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Abstract

Combinatorial characterization of optimal authentication codes with arbitration
was previously given by several groups of researchers in terms of affine a-resolvable
$+$ BIBDs and $\alpha$-resolvable designs with some special properties, respectively. In
this paper, we revisit this known characterization and restate it using a new idea of
GOB designs. This newly introduced combinatorial structure simplifies the char-
acterization, and enables us to extend Johansson’s well-known family of optimal
authentication codes with arbitration to any finite projective spaces with dimen-
sion greater than or equal to 3.

1 Introduction

Authentication codes (A-codes) were invented in 1974 by Gilbert, MacWilliams and
Sloane [2] for protecting the integrity of information. These codes involve three active
parties: a transmitter $T$ , a receiver $R$ , and an opponent 0. The transmitter $T$ trans-
mits messages to the receiver $R$ using a communication channel. The opponent $O$ has
access to the channel, and can interfere with the contents of cryptograms transmitted via
this channel. Two different types of attacks from the opponent $O$ , impersonation and
substitution attacks, are usually considered. A game-theoretic model for authentication
codes was developed in 1982 by Simmons [13]. Many other people also contributed to
the theory of authentication codes, see, for example, [6, 3, 16, 12].

However, the above model is restricted. In this conventional A-code, $T$ and $R$ use the
same key, and thus they should trust each other, which is not always the case in reality
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It is quite possible that $T$ sent a message and then later denies having sent it or, on the
other hand, $R$ claims to have received a message that was never sent by $T$ .

Simmons $[14, 15]$ then introduced an extended authentication model called authenti-
cation codes with arbitration, or simply A -codes, to provide protection against deceptions
from $T$ and $R$ as well as that from $O$ . This model for $\mathrm{A}^{2}$-codes includes a fourth party, the
arbiter $A$ , who arbitrates if $T$ or $R$ cheats. The arbiter $A$ does not take part in any com-
munication activities on the channel. By definition, $A$ has access to all key information
and does not cheat.

For this model of A -codes, Johansson [4] derived entropy based lower bounds on the
cheating probabilities and the sizes of keys, which were later generalized to $\mathrm{A}^{2}$ codes pro-
tecting spoofing of high order by Wang, Safavi-Naini and Pei [18]. Kurosawa and Obana
[5] showed combinatorial lower bounds on them. Obana and Kurosawa [8] characterized
optimal $\mathrm{A}^{2}$-codes, that is, $\mathrm{A}^{2}$-codes with the minimum cheating probabilities and the
minimum sizes of keys, in terms of afline $\alpha$-resolvable $+$ BIBDs. Wang, Safavi-Naini and
Pei [18] characterized $\ell$ optimal $\mathrm{A}^{2}$-codes, which offer the best protection for spoofing of
order up to $\ell$ and require the minimum sizes of keys, in terms of $\alpha$-resolvable and strong
partially balanced resolvable designs. Similar results can also be found in, for example,
[7, 17, 10, 9]

Very little is known about the construction of optimal $\mathrm{A}^{2}$-codes. Some references re-
lated to this problem include [14], [15] and [4]. Combinatorial characterization of optimal
$\mathrm{A}^{2}$-codes can reduce the construction of optimal $\mathrm{A}^{2}$-codes to the construction of their cor-
responding combinatorial structures. Unfortunately, both afRne $\alpha$-resolvable $+\mathrm{B}\mathrm{I}\mathrm{B}$ Ds
and $\alpha$-resolvable and strong partially balanced resolvable designs are too complicated to
be used effectively to construct optimal $\mathrm{A}^{2}$-codes. In this paper, we introduce a new
concept of GOB designs. Although this new combinatorial structure is essentially the
same as those mentioned above, it does make the characterization more clear, and does
enable us to construct new optimal $\mathrm{A}^{2}$-codes. Johansson [4] constructed a well-known
family of optimal $\mathrm{A}^{2}$-codes in projective spaces $\mathrm{P}\mathrm{G}(3, q)$ . This is in fact a family of GOB
designs, and we will extend this family to $\mathrm{P}\mathrm{G}(n, q)$ for $n\geq 3$ in Section 5, which gives a
new family of optimal $\mathrm{A}^{2}$-codes containing Johansson’s as a special case.

2 Authentication Codes with Arbitration

Contrary to a conventional A-code, an $\mathrm{A}^{2}$-code is an asymmetric authentication system
defined by the following two sets of cryptographic functions: a set of encoding functions
used by the transmitter $T$ to generate authenticated messages, and a set of verification
functions used by the receiver $R$ to verify authenticity of received messages. We assume a
probability distribution ps{s) on the set $S$ of source states and a probability distribution
$p_{E_{T}\cross E_{R}}(e_{T}, e_{R})$ on $E_{T}\mathrm{x}$ $E_{R}$ respectively, where $E_{T}$ is the set of $T’ \mathrm{s}$ keys and $E_{R}$ the set
of $R’ \mathrm{s}$ keys. Given these probability distributions, it is straightforward to compute the
probability distributions $p_{E_{T}}(e_{T})$ and $p_{E_{R}}(e_{R})$ on $E_{T}$ and $E_{R}$ respectively. The set of
encoding functions is indexed by $T’ \mathrm{s}$ key, $e_{T}\in E_{T}$ , while the set of verification functions
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is indexed by $R’ \mathrm{s}$ key, $e_{R}\in E_{R}$ . $T$ uses his secret key, $e_{T}\in$ Et, to determine an encoding

function $f$ to encode a source state $s\in S$ , and then sends the authenticated message
$m\in M$ to $R$ ,

$f$ : $E_{T}\mathrm{x}$ $Sarrow M$.

$R$ uses his secret key, $e_{R}\in E_{R}$ , to determine a verification function 9 to verify authenticity
of the received message,

$g$ : $E_{R}\mathrm{x}$ $Marrow S\cup$ {reject}.

Decoding may result in acceptance of the message as a particular source state, or rejection
of it and declaring it fraudulent. Let $E_{T}\mathrm{o}E_{R}=\{(e_{T}, e_{R})\in E_{T}\mathrm{x}$ $E_{R}$ : if $f(e_{T}, s)=$

$m$ and $p_{E_{T}\mathrm{x}E_{R}}(e_{T}, e_{R})>0$ , then $g(e_{R}, m)=s$ for all $s\in S$}. The keys for $T$ and $R$

are chosen from $E_{T}\mathrm{o}E_{R}$ according to a certain probability distribution over $E_{T}\circ$ $E_{R}$ .

In fact, key generation for this asymmetric authentication system can be coordinated by
the arbiter $A$ in several ways (see, for example, [4} 18]). In all cases $A$ will end up $\mathrm{b}.\mathrm{v}$

knowing the keys of both $T$ and $R$ , and therefore in this model, we have to assume that
$A$ is trusted by both $T$ and $R$ . We denote an $\mathrm{A}^{2}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{o}\mathrm{d}\mathrm{e}$ by $(\mathrm{S}, \mathcal{M}, \mathcal{E}_{T}, \mathcal{E}_{R})$ , where for any
set $X$ , $\mathcal{X}$ denotes a random variable over $X$ .

In an $\mathrm{A}^{2}$-code, three types of attacks have been considered and lower bounds on the
success probabilities of attacks have been derived in each case.

\bullet Attacks from the opponent $O$

Attack $\mathrm{I}$ : Impersonation by O. $O$ sends a message $m$ to R. $O$ succeeds if $m$ is
accepted by $R$ as authentic.

Attack $S$ : Substitution by O. $O$ observes a message $m$ , and substitutes $m$ with
another message $m’\neq m$ , then sends $m’$ to R. $O$ succeeds if $m’$ is accepted by $R$

as authentic, and $m$ , $m’$ represent distinct source states.

\bullet Attack from the transmitter $T$

Attack $T$ : Impersonation by T. $T$ sends a message $m$ to $R$ and then denies
having sent it. $T$ succeeds if $m$ is accepted by $R$ as authentic and $m\neq f(e_{T}, s)$ for
any $s\in S$ .

\bullet Attacks from the receiver $R$

Attack $R_{0}$ : Impersponation by R. $R$ claims to have received a message $m$ from
T. $R$ succeeds if $T$ can generate $m$ .

Attack $R_{1}$ : Substitution by R. $R$ receives a message $m$ from $T$ but claims to
have received another message $m’$ such that $s’\neq s$ , where $f^{-1}(m’)=(e_{T}, s’)$ and
$f^{-1}(m)=(e_{T}, s)$ . $R$ succeeds if $T$ can generate $m’$ .

In all the possible attempts to cheat it is understood that the cheating party uses
an optimal strategy when choosing a message or, equivalently, that the cheating party
chooses the message that maximizes his chance of success. For the possible deceptions
mentioned above, we denote the probabilities of success in each attack by $P/$ , $P_{S}$ , $P_{T}$ ,
$P_{R_{0}}$ , and $P_{R_{1}}$ , respectively
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In an $\mathrm{A}^{2}$-code, let $\mathcal{M}^{i}$ denotes the random variable for the first $\mathrm{i}$ messages sent by
$T$ , $\mathcal{M}^{\mathrm{c}}$ the random variable for messages that are not valid under the given encoding
functions, and $H(\mathcal{Z}|\mathcal{X})$ the conditional entropy. Johansson [4] derived lower bounds on
the cheating probabilities and the sizes of keys as follows.

Proposition 2.1 [4] Then the following inequalities hold:

$P_{I}$ $\geq$ 2$H(\mathcal{E}_{R}|\mathrm{A}4)-H(\mathcal{E}_{R})$ ,
$P_{S}$ $\geq$ 2$H(\mathcal{E}_{R}|\lambda 4^{2})-H(\mathcal{E}_{R}|\mathrm{A}4)$ ,
$P_{T}$ $\geq$

$2^{H(\mathcal{E}_{R}|.\mathfrak{U}^{\mathrm{c}},\mathcal{E}_{T})-H(\mathcal{E}_{R}|\mathcal{E}_{T})}$ ,
$P_{R_{\mathrm{J}}}$ $\geq$

$2^{H(\mathcal{E}_{T}|\mathcal{M},\mathcal{E}_{R})-H(\mathcal{E}_{T}|\mathcal{E}_{R})}$ ,
$P_{R_{1}}$ $\geq$

$2^{H(\mathcal{E}_{T}|\lambda 4^{2},\mathcal{E}_{R})-H(\mathcal{E}_{T}|\mathrm{A}4,\mathcal{E}_{R})}$ ,
$|E_{R}|$ $\geq$ $(P_{I}P_{S}P_{T})^{-1}$ ,
$|E_{T}|$ $\geq$ $(P_{I}P_{S}P_{R_{0}}P_{R_{1}})^{-1}$ ,

$|E_{T}\circ E_{R}|$ $\geq$ $(P_{I}P_{S}P_{T}P_{R_{0}}P_{R_{1}})^{-1}$ .

In a Cartesian A-code, the authenticated message $m\in M$ corresponding to a source
state $s\in S$ encoded using $e_{T}\in E_{T}$ is the concatenation $m=(s, a)$ of the source state
$s\in S$ and an authentication tag $a\in AT$ , that is, $M=S\mathrm{x}$ AT, where AT is the set
of authentication tags. The receiver $R$ will detect a fraudulent message $(s, a)\in M$ if
his verification $g(e_{R}, (s, a))=$ rejection or $g(e_{R}, (s, a))\neq s$ . For a verification function $g$

determined by $e_{R}\in E_{R}$ and for $s\in S$ , let

Split(g, $s$ ) $=\{(s, a)\in M : g(e_{R}, (s, a))=s\}$ .

A Cartesian $\mathrm{A}^{2}$-code is said to be an $(\ell, c)\mathrm{A}^{2}$-code if $|M|/|S|=|AT|=\ell$ , and $|Spl\mathrm{i}t(g, s)|=$

$c$ for all verification functions $g$ determined by all $e_{R}\in E_{R}$ and for all $s\in S$ .

Kurosawa and Obana [5] showed combinatorial lower bounds on the cheating proba-
bilities as follows.

Proposition 2.2 [5] In an $(\ell, c)\mathrm{A}^{2}$ -code,

1. $P_{I}\geq c/\ell$ . The equality holds if and only if $Pr$ [$R$ accepts $m$] $=c/\ell$ for all $m\in M$ .

2. If $P_{I}=c/\ell$ , then $P_{S}\geq c/\ell$ . The equality holds if and only if $Pr[R$ accepts $(s’, a’)$

$|T$ sent $(s, a)]=c/\ell$ for all $(s, a)$ , $(s’, a’)\in M$ such that $s\neq s’$ .

3. $P_{T}\geq(c-1)/(l-1)$ . The equality holds if and only if $Pr$ [ $R$ accepts $m|T$ has $e_{T}$ ] $=$

$(c-1)/(\ell-1)$ for all $e_{T}\in E_{T}$ and for all $m\not\in M(e_{T})$ , where $M(e_{T})=\{m\in M$ :
$m=f(e_{T}, s)$ for some $s\in S$}.

4. $P_{R_{0}}\geq 1/c$ . The equality holds if and only if $Pr$ [$T$ can generate $(s_{\dot{\mathit{1}}}a)|R$ has $e_{R}$] $=$

$1/c$ for all $e_{R}$ % $E_{R}$ and for all $(s, a)\in M(e_{R})$ , where $M(\mathrm{e}_{R})=\{(s, a)\in M$ :
$g(e_{R}, (s, a))=s\}$ .
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5. If $P_{R_{0}}=1/c$ , then $P_{R_{1}}\geq 1/c$ . The equality holds if and only if $Pr[T$ can generate
( $s$ , a and $(s’, a’)|R$ has $e_{R}$] $=1/c^{2}$ for all $e_{R}\in E_{R}$ and for all $(s, a)$ , $(s’, a’)\in M(e_{R})$

such that $s\neq s’$ .

From Propositions 2.1 and 2.2, we can easily obtain the following combinatorial lower
bounds on the sizes of keys.

Corollary 2.3 If all the equalities of Proposition 2.2 are satisfied, then

$|E_{T}|\geq\ell^{2}$ , $|E_{R}| \geq\frac{p^{2}(\ell-1)}{c^{2}(c-1)}!.|E_{T}\circ E_{R}|\geq\frac{\ell^{2}(\ell-1)}{(c-1)}$ .

Corollary 2.4 [5] If all the equalities of Proposition 2.2 and Corollary 2.3 are satisfied,
then $|S|\leq c+1$ .

An $(\ell, c)\mathrm{A}^{2}$ -code is said to be optimal with respect to cheating probabilities if all the
bounds of Proposition 2.2 are met. An $(\ell, c)\mathrm{A}^{2}$-code is said to be optimal with respect to
cheating probabilities and key sizes if it is optimal with respect to cheating probabilities
and the bounds of Corollary 2.3 are met. An $(\ell, c)\mathrm{A}^{2}$-code is said to be optimum if it is
optimal with respect to cheating probabilities and key sizes and the bound in Corollary
2.4 is met.

3 GOB Designs

Given a set $\mathcal{V}$ of $v$ elements Si, $s_{2}$ , $\ldots$ , $s_{v}$ , a relation satisfying the following conditions is
said to be an association scheme with $m$ classes.

1. Any two elements are either 1st, 2nd, . . ., or mth associates, the relation of associ-
ation being symmetric; that is; if the element $\alpha$ is the ith associate of the element
$\beta$ , then $\beta$ is the $\mathrm{i}\mathrm{t}\mathrm{h}$ associate of $\alpha$ .

2. Each element a has $n_{i}\mathrm{i}\mathrm{t}\mathrm{h}$ associates, the number $n_{i}$ being ind epedent of $\alpha$ .

3. If any two elements a and $\beta$ are $\mathrm{i}\mathrm{t}\mathrm{h}$ associates, then the number of elements that
are $j\mathrm{t}\mathrm{h}$ associates of $\alpha$ , and $k\mathrm{t}\mathrm{h}$ associates of $\beta$ , is $p_{jk}^{l}$ and is independent of the
pair of $\mathrm{i}\mathrm{t}\mathrm{h}$ associates $\alpha$ and $\beta$ .

The numbers $v$ , $n_{i}$ $(\mathrm{i}=1,2, \ldots, m)$ and $p_{jk}^{i}(i, j, k=1,2, \ldots, m)$ are called the pa-
rameters of the association scheme.

If we have an association scheme with $m$ classes and given parameters, we obtain
a partially balanced incomplete block design, or simply PBIB design, with $m$ associate
classes if the $v$ elements of $\mathcal{V}$ are arranged into $b$ subsets called blocks of size $k(<v)$ such
that
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1. every element occurs at most once in a block;

2. every element occurs in exactly $r$ blocks;

3. if two elements $\alpha$ and $\beta$ are ith associates, then they occur together in $\lambda_{i}$ blocks,
the number $\lambda_{i}$ being independent of the particular pair of $\mathrm{i}\mathrm{t}\mathrm{h}$ associates $\alpha$ and $\beta$ .

The numbers $v$ , $b$ , $r$ , $k,$ $\lambda_{i}$ $(\mathrm{i}=1,2, \ldots, m)$ are called the parameters of the PBIB
design.

A PBIB design with two associate classes is said to be group divisibl\^e or simply $GD$, if
there are $v=mn$ elements and the elements can be divided into $m$ groups of $n$ elements
each, such that any two elements of the same group are first associates and any two
elements from different groups are second associates.

A GD design with $k=m$ , $\lambda_{1}=0$ and $\lambda_{2}=$ A is usually called a transversal design,
denoted by $\mathrm{T}\mathrm{D}_{\lambda}(m, n)$ . If A is omitted in the notation it is understood to be 1.

Balanced incomplete block designs, or simply $BIB$ iesigns, are degenerated cases of
PBIB designs in which $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{m}=$ A. This means that for defining BIB
designs, we in fact do not need the concept of association schemes. More precisely, a BIB
design is an arrangement of the $\prime v$ elements of $\mathcal{V}$ into $b$ subsets called blocks each of size
$k(<v)$ satisfying the following conditions.

1. Every element occurs at most once in each block.

2. Every element occurs in exactly $r$ blocks.

3. Every pair of distinct elements occurs together in A blocks.

Suppose that $\mathcal{V}$ is a set of points, $\mathcal{U}\underline{\subseteq}\mathcal{V}$ , and $B$ is a collection of subsets (or blocks)

of $\mathcal{V}$ . We call $B_{\mathcal{U}}=\{B\cap \mathcal{U} : B\in B\}$ the restriction of $B$ to $\mathcal{U}$ .

A combinatorial structure closely related to a transversal design is an orthogonal
array. An orthogonal array $\mathrm{O}\mathrm{A}_{\lambda}(k, n)$ is a $\lambda n^{2}\rangle\langle$ $k$ array of $n$ symbols such that, in any

two columns of the array, every one of the possible $n^{2}$ pairs of symbols occurs in exactly

A rows. If A is omitted in the notation it is understood to be 1. It is well known that an
OAA $($ &, $n)$ is equivalent to a $\mathrm{T}\mathrm{D}_{\lambda}(k, n)$ .

Now we introduce the notion of a GOB design. Let $\mathcal{V}$ be a set of $t\ell$ elements, and $\mathcal{G}$

a partition of $\mathcal{V}$ into $t$ groups of $\ell$ elements each such that any two elements in the same
group are 1st associates and any two elements from different groups are 2nd associates.

A $(t, \ell, c_{?} \lambda)$ -GOB design $(\mathcal{V}, \mathcal{G}, B)$ is a GD design with $\lambda_{1}=q_{1}$ and $\lambda_{2}=q_{2}$ such that

1. any block in $B$ is of size $tc$ containing exactly $c$ elements from each of the $t$ groups

in $\mathcal{G}$ ;

2. for any distinct groups $G_{i},$ $G_{j}$ , $G_{k}\in \mathcal{G}$ and any fixed elements $x$ , $y\in \mathcal{V}$ with $x\in G_{i}$

and $y\in G_{j}$ , there exists a point $z\in G_{k}$ such that $z$ belongs to all the blocks
containing both $x$ and $y$ ;
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3. for any fixed group $G\in \mathcal{G}$ and any fixed element $x\not\in G$ , the restriction of the blocks
containing $x$ to $G$ forms an $(\ell, c, \lambda)$-BIBD.

If we interchange the roles of elements and blocks in the definition of a GOB design,
we obtain an affine $c$-resolvable $+$ BIB design introduced in [8] and $\alpha$-resolvable designs
with special properties in $[10, 18]$ . Affine $c$-resolvable $+$ BIB designs were proved in [8]
to be equivalent to optimal $(\ell, c)\mathrm{A}^{2}$-codes. a-Resolvable designs with special properties
were also used in $[10, 18]$ to characterize optimal $\mathrm{A}^{2}$-codes. Although the concept of a
GOB design and those of an affine $c$-resolvable $+$ BIB design and an $\alpha$-resolvable design
with special properties are essentially the same, we prefer the terminology of GOB designs
than those of affine $c$-resolvable $+$ BIB designs and a-resolvable designs, because we deem
that the concept of a GOB design is easier to be described and understood, and thus it
may lead us to new constructions for optimal $\mathrm{A}^{2}$-codes. It turns out that our expectation
can be fulfilled.

In the above definition the parameters $t$ , $\ell,$ $c$ , $q_{1}$ , $q_{2}$ , A are mentioned. Let $b$ be the
number of all blocks in 6 and $r$ be the number of all blocks in $\mathrm{B}$ containing any fixed
element. Similarly to Lemma 5 in [8], we can deduce the relations among these parameters
from the present definition.

By the definition of a GOB design, the restriction of all blocks to any group $G\in$ (; is
an $(\ell, c, \mathrm{g}\mathrm{i})- \mathrm{B}\mathrm{I}\mathrm{B}$ design. This gives

$b=q_{1} \frac{\ell(\ell-1)}{c(c-1)}$ (3.1)

and
$r=$ Qr $\frac{\ell-1}{c-1}$ . (3.2)

Prom the $(\ell, c, \lambda)- \mathrm{B}\mathrm{I}\mathrm{B}$ design in condition (3) of the definition for a GOB design, we
have

$r=$ $\lambda\frac{\ell(\ell-1)}{c(c-1)}$ (3.3)

and
$r^{*}= \lambda\frac{\ell-1}{c-1}\dot{\prime}$ (3.4)

where $r^{*}$ is the number of blocks containing a fixed element in the restricted $(\ell, c, \lambda)- \mathrm{B}\mathrm{I}\mathrm{B}$

design.

Suppose that the $(\ell, c, \lambda)- \mathrm{B}\mathrm{I}\mathrm{B}$ design is obtained by fixing a group $G\in \mathrm{C}\mathcal{G}$ and an
element $x\not\in G$ . Suppose also that the fixed element in the $(\ell, c, \lambda)- \mathrm{B}\mathrm{I}\mathrm{B}$ design is $y\in G$ .
Then the number of blocks containing $y\in G$ in the $(\ell, c, \lambda)- \mathrm{B}\mathrm{I}\mathrm{B}$ design is the same as
the number of blocks containing both $x\not\in G$ and $y\in G$ . That is,

$r^{*}=q_{2}$ . (3.5)
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From equations (3.2) and (3.3), we obtain

$q_{1}= \lambda\frac{\ell}{c}$ . (3.6)

Combining equations (3.1) and (3.6), we obtain

$b= \lambda\frac{\ell^{2}(\ell-1)}{c^{2}(c-1)}$ . (3.7)

Summarily, the following relations always hold among parameters of a GOB design.

Proposition 3.1 In a (t,$\ell,$c,$\lambda)$-GOB design,

$v=t\ell$ , $b= \lambda\frac{\ell^{2}(\ell-1)}{c^{2}(c-1)}$ , $r= \lambda\frac{\ell(\ell-1)}{c(c-1)}$ , $k=tc$ , $q_{1}= \lambda\frac{\ell}{c}$ , $q_{2}= \lambda\frac{\ell-1}{c-1}$ .

We can also derive a lower bound for the parameter $t$ from Rao’s bound [11] for an
orthogonal array.

In fact, condition (2) of the definition for a GOB design $(\mathcal{V}, \mathcal{G}, B)$ implies that there ex-
ists an $\mathrm{O}\mathrm{A}(t, \ell)$ . Eq uivalently, we show that there exists a $\mathrm{T}\mathrm{D}(t, \ell)$ with $(;=\{G_{1}, G_{2}, \ldots, G_{t}\}$

as its groups. For any two elem ents $x$ , $y$ from distinct groups $G_{i}$ and $G_{j}$ , by the fact that
a GOB design is also a GD design, we have exactly A2 blocks $B_{1}$ , $B_{2}$ , $\ldots$ , $B_{\lambda_{2}}\in B$ can
taining both $x$ and $y$ . Denote their intersection by $T(x, y)$ . By condition (2), for any
third group $G_{k}$ there is an element $z\in G_{k}$ such that $z\in T(x, y)$ . Since $T(x, y)$ intersects
each grouP, we have $|T(x, y)|\geq t$ . On the other hand, we can show that $|T(x, y)|\leq t$

and thus $|T(x, y)|=t$ . Otherwise, $T(x, y)$ intersects some group $G\in$ (; in two elements
$w_{1}$ and $w_{2}$ . Since $B_{1}$ , $B_{2}$ , $\ldots$ , $B_{\lambda_{2}}$ all contain both $w_{1}$ and $w_{2}$ , we get A$2\leq\lambda_{1}$ . This
contradicts to Lemma 3.1. Denote

$A=\{T(x, y) : X \in G_{1}, y\in G_{2}\}$ .

Then $A$ is the block set of the desired $\mathrm{T}\mathrm{D}(t$ , ? $)$ . We need to show that any two blocks $A_{1}$ ,
$A_{2}$ in $A$ can not have two comm on elements. If not so, then $A_{1}$ and $A_{2}$ have two common
elements $z$ and $w$ from distinct groups. This forces $A_{1}=T(z, w)=A_{2}$ , a contradiction.

Proposition 3.2 If there exists a (t,$\ell,$c,$\lambda)$ -GOB design, then there exists an $\mathrm{O}\mathrm{A}(t, \ell)$ .

Rao’s bound [11] claims that in an $\mathrm{O}\mathrm{A}_{\lambda}(k, n)$ , the inequality
$\lambda n^{2}\geq k(n-1)+1$

always holds. So we have
$\ell^{2}\geq t(\ell-1)+1$ .

This gives the following necessary condition on parameters.

Corollary 3.3 If there is a (t,$\ell,$c,$\lambda)$-GOB design, then t $\leq\ell+1$ .

We finally remark that the newly introduced $(t, \ell, c, \lambda)$-GOB design is named after

its three intrinsic combinatorial structures, that is, aGD design, an $\mathrm{O}\mathrm{A}(t, \ell)$ , and an
$(\ell, c, \lambda)$-BIBD.
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4 The Known Equivalence Revisited

Obana and Kurosawa [8] proved that optimal $\mathrm{A}^{2}$-codes are equivalent to affine ce-resolvable
$+$ BIBDs. Li, Pei, Safavi-Naini and Wang $[10, 18]$ also proved the equivalence in terms
of $\alpha$-resolvable designs with special properties. In this section, we revisit this equivalence
from a design-theoretic point of view. This enables us to simplify the original proofs and
make things more clear.

Suppose that there exists an optimal Cartesian $(\ell, c)\mathrm{A}^{2}$-code $(\mathrm{S}, \mathcal{M}, \mathcal{E}_{\mathcal{T}}, \mathcal{E}_{\mathcal{R}})$ . For
each source state $s\in S$ , define a group $G_{s}=\{s\}\mathrm{x}$ $AT\in \mathcal{G}$ , where AT is the set of
all possible authentication tags. Then we obtain $|S|$ groups. Since $(S, \mathcal{M}, \mathcal{E}_{\mathcal{T}}, \mathcal{E}_{\mathcal{R}})$ is an
optimal $(\ell, c)\mathrm{A}^{2}$-code, $M=S\mathrm{x}$ AT, $|AT|=\ell$ , and $|G_{s}|=\sim\ell$ for any group $G_{s}\in(;$ .

Each $e_{T}\in E_{T}$ can be considered as a mapping from the set $S$ of source states to
the set AT of authentication tags, and each $e_{T}\in E_{T}$ can be expressed as the $|S|$ -subset
$\{(s, e_{T}(s)) : s\in S\}$ . Similarly, each $e_{R}\in E_{R}$ can be considered as a mapping from the
set $M$ of the messages to the set {0, 1}, where for the verification function $g$ determined
by $e_{R}$

$g$ : $E_{R}\mathrm{x}$ $Marrow S\cup$ {reject},

if $g(e_{R}, (s, a))=s$ then $e_{R}(s, a)=1$ , otherwise $e_{R}(s, a)=0$ , and $e_{R}$ can be expressed
as the set $\bigcup_{s\in}sSpl\mathrm{i}t(g, s)$ by defining $(s, a)\in e_{R}$ if and only if $e_{R}(s, a)=1$ . Then from
the definition of Split(g, $s$ ), $e_{R}$ has $c$ common elements with each group $G_{s}\in \mathrm{C}\mathrm{i}$ and
$|e_{R}|=c|S|$ .

We first prove that the associated ( $\mathrm{M}$ , $($;, $E_{T})$ forms a $\mathrm{T}\mathrm{D}(|S|, \ell)$ .

Theorem 4.1 (M, (;, $E_{T})$ is a $\mathrm{T}\mathrm{D}(|S|, \ell)$ .

Proof: For any two elements $(s, a)$ , $(s’, a’)\in M$ from distinct groups, by the optimality
of the $(c, \ell)\mathrm{A}^{2}$ -code, we know that $Pr[(s’, a’)\in e_{R}|(s, a)\in e_{T}]=c/\ell>0$ provided that
$(e_{T}, e_{R})\in E_{T}\circ E_{R}$ . Since $R$ accepts whatever $T$ honestly sends, $e_{T}$ contains both $(5, a)$

and $(S_{\}}’a’)$ . Therefore there are at least $\ell^{2}$ such $e_{T}’ \mathrm{s}$ . However $|E_{T}|=\ell^{2}$ . This means
that the above $e_{T}$ is the unique block containing ( $s$ , $a^{1}$, and $(s’, a’)$ , which implies that
$(M, \mathcal{G}, E_{T})$ is a $\mathrm{T}\mathrm{D}(|S|, \ell)$ . $\square$

Now we prove that the associated ( $M$, $($;, $E_{R})$ forms a GOB.

Theorem 4.2 The associated (M, (;, $E_{R})$ forms an $(|S|, \ell,$c,$1)$ -GOB design.

Proof: We already knew that property (1) required in the definition of a GOB design is
satisfied, that is, $e_{R}$ has c common elements with each group G $\in \mathcal{G}$ and $|e_{R}|=c|S|$ .

We prove property (3), that is, for all $(s, a)$ , $(s’, a’)$ , $(s’, a”)\in M$ with $s$ $\neq s’$ and
$a’\neq a’\backslash$ there exists exactly one $e_{R}\in E_{R}$ containing $(s’, a’)$ , $(s’, a’)$ . From Theorem 4.1,
there exists an $e_{T}\in E_{T}$ containing $(s, a)$ and $(s’, a’)$ . Suppose $(e_{T}, e_{R})\in E_{T}\circ$ ER. Then
$(s, a)$ , $(s’, a’)\in e_{R}$ , and by the optimality of the $(c, \ell)\mathrm{A}^{2}$-code, $Pr[(s’, a’)\in e_{R}|\mathcal{E}_{\mathcal{T}}=$
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$e_{T}]=(c-1)/(\ell-1)>0$ , which implies that $(s, a’)\in e_{R}$ . So altogether there are at least
$\ell \mathrm{x}$ $(\ell \mathrm{x} (\ell-1))$ such en’s. However, since $|e_{R}\cap G|=c$ for any group $G\in \mathcal{G}$ , every block $e_{R}$

is repeatedly counted $c\mathrm{x}$ $(c\mathrm{x} (c-1))$ times. This means that altogether there are at least
$\frac{l^{2}(l-1\}}{c^{2}(c-1)}e_{R}’ \mathrm{s}$ , not counting multiplicities. But tthh $\mathrm{e}$ optimality tteellllss uuss that $|E_{R}|= \frac{\ell^{2}\{f-1)}{c^{2}(c-1)}$ .
This means that the block $e_{R}\in E_{R}$ containing $(s, a)$ , $(s’, a’)$ , $(s’, a’)\in M$ is unique.

Now we prove ( $M$, $($;, $E_{R})$ is a GD design with $\lambda_{1}=(\ell-1)/(c-1)$ and $\lambda_{2}=\ell/c$ ,
that is, for all $(s, a)$ , $(s’, a’)$ , $(s’, a’)\in M$ with $s\neq s’$ and $a’\neq a’$ , there exist exactly

$($ !– $1)/(c-1)$ and $\ell/c$ blocks $e_{R}\in E_{R}$ containing $(s, a)$ , $(s’, a’)$ and $(s’, a’)$ , $(s’, a’)$ , re-
spectively. For all $a’\in AT$ with $a’\neq a’$ , there exists exactly one block $e_{R}\in E_{R}$

containing $(s, a)$ , $(s’, a’)$ , $(s’, a’)$ . Therefore there are exactly $\ell-1$ blocks, counting mul-
tiplicities, containing $(s, a)$ , $(s’, a’)$ . Every block intersects the group $\{s’\}\mathrm{x}$ AT at $c-1$

elements other than $(s’, a’)$ . Then we know that there are exactly $(\ell-1)/(c-1)$ blocks,
not counting multiplicities, containing $(s, a)$ , $(s’, a’)$ . Similarly, for all $(s, a)\in\{s\}\mathrm{x}$ AT
with $s\neq s’$ , there exists exactly one block $e_{R}\in E_{R}$ containing $(s, a)$ , $(s’, a’)$ , $(s’, a’)$ .
Therefore there are exactly $\ell \mathrm{b}1\mathrm{o}\mathrm{c}\mathrm{k}\mathrm{s}_{7}$ counting multiplicities, containing $(s’, a’)$ , $(s’, a’)$ .

Every block intersects the group $\{s\}\mathrm{x}$ AT at $c$ elements, and consequently, there are
exactly $\ell/c$ blocks, not counting multiplicities, containing $(s’, a’)$ , $(s’, a’)$ .

Finally we prove property (2), that is, for all $(s, a)\in\{s\}\cross AT$ , $(s’, a’)\in\{s’\}\mathrm{x}$ AT
with $s\neq s’$ , and $s’\in S\backslash \{s, s’\}$ , there exists an element $(s’, a’)\in\{s’\}\mathrm{x}$ AT belonging
to all the blocks containing $(s, a)$ , $(s’, a’)$ . Suppose $(s, a)$ , $(s’, a’)\in e_{T}$ . Then there exist
exactly $(\ell-1)/(c-1)$ blocks $e_{R}\in E_{R}$ containing $(s, a)$ , $(s’, a’)$ . Therefore, $|\{e_{R}\in E_{R}$ :
$(e_{T}, e_{R})\in E_{T}\circ E_{R}\}|\leq(\ell-1)/(c-1)$ . If $|\{e_{R}\in E_{R} : (e_{T}, e_{R})\in E_{T}\mathrm{o}E_{R}\}|<(\ell-1)/(c-1)$ ,
then there would exist a block $e_{R}’$ such that $(e_{T}, e_{R}’)\in E_{T}\circ E_{R}$ and $Pr(\mathcal{E}_{\mathcal{R}}=e_{R}’|\mathcal{E}_{\mathcal{T}}=$

$e_{T})>(c-1)/(\ell-1)$ . This implies that $P_{T}>(c-1)/(\ell-1)$ which is a contradiction
to the optimality. So we know that $|\{e_{R} : (e_{T}, e_{R})\in E_{T}\circ E_{R}\}|=(\ell-1)/(c-1)$ . This

means that all the $(\ell-1)/(c-1)$ blocks containing $(s, a))(s’, a’)$ contain also $(s’, e_{T}(s’’))$

for all $s’\in S\backslash \{s, s’\}$ .

The proof is then completed. $\square$

Conversely, from a GOB design, we can also construct an optimal Cartesian $\mathrm{A}^{2}$ -code.

Theorem 4.3 If there exists a $(t, \ell, c, 1)$ -GOB design $(\mathcal{V}, \mathcal{G}, B)$ , then there exists an op-
timal Cartesian $(\ell, c)\mathrm{A}^{2}$-code $(\mathrm{S}, \mathcal{M}, \mathcal{E}_{\mathcal{R}}, \mathcal{E}_{\mathcal{T}})$ with uniform probability distributions on
$S$ and $E_{T}\mathrm{o}E_{R}$ respectively such that $|S|=t$ , $|AT|=|M|/|S|=\ell$ , $|Spl\mathrm{i}t(g, s)|=c$ for

all verification functions $g$ determined by $e_{R}\in E_{R}$ and for all $s\in S$ .

Proof: We construct an optimal Cartesian $(\ell, c)\mathrm{A}^{2}$-code from a $(t, \ell, c, 1)$-GOB design
$(\mathcal{V}, \mathcal{G}, B)$ as follows. Each source state $s_{i}\in S$ corresponds to a group $G_{i}\in \mathcal{G}$ , each
message $(s_{i}, a_{j})\in M$ corresponds to a point $p_{ij}\in G_{i}=\{p_{ij} : 1\leq j\leq\ell\}$ , each key of the

receiver corresponds to a block $B\in B$ , and each key of the transmitter corresponds to a
block $B’\in B’$ of the associated $\mathrm{T}\mathrm{D}(t, \ell)(X, \mathcal{G}, B’)$ . Therefore, $S=\{s_{1,\ldots,t}s\}$ , $M=\mathcal{V}$ ,

$E_{T}=B’$ , and $E_{R}=B$ . For any source state $s_{i}\in S$ , the transmitter uses his key $B’$ to
compute its authentication tag $a_{j}\in AT$ so that $(s_{i)}a_{j})$ is the unique common element of
$B’$ and $G_{i}$ . A key $B$ of the receiver accepts a message $(s_{i}, a_{j})\in M$ if and only if $p_{ij}\in B$ .
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To prove the optimality of this Cartesian $\mathrm{A}^{2}$-code, we need to show that the equality
of each bound in Proposition 2.2 and Corollary 2.3 is met.

$|E_{T}|$ : $|E_{T}|=|B’|=\ell^{2}$ .

$|E_{R}|$ : $|E_{R}|=|B|$ $= \frac{\ell^{2}(\ell-1)}{c^{2}(\mathrm{c}-1)}$ .

$|E_{T}\circ E_{R}|$ : There are exactly $q_{2}= \frac{f-1}{\mathrm{c}-1}$ blocks of $\mathrm{B}$ containing any two elements in different
groups. Therefore, each block of $B’$ corresponds to $\frac{f-1}{c-1}$ blocks of $B$ , which implies

that $|E_{T} \circ E_{R}|=\frac{\mathit{1}^{2}(\ell-1)}{(c-1)}$ .

Assume that the probability distributions over $S$ and EtoEr are all uniform. For given
$m\in M$ , $e_{R}\in E_{R}$ , and $e_{T}\in$ ET, define $E_{T}(m)=$ { $e_{T}\in E_{T}$ : $e_{T}$ can generate $m\in M$},
ET(m)={ $e_{R}\in E_{R}$ : $e_{R}$ accepts $m\in M$}, $E_{T}(e_{R})=\{e_{T}\in E_{T} : (e_{T}, e_{R})\in E_{T}\circ E_{R}\}$ ,
and $E_{R}(e_{T})=\{e_{R}\in E_{R} : (e_{T}, e_{R})\in E_{T}\circ E_{R}\}$ , respectively. Then we know that the
probability distributions over $E_{T}$ , $E_{R}$ , $E_{T}(s_{7}a)$ , $E_{R}(s, a)$ , $E_{T}(e_{R})$ and $E_{R}(e_{T})$ are also all
uniform.

$P_{I}$ : For any $(s, a)\in M$ , $\mathrm{P}\mathrm{r}$ [ $R$ accepts $(s,$ $a)$ ] $= \frac{|E_{R}(s,a)|}{|E_{R}|}=\frac{r}{|B|}=$ $= \frac{c}{\ell}$ .
Therefore, $P_{I}= \max(s,a)\in M\mathrm{P}\mathrm{r}$ [$R$ accepts $(s,$ $a)$ ] $= \frac{c}{\ell}$ .

$P_{S}$ : For $s$ , $s’\in S$ , $a$ , $a’\in AT$ with $s\neq s’$ , Pr[$R$ accepts ( $s’$ , $a’$ ) $|T$ sent $(s,$ $a)$ ] $=$

$\frac{|E_{R}(s,a)\cap E_{R}(s’,a’)|}{|E_{R}(s,a)|}=\frac{q_{2}}{r}=\frac{\langle\ell-1)/\langle c-1)}{l(\mathit{1}-1)/(\mathrm{c}(\mathrm{c}-1))}=\frac{c}{\ell}$ , and thus $P_{S}=\Sigma_{(s},{}_{a)\in M}\mathrm{P}\mathrm{r}[\mathrm{A}4=(s, a)]$

$\max_{s’\neq s}\max_{a’}{}_{\in A}\mathrm{P}\mathrm{r}$ [$R$ accepts ( $s’$ , $a’$ ) $|T$ sent $(s,$ $a)$ ] $= \frac{c}{l}$ .

$P_{T}$ : For $s$ , $s’\in S$ , $a\in AT$ with $s\neq s’$ , $a\neq e_{T}(s)$ , $\mathrm{P}\mathrm{r}[R$ accepts $(s, a)$ and $a\neq$

$e_{T}(s)$ $|T$ has $e_{T}$ ] $= \frac{|E_{R}(s,e_{T}(s\rangle)\mathrm{n}E_{R}(s’,e_{T}(s’))\cap E_{R}(s,a)|}{|E_{R}(e_{T})|}$ . Since $|E_{R}(s’, e_{T}(s’))\cap E_{R}(s, e_{T}(s))\cap$

$E_{R}(s, a)|=$ A $=1$ , and $|E_{R}(e_{T})|=q_{2}$ , we know that $\mathrm{P}\mathrm{r}[R$ accepts $(s, a)$ and $a\neq$

$e_{T}(s)|T$ has $e_{T}$ ] $= \frac{1}{q_{2}}$ , and thus $P_{T}= \max_{\mathrm{e}_{T}\in E_{T}}\max_{(s,a)\in M}\mathrm{P}\mathrm{r}[R$ accepts $(s, a)$

and $a\neq e_{T}(s)|T$ has $e_{T}$ ] $= \frac{1}{q_{2}}=\frac{c-1}{l-1}$ .

$P_{R\mathrm{o}}$ , $P_{R_{1}}$ : For any $e_{R}\in E_{R}=B$ , $|E_{T}(e_{R})|=c^{2}$ , $|E_{T}(e_{R})\cap E_{T}(s, a)|=c$ if $(s\dot, a)\in \mathcal{V}=M$ ,
and $|E_{T}(e_{R})\cap E_{T}(s, a)\cap E_{T}(s’, a’)|=1$ if $(s, a)$ , $(s’, a’)\in \mathcal{V}=M$ with $s\neq s’$ . There
fore $\mathrm{P}\mathrm{r}$ [$T$ can generate ($s$ , $a$ ) $|R$ has $e_{R}$] $= \frac{|E_{T}(s,a)\cap E_{T}(e_{R})|}{|E_{T}(e_{R})|}=\frac{c}{c^{2}}=\frac{1}{c}7$ and for $(s’, a’)\in$

$\mathcal{V}=M$ with $s\neq s’$ , $\mathrm{P}\mathrm{r}$ [$T$ can generate ( $s’$ , $a’$ ) $|R$ has $e_{R}$ and $T$ sent $(s,$ $a)$ ] $=$

$\frac{|E_{T}(s’,a’)\cap E_{T}(s,a)\cap E_{T}(e_{R})\lfloor}{|E_{T}(s,a)\cap E_{T}(e_{R})|}=\frac{1}{\mathrm{c}}$ . thus )
$P_{R_{0}}= \max_{\mathrm{e}_{R}\in E_{R}(s,a)\in M}\max \mathrm{P}\mathrm{r}[T$ can generate

$(s, a)|R$ has $e_{R}$] $= \frac{1}{\mathrm{c}}$ , and $P_{R_{1}}= \max_{e_{R}\in E_{R}}\Sigma_{(s_{1}}{}_{a)\in M}\mathrm{P}\mathrm{r}[\mathcal{M}=(s, a)]\max_{s’\neq s}\max_{a’\in AT}$

$\mathrm{P}\mathrm{r}$ [$T$ can generate ( $s’$ , $a’$ ) $|R$ has $e_{R}$ and $T$ sent $(s,$ $a)$ ] $= \frac{1}{c}$ .

$\square$

We finally note that in any optimal $(\ell, c)\mathrm{A}^{2}$-code $(\mathrm{S}, \mathcal{M}, \mathcal{E}_{\mathcal{R}}, \mathcal{E}_{\mathcal{T}})$ , $\mathcal{E}_{\mathcal{R}}$ and $\mathcal{E}_{\mathcal{T}}$ are all
uniform. This was proved by Obana and Kurosawa [8]
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5 An Extended Family of Optimal A -Codes

Johansson [4] constructed a family of optimal $\mathrm{A}^{2}$-codes from a projective space $\mathrm{P}\mathrm{G}(3, q)$ .
in this section, we generalize his result to obtain an extended family of optimal $\mathrm{A}^{2}$-codes.

Let $\Pi_{i}$ be the set of $\mathrm{i}$-dimensional subspaces in a projective space $\mathrm{P}\mathrm{G}(3+d, q)$ , $0\leq$

$\mathrm{i}\leq 3+d$ . So, $\Pi_{0}$ is the set of points, $\Pi_{1}$ the set of lines, $\Pi_{2}$ the set of planes, and $\Pi_{2+d}$

the set of hyperplanes. If $S$ is an arbitrary set of points in the projective space, then
span{S) is the intersection of all subspaces containing $S$ .

Fix a subspace $\Gamma$ in $\Pi_{1+d}$ . Take

$\mathcal{V}=\Pi_{0}\backslash$ F.

Take a point $x_{1}\in\Pi_{0}\backslash$ F. Then span $\langle\Gamma, x_{1}\rangle$ is a hyperplane. Take another point
$x_{2}\in\Pi_{0}\backslash span$ $\langle\Gamma, x_{1}\rangle$ , and let $L=\{x_{1}, x_{2}, \ldots, x_{q+1}\}$ be the line containing both $x_{1}$ and
$x_{2}$ . Then $L\cap\Gamma=\emptyset$ and the $q+1$ hyperplanes $P_{i}=span\langle\Gamma$ , $x_{f}$ ) exhaust all points in $\Pi_{0}$ .
Denote

$G_{i}=P_{i}\backslash \Gamma$ .
Then $G_{1}$ , $G_{2}$ , $\ldots$ , $G_{q+1}$ form a partition of $\mathcal{V}$ . Let $(;=\{G_{1}, G_{2}, \ldots, G_{q+1}\}$ .

Since $\Gamma$ , $P_{l}$ and $\Pi_{0}$ contain respectively $\frac{q^{2+d}-1}{\overline{q}--1}$ , $\frac{q^{3+d}-1}{\overline{q}-1}$ and $\frac{q^{4+d}-1}{q-1}$ points, we have

$|G_{i}|=q^{d+2}$ ,

where $1\leq \mathrm{i}\leq q+1$ , and
$|\mathcal{V}|=q^{d[perp] 3}+q^{d+2}$ .

Since the intersection of $\mathrm{I}^{\urcorner}$ and any plane $P\in\Pi_{2}$ is a subspace, $d\mathrm{i}m(\Gamma\cap P)=0$ if
and only if $|P\cap\Gamma|=1$ . Let

$B=\{P\in\Pi_{2} : |\Gamma\cap P|=1\}$

be the collection of blocks. Any block is a plane intersecting $\Gamma$ in one point. Take a block
$B$ , and denote $B\cap \mathrm{F}$ $=\{w\}$ . Any $P_{i}$ , $1\leq \mathrm{i}\leq q+1$ , intersects $B$ in a line which contains
$w$ . Since $w\not\in G_{i}$ , we have

$|B\cap G_{i}|=q$

for $\mathrm{i}=1,2$ , $\ldots$ , $q+1$ . We can show that $(\mathcal{V}, \mathcal{G}, B)$ is a $(t, \ell, c, \lambda)$-GOB design with $t=q+1$ ,
$\ell=q^{d+2}$ , $c=q$ and A $=1$ . We verify conditions for a GOB design below.

Let any two points in the same $G_{i}$ , $\mathrm{i}=1,2$ , $\ldots$ , $q+1$ , be 1st associates, and any two

points in distinct groups $G_{0}$ and $G_{\mathrm{i}}$ , $\mathrm{i}$ , $j=1,2$ , $\ldots$ , $q+1$ , be 2nd associates. Then in this
way we naturally obtain a group divisible association scheme. Suppose that $y$ , $z\in G_{:}$

for some $\mathrm{i}$ , $1\leq \mathrm{i}\leq q+1$ . Let $L(y, z)$ be the line containing both $y$ and $z$ . Suppose

that $B$ is a block containing both $y$ and $z$ . Then $B$ must contain $L(y, z)$ . For any $G_{j}$ ,
$\mathrm{i}\neq j$ , $1\leq j\leq q+1$ , since $|B\cap G_{j}|=\mathrm{g}$ , we have that $B\cap P_{j}$ is a line. For any $x\in G_{j}$ ,
span{T, $L(y, z)\rangle$ is a plane intersecting $\Gamma$ in one point; otherwise, $x$ , $y$ , $z$ would have to be
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in the same group which is impossible. Hence span{x, $L(y, z)\rangle$ is a block in $B$ . There are
exactly $|G_{j}|/q=q^{d+1}$ blocks containing both $y$ and $z$ . Suppose $y\in G_{i}$ and $x\in G_{j}$ for
some distinct $\mathrm{i}$ god $j$ , $1\leq \mathrm{i}$ , $j\leq q+1$ . For any $z\in G_{i}$ , span $\langle x, L(y, z)\rangle$ 1s a block in

S. Since there are $|G_{i}-\{y\}|/(q-1)$ lines $L(y, z)$ , $z\in G_{i}$ , in $P_{i}$ containing $y$ , there are
$\frac{q^{d+2}-1}{q-1}$ blocks containing both $y\in G_{i}$ and $x\in G_{\mathrm{i}}$ . So,

$\lambda_{1}=q^{d+1}$ , $\lambda_{2}=\frac{q^{d+2}-1}{q-1}$ ,

and we verified that $(\mathcal{V}, \mathcal{G}, B)$ is a GD design with $\lambda_{1}$ and $\lambda_{2}$ described above.

Take any distinct groups $G_{i}$ , $G_{j}$ , $G_{k}$ and any fixed points $x$ , $y$ such that $x\in G_{i}$ and
$y\in G_{j}$ . Denote $L(x, y)\cap P_{k}=\{z\}$ . If $z\in\Gamma$ , then $x$ and $y$ would have to be in the same
group, which is impossible. Since $z\not\in\Gamma_{\}}$ we have $z\in G_{k}$ . For any block $B$ containing
both $x\in G_{\tau}$ and $y\in G_{j}$ , $B$ contains the line $L(x, y)$ and therefore the point $z\in G_{k}$ too.
This verifies condition (2).

Take any fixed group $G_{i}\in \mathrm{C}\mathrm{i}$ and any fixed point $x\in \mathcal{V}\backslash G_{i}$ . For any two distinct
points $y$ and $z$ in $G_{i}$ , $x\not\in L(y, z)$ since $x\not\in$ $P_{i}$ . There is a unique plane $P$ containing all
$x$ , $y$ and $z$ . $P$ intersects $\Gamma$ in one point; otherwise $x$ would have to be in $G_{i}$ . Therefore, $P$

is the unique block in $B$ containing $x\in \mathcal{V}\backslash _{\iota}G_{i}$ and the two given distinct points $y\in G_{i}$

and $z\in G_{i}$ . We have $\lambda=1$ and condition (3) is verified.

We have proved that $(\mathcal{V}, \mathcal{G}, B)$ is a $(t, \ell, c, \lambda)$ -GOB design with $t=q+1$ , $\ell=q^{d+2}$ ,
$c=q$ and A $=1$ . The other parameters are $|\mathcal{V}|=q^{d+3}+q^{d+2}$ , $|B|= \frac{q^{2d+2}(q^{d+2}-1)}{q-1}$ ,
$\lambda_{1}=q^{d+1}$ and $\mathrm{A}_{2}=\frac{q^{d+2}-1}{q-1}$ .

Theorem 5.1 There exists a $(q+1, q^{d+2},$q,$1)$ -GOB design for any prime power q and
any non-negative integer d.

According to Thereom 4.3, we in fact constructed a family of optimal $\mathrm{A}^{2}$-codes.

Theorem 5.2 There exists an optimal Cartesian $(q^{d+2}, q)\mathrm{A}^{2}$ -code ($S$ , At , $\mathcal{E}_{\mathcal{R}}$ , $\mathcal{E}_{\mathcal{T}}$ ) for any
prime power $q$ and any non-negative integer $d$ with uniform probability distributions on
$S$ and ET $o$ ER respectively such that $|S|=q+1$ , $|AT|=|M|/|S|=q^{d+2}$ , $|Spl\mathrm{i}t(g, s)|=q$

for all verification functions $g$ determined by $e_{R}\in E_{R}$ and for all $s\in S$ .

We wish to remark that when $d=0$ , we obtain the well-known Johansson’s family of
optimal $\mathrm{A}^{2}$ codes [4].

6 Conclusions

In this paper, we revisited the known combinatorial characterization of optimal authenti-
cation codes with arbitration in [7, 8, 10, 18]. We introduced the notion of a GOB design
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and then investigated its structure. We used GOB designs to $\mathrm{r}\mathrm{e}$-characterize optimal
authentication codes with arbitration, which is much easier to be understood than the
previous ones. This new characterization enabled us to construct a new family of optimal
authentication codes with arbitration from finite geometries.
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