) [15] For every r > 6, there exists no 2-homogeneous
r-sparse STS.

Corollary 4.9 (Fujiwara) [15] For every r > 6, there exists no flag-transitive r-
sparse STS.

Corollary 4.10 (Fujiwara) [15] For every r > 13, there exists no block-transitive
r-sparse STS.

It is notable that the construction developed by Grannell, Griggs and Murphy
[17] can generate finitely many examples of 6-sparse STSs but none of them is
7-sparse (see Forbes, Grannell and Griggs [11]).

We next consider Steiner triple systems admitting a nontrivial automorphism
with fixed points. ‘

An STS(v) is said to be 1-rotational over a group G if it admits G as a subgroup
of the full automorphism group and G fixes exactly one point and acts regularly on
the other points. A 1-rotational automorphism is closely related to an involution.

An STS is said to be reverse if it admits an involutory automorphism fixing
exactly one point. Any I-rotational STS is reverse. Indeed, for every l-rotational
STS(v) over a group G, the order of G is v— 1 and even. Hence, G has at least one
involution, '

Buratti [3] showed that there exists a 1-rotational STS(v) over an abelian group
if and only if v = 3,9 (mod 24) or v = 1,19 (mod 72). He also gave partial
answers for an arbitrary group. The combined work of Doyen [8], Rosa [27]
and Teirlinck [28] established the fact that the spectrum for reverse STS is the
set of all v=1,3,9 or 19 (mod 24). An STS admitting an automorphism with
more than one fixed point is known to exist (see Hartman and Hoffman [20]) and
may also be considered. However, the fixed points must induce a smaller STS as a
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subsystem, and hence sparseness of the original Steiner system can not exceed that
of the small sub-STS. Most interesting is the case when the induced subsystem is
a trivial STS, that is, one point and no block, or three points and one block. The
following theorem shows that such an STS is at most 4-sparse.

Theorem 4.11 (Fujiwara) [15] For every r > 5, there exists no r-sparse STS
admitting an involutory automorphism fixing exactly one or three points.

The following is an immediate corollary of the theorem above.

Corollary 4.12 (Fujiwara) [15] For every r > 5, there exists no reverse r-sparse
STS. -

Since a 1-rotational STS is also reverse, we have:

Corollary 4.13 (Fujiwara) [15] For every r > 5, there exists no 1-rotaional r-
sparse STS.

It is well known that the points and lines of AG(n,3) forms the elements and
triples of a 1-rotaional, and thus reverse, 4-sparse STS(3"). In this sense, the
bounds of Theorem 4.11, Corollary 4.12 and 4.13 are best possible.

Corollary 4.13 limits the sparseness of a I-rotational STS over any finite group
even if it is nonabelian. The same bound for a rotational group action fixing three
points inducing the other trivial subsystem follows from the same argument. How-
ever, if groups are restricted to abelian ones, we can easily obtain much stronger
theorem. In fact, sparseness is limited to the lowest.

Theorem 4.14 (Fujiwara) [15] If the full automorphism group of an STS § con-
tains an abelian subgroup which fixes more than one point and acts transitively
on the other points, then S is not 4-sparse.

In the remainder of this paper, we list two sporadic results on automorphisms,
similar to those we have discussed.

An STS is said to be bicyclic if it admits a permutation on points consisting of
a pair of cycles of length £ and v — £ as an automorphism. Calahan and Gardner
[4] proved that there exists a bicyclic STS(v) for k > 1 if and only if v= 1,3 (mod
6), k| v,and either k = 1 (mod 6) and 3k | v; or k = 3 (mod 6) and k # 9.



Theorem 4.15 (Fujiwara) [15] Let S be a bicyclic r-sparse STS and | be length
of the smaller cycle of its bicyclic automorphism. Then,

4 when I=1,3,
r<d< 9 when =3 (mod®6),
12 when I=1 (mod6).

An STS is said to be 1-transrotational if it admits an automorphism consisting
one fixed point, a transposition and a cycle of length (v—3). Gardner [16] showed
that a 1-transrotational STS(v) exists if and only if v = 1,7,9, 15 (mod 24).

Theorem 4.16 (Fujiwara) [15] For every r > 5, there exists no 1-transrotational
r-sparse STS .
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