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Abstract,

We formulate a principle, called 7ac, which implies both ¢4 and ¢ac. We also force Tac and conclude
equiconsistencies of these. ‘

Introduction

In [W], combinatorial principles yac and ¢ac are introduced. We consider these in ZFC and formulate
a stronger principle. We call our stronger one 7a¢. This r4c deals with many stationary subsets of wy at a
time. By choosing arrangements of stationary sets, we may conclude ¥5c and dac.

In §1, we fix notations. In §2, we recap ¥ac and Pac and so forth and define 7ac. ‘We mention immediate
implications. In §3, we prepare technical lemmas. This builds on the communication [A] with D. Aspero. In
§4, we outline a forcing construction of 7ac and conclude equiconsistencies based on [DD].

§1. Preliminary

1.1 Notation. For a set X, [X| denotes the cardinality of X and for a set Y of ordinals, 0.t.(Y) denotes
the order-type of (Y, <). For a set A, [A]* denotes {X | X C 4,|X|=w}.

For a set 7, TC(z) denotes the €-transitive closure of z. For a regular cardinal 8, Hg = {z | [TC(z)| <
8}. A countable elementary substructure N of Hp means (N, €) isa countable elementary substructure of
{Hg, €). Hence we assume no other predicates and functions on Hp.

A notion of forcing P is semiproper, if for all sufficiently large regular cardinals and countable elementary
substructures N of Hg with P € N (and possibly other parameters are in N), if p € PN N, then there
exists ¢ < p such that for all P-names 7 € N with [-p“T € w)”, we have g|-,“7 € N”. We call this ¢
(P, N)-semigeneric. Equivalently, ¢ -p“N[G]Nw} = NNw}”, where N[G] = {r(G] | 7 is 2 P-name with
TE€N}L

Clubs and stationary subsets of w; have standard meanings.

We consider stronger stationary sets to come up with notions of forcing which are semiproper.

1.2 Definition. Let K be any set with K 2 wi. For § C [K]¥, we say S is semiproper, if for all
sufficiently large regular cardinals 8 and all countable elementary substructures N of Hg with K € N (and
possibly other parameters are in N}, there exist countable elementary substructures M of Hg such that
NCM,Nnuy=Mnwand MNK € 8.

1.3 Proposition. Let S C [K|% be semiproper, then S is stationary in [K}“. In particular, S is cofinal
in [K]v.
Proof. Let 8 C [K] be semiproper. Let f: <¥ K — K. It suffices to find X € 8 which is closed under
f. To this end, let 8 be a sufficiently large regular cardinal and N be a countable elementary substructure
of Hp with K, f € N. Then since S is semiproper, there exists a countable elemetary substructure M of Hy
with MNK € S. Let X = M N K. Then this X works.
u]
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§2. Implications

We recap three principles from [W] and [LS].

2.1 Definition. ([W]) Let S be any stationary subset of w;. We define .
v €8, if w; <4 < we, there exists a bijection 7 : wy — 7y such that

{e<w |ot.({n(B) | A< a}) € 8}
contains a club.

2.2 Definition. {{W]) ¢¥ac stands for the following statement.

For any stationary costationary subsets S and T, there exist v < wz, a bijection 7 : w; — v and a
closed unbounded set C C w; such that

{fa<w |ot.({n(8) | B<a}) eS}NC=TNC.

2.3 Definition. {({W]} ¢ac stands for the following statement.

(1) There is an w; sequence of distinct reals.

(2} Suppose (S, | n <w) and (T}, | n < w) are sequences of pairwise disjoint subsets of w;. Suppose the S,
are stationary and suppose that

w = J{Tn | n<w}

Then there exists 77 < wy and a continuous increasing function F : wy — n with cofinal range such that
foreachn<wand jeT, -
F(j)e s,

2.4 Definition. ([LS]} The cofinal bounding (The complete bounding, CB) means that for any function
f 1 wi — wy, there exist v with wy < v < wo, a bijection 7 : w; — 7 and a club C such that for each

a€C, fla) <ot.({m(B) | B <a}).

The following is strongest among these.

; 2.5 Definition. 7ac holds, if for any system (S7 | j < i <w;) of stationary subsets of w;, there exists
a continuously <-increasing sequence {7; | j < w1) of ordinals with w; < v < 4, < w2 and a continuously
C-increasing countable sets (X | ¢ < w;) such that

e X; €[]
o [ H{Xili<wi} =y '
s For all j < i, we have o.t.{X;Nv;) € 7.

2.6 Proposition. Tac implies both ac and ¢ac-

Proof. We show 4ac gets implied by rac. Let both § and T be stationary and costationary. Define S9
by

o_[S  iieT
¢ wi\ S, otherwise.

We do not care about other Sf . Apply 7ac to this (Sf |7 €1 <w). We get a continuously <-
increasing sequence (v; | § < wi) and a continuously C-increasing sequence (X; | ¢ < w1). For each i < wy,
let Y; = X;N~g. Then

o W < v < wa.



» Y] are continuously C-increasing countable subsets of o with [J{Y; | i <wi} =0
e ieTiffot.(¥;) € S.

Let 7 be any bijection 7 : w; — ~p. Then
{i<w: [ {x(B8) | B<i} =Yi}
contains a club C. We conclude

{i<wi]ot({r(B) |B<i}) €SINC=TNC.

Next, we show ¢ac gets implied by 7ac. Let (S, | » < w) and (T, | n < w) be given. For each
7 <1 < w, define

81 =8, if €T,

Since w; = | J{Tu | n < w} is a disjoint union, this is well-defined. Apply 7ac to this (8915 <i<wr) We
get a continuously <-increasing sequence {y; | j < w;} and a continuously C-increasing sequence (X; | ¢ < wy}.
Let v = 4., and for each j < wy, let F{j) =+;. Then we have

s Wy <y < ws. :
e F:w; — « is a continuous increasing function whose range is cofinal in 7.

Want to observe

e For each n < w and j € Ty, we have F(j) € 8.

Fix n, j with j € Tj,. Then {X;My; |4 < w;) is a continuously C-increasing sequence of countable §ubsets
of F(j) such that | J{X; Ny | i <wi} = F(§) and for all i with j < i < wy, we have 0.t.(X;Ny;) € S} = S,.
Let 7 : w; — F(j) be any bijection. Since

{i<w |i<i,{n(B) | B<i}=XiNv}
contains a club C and we have

ccfi<w ot({n(B) | p<i}) e s,,}.

Hence F(j) € S,

The following is communicated by D. Aspero. We provide our proof.

2.7 Proposition. {[A]) (1) dac implies CB.
(2) Pac also implies CB.
Proof. For (1): Let f : w1 — wy and C(f) = {3 < wy | i is closed under f}. Then C(f) is a club in ws.

Partition C{f) into w-many stationary pieces {C(f)n | n < w}. We also partition w; into any {Tn | n < w).
Apply dac to (C(f)n In < w) and (T, | n < w). We have 77 < wy and an increasing continuous function

F :w; — 7 with cofinal range such that for all n < w and j € Ty, we have F(j) € C(f)n.

Since wy < F(j) and the F(j) are cofinal in 7, we may choose j < w; such that wi < F(j). Let
n < w be such that j € T}, and let ¥ = F(j). Then wy <y < wp bolds. Since y € C(f)n C C(f), there
exists a bijection 7 : w; — 7y such that {a < wy | o.t.({m(8) [ B < a}) € C(f)} contains a club C. Let
Xo={m(B) ]| B < a} for all & < wi. Let

D={a<w |w: € Xa, wiNXs=a}
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Then D is a club in wy. It suffices to show that for all @ € CND, fla) < 0.t.(X,) hold. But a < 0.t.(X,) €
C(f), so this is immediate.

For (2): Let f: wy — wi and C(f) = {i < w1 | ¢ is closed under f}. Then C(f) is a club in w;.
Partition C(f) into two stationary sets S and 7. So C(f) = SUT and SNT = §. Apply ¥ac to (5,T)
and (T,S). So for k = 1,2, there exist v, Ci, a continuously C-increasing sequence of countable subsets
(XF | 6 < wi) of v with {J{XF | § <wi} =7 such that

TNC = {8 €C |ot.(X]) €S},
§NC={6eC, |0t (X} eT}

Since we must have w; < 71,72 under this situation, we may assume w; <1 <92 < wa. Let
D=C(inCinCN{d <w | Xinw =6, w1 € X5 =XENm}
Then D is a club in w;y. It suffices to show that for all é € D, we have
f(0) < o0t.(X3).

Case 1. § € T: § < 0.t.(X}) € § C C(f). Hence f(J) < 0.t.(X}) < 0.t.(X3).
Case 2. § € §: § < 0.t.(X}) < 0t.(XF) € T C C(f). Hence f(5) < o.t.(XZ).

2.8 Note. ([W]) {1) The Strong Reflection Principle (SRP) implies ¥ac.
(2) vac implies 2¥ = 2¥1 = wo.
(3) The Martin’s Maximum (MM) implies ¢ac-
(4) éac implies 24 = wy.

2.9 Question. (1) ([LS]) It is known Con{CB+CH) and so CB does not imply 1ac. Separate these
principles as much as possible.

(2) Investigate the effects of MM and SRP on 7ac.
§3. Main Lemma

This section builds on the communication [A] by D. Aspero.

3.1 Lemma. Let & be a measurable cardinal, 6 be a regular cardinal with § > (2)*, N be a countable
elementary substructure of Hg with k € N, § < wy and S C wy be stationary. Then there exists a countable
elementary substructure M of Hp such that
(1) NCM.

(2) Foranya€ H.NN,aNN =anNM.
(8) 6 <ot.(Mnk)eS.

Proof. Since Hp = “x is measurable” and N is an elementary substructure of Hy with x € N, we may
take a normal measure D € N. Take any s € {(J(V N D) and define

N(s)={f(s)| f e N}.

Then N(s) is a countable elementary substructure of Hy such that (1} N(s) N« end-extends NNk and s is
the least in (N{s)N«)\ (N Nk). (2) For any a € NN Hy, aN N(s) = a N holds.



Now iterate this process to construct a continuously C-increasing sequence (N; | ¢ < wi) of countable
elementary substructures of Hg with N = Nj. Notice that {0.t.(N; N &) | { < w;) provides a club. Hence we
have N; such that § < o.t.(N;N«) € S. Let M = N;. This M works.

a

3.2 Definition. For the rest of this section, we fix a continucusly strictly increasing sequence {x; | j <
w1) of cardinals such that

)
{1) o is a measurable cardinal.
(2) For all successor ordinals j + 1, k;11 are measurable cardinals.
{3) Hence if j < w) is a limit, then x; = sup{x; | 7/ < 7} is singular.
3.3 Definition. Let {87 | j < w1) be any sequence of stationary subsets of w; and £ < wy. Then let
#((S7 | j < wi),t) stand for
For all (s,8, N, §) such that
s 5 <,
e §is a regular cardinal with 6 > (.,
e N is a countable elememtary substructure of Hp with {x; | § < w1),5,t €N,
o § <wy.

.

There exists a countable elementary substructure M of Hy such that
e NCM 3
e NNrg=MnNks,
e For all j with s+ 1 < j < £, we have § < 0.t.(M Nk;) € §7.

: 3.4 Lemma. For any sequence (87 | 7 < wy) of stationary subsets of w1 and any t < wi, we have
#({87 | j < wrhst).
Proof. Fix {87 | j < w;) and simply denote ¢(t). We show ¢(t) by induction on t < wi. First notice
¢(0) is vacuously true.
$(t) — o(t+1): Let (5,6, N,8) be given as in ¢(t + 1). Since s < ¢ + 1, we consider in two cases.

Case 1. s = t: Want a countable elementary substructure M of Hy such that N € M, NNk, = M Nk
and & < 0.t.(M N &e41) € ST But this is done by 3.1 Lemma with the measurable K¢41-

Case 2. s < t: Apply &(t) with (5,8, N,§). Then we have M’ such that
s NC M.
o NNgg =M Nk,
e For all j with s +1 < j <, we have § < o.t.{M' Nx;) € §79.

Since #4431 € (N C) M’, we may again apply 3.1 Lemma. So may take a countable elementary substruc-
ture M of Hp such that

« M'C M.
- M’ﬂnt=Mﬂnt.
. 5<O.t.(MﬂRt+1)€St+l.

Then this M works.

t is limit, (VE<t ¢(F)) — o(t): Let (s,8,N,d) be given as in ¢(t). Fix a <-increasing sequence
{tn | n < wy) such that to = s and sup{t, | » <w} = ¢. Notice i, € N Nw;.
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Now let us take a sufficiently large regular cardinal x and a countable elementary substructure N* of
H, such that N* contains every thing visible.

o (S7}j<un),Hs N,§,{tn | n<w)€N*andso(x; | j Swi) ENCN™
And
e N*Nuw; € 8%
Let {6, | n < w) be an increasing sequence of ordinals such that & = & and sup{s, | n < w} = N*Nw;.

Construct a sequence of countable elementary substructures {M,, | n < w) of Hy by recursion on n. We first
apply ¢{t;) with (s, 8, N, &) so that

o N C Mo, Mo € N*.
e NNky= MpyNks.
o For all j with s+ 1 < j £t;, we have § < o.t.(MpNky) € §7.
It is posssible to have My € N* by elementarity. Suppose we have constructed M, so that
o N C My, M, € N*.
¢ NNKs=MyNK,.
¢ For all j with £, +1 < j <tp41, we have 6, < 0.t.(M, Nk;) € 57,
Want Mps1. By ¢(tn+2) with (2n41,8, Mp, dnt1), we have Mp 1 € N* such that
¢ M, C My,
¢ MpMikg, =My MKy, .
e For all j with tp41 +1 < j < tpya, we have Spy1 < 0.8.(Mpy1 Nky) € 87,
Let M = |J{M, | n < w}. We claim this M works. Among others, we provide details for
e For all j with s + 1 < j < ¢, we have 0.t.(M N x;) € §7.

We consider in two cases. f ¢, +1 < j < tn41, then

MﬂICszn+1nﬂj=Mnﬂﬁj

and so .
ot (MnNk;} e S,
Ifj=t, then
0.t.(M Nkg) =supf{ot. (M Nry,,,) | n <w}=sup{ot.(MnNke,,,) | n<w}
While

sup{o.t. (M, N ks, ) [ n<w} =sup{f, [ n <w}=N*Nuw; € 5.

Hence we are done,

3.5 Definition. Let (S | j < i < w;) be any system of stationary subsets of w; and i < w;. Define
S[i] by
Sli] ={X e [s]” | (Vj €3) 0t.{X NKry) € 8}

We also define S[*] by

Six]={X € [r,]* | X N1 <wi, (Y5 < X Nwy) 0.4.(X Nky) € Sy, }-



Notice that if X € §[«], then X N&xny, € 8[X Nw;] holds.

3.6 Lemma. For any system (S;’ | § <4 < w) of stationary subsets of wy and any 1 < wi, S[i] is
semiproper. By this we mean;

For all regular cardinals 0 > (k)" and all countable elementary substructures N of Hg with {(x; | j <
w1),i € N, there exist countable elementary substructures M of Hp such that N C M, NNw; = MNw, and

Mnk; € 8[i].
Proof. Let 8 be a sufficiently large regular cardinal and N be a countable elementary substructure of
Hp with {; | j S w1),i € N. Want M such that N C M, N Nw; = M Nw; and M N&; € S[i].
By 3.1 Lemma, we first take N’ such that
e NCN'.
o NNuw = N'MNws.
e 0.t.(N'Nko) € SP.

We consider in two cases. If i = 0, then let M = N’. This M works.
If 0 < 4, then for each j < wi, let

wi, otherwise,

By ¢({5? | j < w1), 4) with (0,8, N',0), we have a countable elementary substructure M of Hy such that

s NNC M.
e N'Nkg=MnNkg.
e For all j with 1 < j < 4, we have 0.t.(M Nk;) € §7 = 7.

This M works.

3.7 Lemma. For any system (Stj | § <14 <wi) of stationary subsets of w1, S[*] is semiproper. By this
we mean,;

For oll regular cardinals 8 > (k)T and all countable elementary substructures N of Hg with (k517 <
w) € N, there exist countable elementary substructures M of Hy such that N C M, NNwy =M Nuw; and
M Nk, € S[x].

Proof. Let 6 be a sufficiently large regular cardinal and N be a countable elementary substructure of
Hy with {kj | 7 < wi) € N. Let (tn | n < w) be a <-increasing sequence of ordinals such that tp = 0 and

sup{t, | n <w} = NNw.
Let i be a large regular cardinal and N* be a countable elementary substructure of H, such that N*

contains every parameter.
e (87 |j <i<uw), Hg,N,{tn | n <w) € N* and so {s; | j < w;) € N C N* holds.
And
o N*Nuw; € Sypet.
Let (3, | n < w) be an increasing sequence of ordinals such that dg = 0 and sup{é,, | n <w} = N*"Nwi.

Construct a sequence of countable elementary substructures (M, | n < w) of Hg by recursion on n.
We first get Mg such that

L] NgMo,MQGN*‘
o NNuwi = MpNuwsy.
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* 8o < 0.t.(Mp N ko) € S,
It is possible to have Mp € N* by elementarity. Suppose we have constructed M, such that
e NCM,, M, € N*.
s NNuwy = M,Nw;. .
e For all j with j < t,, we have 0.t.(M, Nk;) € S%mwl and 8, < 0.t.(M, N ke, ).

Want Mn-[-l- By ¢(<S§;ynw1 i ") < anl)n(wl,'_“),tn+1) with (tn,g, Mn,Jﬂ,_H), we get Mn+1 € N*
such that

s M, C Myq,.
o My, Dke, = Mpyi Nk, ‘
e For all j with t, +1 < j < tny1, we have Sny1 < 0.8.(Mpy1 N&;) € Sy, -

This completes the construction. Let M = J{M, | n < w}. Then this M works. Among others, we
provide details for

¢ For all j with j < M Nw;, we have 0.t.(M Nk;) € S}’;anl‘
First note that N Nwy = M Nw;. We consider in two cases. If j < t,,, then
MnNk;=MyNs;
And so )
0.t.(M NKj) € Siyme, -
If j = M Nuwy, then

o.t. (M Nkmnw, ) =sup{ot{M Nk, ) | n <w} =sup{ot.(Mp Nk, ) | n<w}

While
sup{o.t.(Mp Nke,) | n<wl=sup{dp | n<w}=N*Nuw € Sﬁ,q:,’:

Hence we are done.

§4. Forcing Construction

We force 7ac by iteration. Here is 2 single step.

4.1 Definition. Let (k; | j < w;) be as before. Let (S7 | j < @ < wy) be any system of stationary
subsets of w;. We define p = (X? | ¢ < iP) € P, more precisely, P((§] | j <i<uwy)), if

(1) P < wp.
(2) X7 € S[i]. Namely, X? € [r;]“ and for all j <4, 0.t.(XP N &;) € 57
{8) X7 are continuously C-increasing,

Forp,ge P,let g<p,if g2 p.

4.2 Lemma. For any p € P, t > iP and € € &y, there exists ¢ < p such that ¢ =t and € € X{.
Proof. By induction on t < wy. Ift = 0, then it is vacuously true.

t—t+1: Let (p,€) be given. Since we assume P < t + 1, we consider in two cases. If i = ¢, then
since S[t+ 1] is cofinal in [K:41]¥, we may take X € S[¢ +1] with XP U{€} C X. Let g =pU{(t+1,X)}.
Then this ¢ works.
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If i# < ¢, then by induction we have p’ € P such that
s ¢ <p.
o =t
and, say
s 0ecXx?.
Then take X € S[t+ 1] with X U{€} C X. Let ¢ =p' U {(t + 1, X)}. Then this q works.

t is limit: Let (p,&) be given. We assume i < t. Let {t, | n < w) be a sequence of ordinals such that
to = i® and sup{t, | n < w} =t. Since S[t] is stationary in [x:], we may take a countable elementary
substructure N of Hg, where 8 is a sufficiently large regular cardinal, such that

e p, Pty |n<w)eN.
And
e NMks € S[t]

Let (¢, | n < w) enumerate N N such that & € N N ky,,,. Construct a sequence {p, | n < w) of
conditions of P by recursion on n. Let pg = p. Suppose we have constructed p, such that’
e p, EN.
e Pr =1,
Want p,+1. By induction we get pn41 € N such that
* Dni1 < Pn.

& {Prtl = tn+1~

Pril
o {nE X

This completes the construction. Let ¢ = J{pn | n <w}U {{#, N Nx:)}. Then this ¢ works.

4.3 Lemma. P is o-Baire and semiproper.

Proof. We show P is semiproper. Let 6 be a sufficiently large regular cardinal and N be a countable
elementary substructure of Hp with P € N. We further assume (k; | < wi) € N. Let p € PN N. Want
g < p such that g is (P, N)-semigeneric,

Since S]x| is semiproper, there exists a countable elementary substructure M of Hy such that

e NC M.
« N Nuwy = M Nwi-
o M Nk, €8[«].
Hence
M0 eprw, € S[Mﬁwl]A

Let {p, | n <w) be any (P, M)-generic sequence with po = p. Then let

q=U{'pn | n < wlU{(MNwi, MO ENaw )}

We claim this ¢ € P works. This is because for all n < w, ¢ < pn and so g is {P, M)-generic. Hence
alFp“MIGINWY = MNw!™. Since M Nw;y = N Nuws, we have glFp“NIGINWY C M[GINw! = Nnw{”.
Hence g -p“NIGINwY = NNw!”. <

By the above, we may also conclude that P is o-Baire.
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4.4 Lemma. Let G be P-generic over V. Let (X; | i <wi) =JG. Then for all j < i <w, we have
ot.(Xink;) € 87 and Y{X; | i <wi}=5u,.
Proof. By Lemma 4.3, w; gets preserved. By 4.2 Lemma, we have {JG is of length w1 and { {X; | i <
W1} = Ky
o

4.5 Theorem. Let p be a regular cardinal such that p = sup{x < p | & is measurable}. Then there
exists a p-stage iteration P, such that

(1) P, is semiproper and has the p-c.c.
(2) In V¥, p=is and rac holds.

Proof. (Out-line) Let p be a regular limit of measurables. Let & < p and suppose we have constructed
P, such that P, is semiproper and P, € H,. Then we force with some P((S] | j < ¢ < w1)) by naturally
choosing the least sequence {k; | j < w;} in the intermediate stage V. The system (S} | j < i <wi) is
specified to be calculated at some stage 8 < . This is done as usual by book-keeping every possible system
of subsets (S? | j < i <wi) of wy in V72 for all B < @ At the limit stages, we take the simple limit of [M].
This completes the construction of P,. By construction P, is semiproper and w; is preserved. Since P, is a
semiproper iteration such that for all @ < p, {Py| < p, we conclude ([M]) that P, has the p-c.c. Hence by
the end, we have dealt with every possible system of stationary subsets of ws.

Hezg:e Tac holds in VP, Since relevant measurable cardinals are collapsed, we conclude p becomes the
wo in Ve,

o
The following, possibly except (2), have been known to D. Aspero and others.
4.6 Corollary. ([A] et al) The following are all equiconsistent.
{1} There exists a regular limit of measurable cardinals.
(2) Tac holds.
{8) PYac holds.
(4) éac holds.
(5) CB holds.
Proof. The consistency of (5) implies that of (1) by [DD]. Hence all of these are equiconsistent.
o
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