End-extension と standardizable extension について

東京大学・大学院 数理科学研究科 村上 雅彦 (Masahiko Murakami) Graduate School of Mathematical Sciences, The University of Tokyo

Abstract

We consider end-extension and standardizable extension in nonstandard universes. We have treelike order of nonstandard universes of radius $\leq \aleph_1$ about end-extension (Lemma 4) and about standardizable extension (Theorem 5).

1 Nonstandard Universe

Definitions 1 (superstructure, base set). Given a set X, we define the iterated power set $V_n(X)$ over X recursively by

$$V_0(X) = X$$
, and $V_{n+1}(X) = V_n(X) \cup \mathcal{P}(V_n(X))$.

The superstructure V(X) is the union $\bigcup_{n<\omega} V_n(X)$. The set X is said to be a base set if $\emptyset \notin X$ and each element of X is disjoint from V(X). We call a set in V(X) an element of $V(X) \setminus X$.

Definition 2 (nonstandard universe). A nonstandard universe is a triple $\langle V(X), V(Y), \star \rangle$ such that:

- 1. X and Y are infinite base sets.
- 2. (Transfer Principle) The symbol \star is a bounded elementary embedding from V(X) into V(Y): which is

$$V(X) \models \varphi(a_1, \ldots, a_n)$$
 if and only if $V(Y) \models \varphi({}^{\star}a_1, \ldots, {}^{\star}a_n)$

holds for any bounded formula $\varphi(x_1,\ldots,x_n)$ and $a_1,\ldots,a_n\in V(X)$.

- 3. ${}^{\star}X = Y$.
- 4. For every infinite subset of A of X, $\{*a \mid a \in A\}$ is a proper subset of *A.

Definitions 3 (standard, internal). For $a \in V({}^*X)$, we call a standard if there is an $x \in V(X)$ such that $a = {}^*x$.

For $a \in V({}^*X)$, we call a internal if there is an $x \in V(X)$ such that $a \in {}^*x$. We denote by ${}^*V(X)$ the set of all internal elements in $V({}^*X)$.

From now on, we denote a nonstandard universe by single V(X).

Definitions 4 (norm, radius). The norm (of standardness) of an internal element a is a cardinal defined by

$$nos(a) = \min \{|x| \mid a \in {}^{\star}x\}.$$

The radius of V(X) is a cardinal defined by

For further detail, we refer to [1]. We shall consider bounded an elementary embedding e from ${}^{\star_1}V(X)$ into ${}^{\star_2}V(X)$.

2 End-extension and Standardizable extension

Let $\mathbb N$ be a structure of standard natural numbers in V(X), which is isomorphic to ω .

Definition 5 (end-extension). An elementary embedding $e: {}^{\star_1}\!V(X) \to {}^{\star_2}\!V(X)$ is an end-extension if any initial segment of ${}^{\star_1}\!\mathbb{N}$ is not extended by e:

$$\forall n \in {}^{\star_1}\!\mathbb{N} \ \forall m_2 \in {}^{\star_2}\!\mathbb{N} \ \exists m_1 \in {}^{\star_1}\!\mathbb{N} \ {}^{\star_2}\!V(X) \models m_2 \leq e(n) \Rightarrow m_2 = e(m_1).$$

We say a set A in ${}^*V(X)$ is *finite in* ${}^*V(X)$ or \star -finite if there is a bijection from an initial segment of ${}^*\mathbb{N}$ onto A inside ${}^*V(X)$.

Lemma 1. Any $(\star_1$ -)finite set in ${}^{\star_1}V(X)$ is not extended by an end-extension $e: {}^{\star_1}V(X) \to {}^{\star_2}V(X)$.

Proof. Let σ be a bijection from an initial segment I of *1N onto A in *1V(X). Since e is an end-extension, for an element $a \in e(A)$, there is $n \in I$ such that $e(n) = (e(\sigma))^{-1}(a)$. Then we have $e(\sigma(n)) = (e(\sigma))(e(n)) = a$.

Definitions 6 (standardization, standardizable extension). A set A_1 in ${}^{\star_1}V(X)$ is a standardization a set A_2 in ${}^{\star_2}V(X)$ by $e : {}^{\star_1}V(X) \to {}^{\star_2}V(X)$ if

$$\forall x \in {}^{\star_1}\!V(X)\big[[{}^{\star_1}\!V(X) \models x \in A_1] \Leftrightarrow [{}^{\star_2}\!V(X) \models e(x) \in A_2]\big].$$

We say e is κ -standardizable if every set of power less than $^{\star_2}\kappa$ in $^{\star_2}V(X)$ has its standardization by e. We say e is standardizable if e is |V(X)|-standardizable.

Lemma 2. If e is ω -standardizable then e is an end-extension.

Proof. Let n be an element of *1N and let m_2 be an element of *2N such that *2 $V(X) \models m_2 \leq e(n)$. Let A be the standardization of the initial segment $\{k \mid k \leq m_2\}$ of *2N. Then we have $e(\max A) = m_2$.

Corollary 3. Any finite set in ${}^{\star_1}V(X)$ is not extended by an ω -standardizable extension $e : {}^{\star_1}V(X) \to {}^{\star_2}V(X)$.

We cannot prove the converse implication of the previous lemma (see [4]).

Fact 1. There is an end-extension which is not ω -standardizable, if continuum hypnosis holds.

3 Ordering of Nonstandard Universes by Standardization

In this section, we consider relation of two elementary embeddings $e_1: {}^{\star_1}\!V(X) \to {}^{\star}\!V(X)$ and $e_2: {}^{\star_2}\!V(X) \to {}^{\star}\!V(X)$.

Lemma 4. Suppose $\operatorname{rad}({}^*\!V(X)) \leq \aleph_1$. If e_1 and e_2 are end-extensions then there is either an end-extension $e \colon {}^{\star_1}\!V(X) \to {}^{\star_2}\!V(X)$ such that $e_2 \circ e = e_1$ or $e \colon {}^{\star_2}\!V(X) \to {}^{\star_1}\!V(X)$ such that $e_1 \circ e = e_2$

Proof. Since both e_1 and e_2 are end-extensions, e_1 "* $^1\mathbb{N} \subseteq e_2$ "* $^2\mathbb{N}$ or e_2 "* $^2\mathbb{N} \subseteq e_1$ "* $^1\mathbb{N}$. Without loss of generality, we can assume e_1 "* $^1\mathbb{N} \subseteq e_2$ "* $^2\mathbb{N}$. Let $f: ^1\mathbb{N} \to ^2\mathbb{N}$ be a map satisfying $e_2 \circ f = e_1$ * $^1\mathbb{N}$.

Let a in an element of ${}^{\star_1}V(X)$. Since $\operatorname{rad}({}^{\star}V(X)) \leq \aleph_1$, there are a countable set R_a in V(X) such that $a \in {}^{\star_1}R$ and a bijection $\sigma_a \colon \mathbb{N} \to R_a$. Defining e by $e(a) = {}^{\star_2}\sigma_a(f(({}^{\star_1}\sigma_a)^{-1}(a)))$, we have completed the proof.

Theorem 5. Suppose $\operatorname{rad}({}^*\!V(X)) \leq \aleph_1$. If e_1 and e_2 are standardizable then there is either a standardizable $e : {}^{\star_1}\!V(X) \to {}^{\star_2}\!V(X)$ such that $e_2 \circ e = e_1$ or $e : {}^{\star_2}\!V(X) \to {}^{\star_1}\!V(X)$ such that $e_1 \circ e = e_2$.

Proof. By the previous lemma, we only check e is standardizable. The standardization of a set A in $^{\star_2}V(X)$ by e is the standardization of the set $e_2(A)$ by e_1 .

In the case of ultrapowers, standardizable extension corresponds to Rudin-Frolík order [2, 3, 4] of ultrafilters [5]. On ultrafilters over countable sets, Rudin-Frolík order is treelike: every initial segment are comparably ordered. So the following question rise. Question 2. The assumption $\operatorname{rad}({}^*\!V(X)) \leq \aleph_1$ in the previous theorem is required?

References

- [1] C. Chang and J. Keisler, *Model Theory*, 3rd ed, North-Holland, Amsterdam, (1990).
- [2] Z. Frolík, Sum of ultrafilters, Bull. Amer. Math. Soc., 73 (1967) 87-91.
- [3] M. RUDIN, Partial orders on the type in $\beta \mathbb{N}$, Trans. Amer. Math. Soc., 155 No.2 (1971) 353–362.
- [4] A. Blass, End extensions, conservative extensions, and the Rudin-Frolik ordering, **Trans. Amer. Math. Soc.**, 225, (1977), 325–340.
- [5] M. Murakami, Standardization principle of Nonstandard universes, Journal of Symbolic Logic, 64, 4(1999), 1645–1655.