#### A Strong Form of $\psi_{AC}$

## Tadatoshi MIYAMOTO 宮元 忠敏

7th, January, 2006

Mathematics, Nanzan University 南山大学 数理情報 27 Seirei-cho, Seto-shi 489-0863 Japan miyamoto@nanzan-u.ac.jp

#### Abstract

We formulate a principle, called  $\tau_{AC}$ , which implies both  $\psi_{AC}$  and  $\phi_{AC}$ . We also force  $\tau_{AC}$  and conclude equiconsistencies of these.

## Introduction

In [W], combinatorial principles  $\psi_{AC}$  and  $\phi_{AC}$  are introduced. We consider these in ZFC and formulate a stronger principle. We call our stronger one  $\tau_{AC}$ . This  $\tau_{AC}$  deals with many stationary subsets of  $\omega_1$  at a time. By choosing arrangements of stationary sets, we may conclude  $\psi_{AC}$  and  $\phi_{AC}$ .

In §1, we fix notations. In §2, we recap  $\psi_{AC}$  and  $\phi_{AC}$  and so forth and define  $\tau_{AC}$ . We mention immediate implications. In §3, we prepare technical lemmas. This builds on the communication [A] with D. Aspero. In §4, we outline a forcing construction of  $\tau_{AC}$  and conclude equiconsistencies based on [DD].

## §1. Preliminary

1.1 Notation. For a set X, |X| denotes the cardinality of X and for a set Y of ordinals, o.t. (Y) denotes the order-type of (Y, <). For a set A,  $[A]^{\omega}$  denotes  $\{X \mid X \subseteq A, |X| = \omega\}$ .

For a set x, TC(x) denotes the  $\in$ -transitive closure of x. For a regular cardinal  $\theta$ ,  $H_{\theta} = \{x \mid |TC(x)| < \theta\}$ . A countable elementary substructure N of  $H_{\theta}$  means  $(N, \in)$  is a countable elementary substructure of  $(H_{\theta}, \in)$ . Hence we assume no other predicates and functions on  $H_{\theta}$ .

A notion of forcing P is semiproper, if for all sufficiently large regular cardinals and countable elementary substructures N of  $H_{\theta}$  with  $P \in N$  (and possibly other parameters are in N), if  $p \in P \cap N$ , then there exists  $q \leq p$  such that for all P-names  $\tau \in N$  with  $\Vdash_P "\tau \in \omega_1^V "$ , we have  $q \Vdash_p "\tau \in N"$ . We call this  $q \in P$  considerable. Equivalently,  $q \Vdash_P "N[G] \cap \omega_1^V = N \cap \omega_1^V "$ , where  $N[G] = \{\tau[G] \mid \tau \text{ is a } P\text{-name with } \tau \in N\}$ .

Clubs and stationary subsets of  $\omega_1$  have standard meanings.

We consider stronger stationary sets to come up with notions of forcing which are semiproper.

- 1.2 Definition. Let K be any set with  $K \supseteq \omega_1$ . For  $S \subseteq [K]^\omega$ , we say S is semiproper, if for all sufficiently large regular cardinals  $\theta$  and all countable elementary substructures N of  $H_\theta$  with  $K \in N$  (and possibly other parameters are in N), there exist countable elementary substructures M of  $H_\theta$  such that  $N \subseteq M$ ,  $N \cap \omega_1 = M \cap \omega_1$  and  $M \cap K \in S$ .
- **1.3 Proposition.** Let  $S \subseteq [K]^{\omega}$  be semiproper, then S is stationary in  $[K]^{\omega}$ . In particular, S is cofinal in  $[K]^{\omega}$ .

*Proof.* Let  $S \subseteq [K]^{\omega}$  be semiproper. Let  $f: {}^{<\omega}K \longrightarrow K$ . It suffices to find  $X \in S$  which is closed under f. To this end, let  $\theta$  be a sufficiently large regular cardinal and N be a countable elementary substructure of  $H_{\theta}$  with  $K, f \in N$ . Then since S is semiproper, there exists a countable elemetary substructure M of  $H_{\theta}$  with  $M \cap K \in S$ . Let  $X = M \cap K$ . Then this X works.

## §2. Implications

We recap three principles from [W] and [LS].

**2.1 Definition.** ([W]) Let S be any stationary subset of  $\omega_1$ . We define  $\tilde{S}$ .  $\gamma \in \tilde{S}$ , if  $\omega_1 \leq \gamma < \omega_2$ , there exists a bijection  $\pi : \omega_1 \longrightarrow \gamma$  such that

$$\{\alpha < \omega_1 \mid \text{o.t.}(\{\pi(\beta) \mid \beta < \alpha\}) \in S\}$$

contains a club.

**2.2 Definition.** ([W])  $\psi_{AC}$  stands for the following statement.

For any stationary costationary subsets S and T, there exist  $\gamma < \omega_2$ , a bijection  $\pi : \omega_1 \longrightarrow \gamma$  and a closed unbounded set  $C \subset \omega_1$  such that

$$\{\alpha < \omega_1 \mid \text{o.t.}(\{\pi(\beta) \mid \beta < \alpha\}) \in S\} \cap C = T \cap C.$$

- **2.3 Definition.** ([W])  $\phi_{AC}$  stands for the following statement.
- (1) There is an  $\omega_1$  sequence of distinct reals.
- (2) Suppose  $\langle S_n \mid n < \omega \rangle$  and  $\langle T_n \mid n < \omega \rangle$  are sequences of pairwise disjoint subsets of  $\omega_1$ . Suppose the  $S_n$  are stationary and suppose that

$$\omega_1 = \bigcup \{T_n \mid n < \omega\}.$$

Then there exists  $\eta < \omega_2$  and a continuous increasing function  $F: \omega_1 \longrightarrow \eta$  with cofinal range such that for each  $n < \omega$  and  $j \in T_n$ 

$$F(j) \in \widetilde{S_n}$$
.

**2.4 Definition.** ([LS]) The cofinal bounding (The complete bounding, CB) means that for any function  $f: \omega_1 \longrightarrow \omega_1$ , there exist  $\gamma$  with  $\omega_1 \leq \gamma < \omega_2$ , a bijection  $\pi: \omega_1 \longrightarrow \gamma$  and a club C such that for each  $\alpha \in C$ ,  $f(\alpha) < \text{o.t.}(\{\pi(\beta) \mid \beta < \alpha\})$ .

The following is strongest among these.

- **2.5 Definition.**  $\tau_{AC}$  holds, if for any system  $\langle S_i^j \mid j \leq i < \omega_1 \rangle$  of stationary subsets of  $\omega_1$ , there exists a continuously <-increasing sequence  $\langle \gamma_j \mid j \leq \omega_1 \rangle$  of ordinals with  $\omega_1 < \gamma_0 < \gamma_{\omega_1} < \omega_2$  and a continuously  $\subseteq$ -increasing countable sets  $\langle X_i \mid i < \omega_1 \rangle$  such that
  - $X_i \in [\gamma_i]^{\omega}$ .
  - $\bigcup \{X_i \mid i < \omega_1\} = \gamma_{\omega_1}$ .
  - For all  $j \leq i$ , we have  $\text{o.t.}(X_i \cap \gamma_i) \in S_i^j$ .
    - 2.6 Proposition.  $\tau_{AC}$  implies both  $\psi_{AC}$  and  $\phi_{AC}$ .

*Proof.* We show  $\psi_{AC}$  gets implied by  $\tau_{AC}$ . Let both S and T be stationary and costationary. Define  $S_i^0$  by

$$S_i^0 = \left\{ egin{array}{ll} S, & ext{if } i \in T \ \omega_1 \setminus S, & ext{otherwise.} \end{array} 
ight.$$

We do not care about other  $S_i^j$ . Apply  $\tau_{AC}$  to this  $\langle S_i^j \mid j \leq i < \omega_1 \rangle$ . We get a continuously <-increasing sequence  $\langle \gamma_j \mid j \leq \omega_1 \rangle$  and a continuously  $\subseteq$ -increasing sequence  $\langle X_i \mid i < \omega_1 \rangle$ . For each  $i < \omega_1$ , let  $Y_i = X_i \cap \gamma_0$ . Then

•  $\omega_1 < \gamma_0 < \omega_2$ .

- $Y_i$  are continuously  $\subseteq$ -increasing countable subsets of  $\gamma_0$  with  $\bigcup \{Y_i \mid i < \omega_1\} = \gamma_0$ .
- $i \in T$  iff o.t. $(Y_i) \in S$ .

Let  $\pi$  be any bijection  $\pi: \omega_1 \longrightarrow \gamma_0$ . Then

$$\{i < \omega_1 \mid \{\pi(\beta) \mid \beta < i\} = Y_i\}$$

contains a club C. We conclude

$$\{i < \omega_1 \mid \text{o.t.}(\{\pi(\beta) \mid \beta < i\}) \in S\} \cap C = T \cap C.$$

Next, we show  $\phi_{AC}$  gets implied by  $\tau_{AC}$ . Let  $\langle S_n \mid n < \omega \rangle$  and  $\langle T_n \mid n < \omega \rangle$  be given. For each  $j \leq i < \omega_1$ , define

$$S_i^j = S_n$$
, if  $j \in T_n$ .

Since  $\omega_1 = \bigcup \{T_n \mid n < \omega\}$  is a disjoint union, this is well-defined. Apply  $\tau_{AC}$  to this  $\langle S_i^j \mid j \leq i < \omega_1 \rangle$ . We get a continuously <-increasing sequence  $\langle \gamma_j \mid j \leq \omega_1 \rangle$  and a continuously  $\subseteq$ -increasing sequence  $\langle X_i \mid i < \omega_1 \rangle$ . Let  $\gamma = \gamma_{\omega_1}$  and for each  $j < \omega_1$ , let  $F(j) = \gamma_j$ . Then we have

- $\omega_1 < \gamma < \omega_2$ .
- $F: \omega_1 \longrightarrow \gamma$  is a continuous increasing function whose range is cofinal in  $\gamma$ .

Want to observe

• For each  $n < \omega$  and  $j \in T_n$ , we have  $F(j) \in \tilde{S}_n$ .

Fix n, j with  $j \in T_n$ . Then  $\langle X_i \cap \gamma_j \mid i < \omega_1 \rangle$  is a continuously  $\subseteq$ -increasing sequence of countable subsets of F(j) such that  $\bigcup \{X_i \cap \gamma_j \mid i < \omega_1\} = F(j)$  and for all i with  $j \leq i < \omega_1$ , we have o.t. $(X_i \cap \gamma_j) \in S_i^j = S_n$ . Let  $\pi : \omega_1 \longrightarrow F(j)$  be any bijection. Since

$$\{i < \omega_1 \mid j \le i, \{\pi(\beta) \mid \beta < i\} = X_i \cap \gamma_j\}$$

contains a club C and we have

$$C \subseteq \Big\{ i < \omega_1 \mid \text{o.t.} \big( \{ \pi(\beta) \mid \beta < i \} \big) \in S_n \Big\}.$$

Hence  $F(j) \in \tilde{S}_n$ .

The following is communicated by D. Aspero. We provide our proof.

- 2.7 Proposition. ([A]) (1)  $\phi_{AC}$  implies CB.
- (2) ψ<sub>AC</sub> also implies CB.

Proof. For (1): Let  $f: \omega_1 \longrightarrow \omega_1$  and  $C(f) = \{i < \omega_1 \mid i \text{ is closed under } f\}$ . Then C(f) is a club in  $\omega_1$ . Partition C(f) into  $\omega$ -many stationary pieces  $\langle C(f)_n \mid n < \omega \rangle$ . We also partition  $\omega_1$  into any  $\langle T_n \mid n < \omega \rangle$ . Apply  $\phi_{AC}$  to  $\langle C(f)_n \mid n < \omega \rangle$  and  $\langle T_n \mid n < \omega \rangle$ . We have  $\eta < \omega_2$  and an increasing continuous function  $F: \omega_1 \longrightarrow \eta$  with cofinal range such that for all  $n < \omega$  and  $j \in T_n$ , we have  $F(j) \in C(f)_n$ .

Since  $\omega_1 \leq F(j)$  and the F(j) are cofinal in  $\eta$ , we may choose  $j < \omega_1$  such that  $\omega_1 < F(j)$ . Let  $n < \omega$  be such that  $j \in T_n$  and let  $\gamma = F(j)$ . Then  $\omega_1 < \gamma < \omega_2$  holds. Since  $\gamma \in C(f)_n \subset C(f)$ , there exists a bijection  $\pi : \omega_1 \longrightarrow \gamma$  such that  $\{\alpha < \omega_1 \mid \text{o.t.}(\{\pi(\beta) \mid \beta < \alpha\}) \in C(f)\}$  contains a club C. Let  $X_{\alpha} = \{\pi(\beta) \mid \beta < \alpha\}$  for all  $\alpha < \omega_1$ . Let

$$D = \{ \alpha < \omega_1 \mid \omega_1 \in X_{\alpha}, \ \omega_1 \cap X_{\alpha} = \alpha \}.$$

Then D is a club in  $\omega_1$ . It suffices to show that for all  $\alpha \in C \cap D$ ,  $f(\alpha) < \text{o.t.}(X_{\alpha})$  hold. But  $\alpha < \text{o.t.}(X_{\alpha}) \in C(f)$ , so this is immediate.

For (2): Let  $f: \omega_1 \longrightarrow \omega_1$  and  $C(f) = \{i < \omega_1 \mid i \text{ is closed under } f\}$ . Then C(f) is a club in  $\omega_1$ . Partition C(f) into two stationary sets S and T. So  $C(f) = S \cup T$  and  $S \cap T = \emptyset$ . Apply  $\psi_{AC}$  to (S, T) and (T, S). So for k = 1, 2, there exist  $\gamma_k$ ,  $C_k$ , a continuously  $\subseteq$ -increasing sequence of countable subsets  $\langle X_\delta^k \mid \delta < \omega_1 \rangle$  of  $\gamma_k$  with  $\bigcup \{X_\delta^k \mid \delta < \omega_1\} = \gamma_k$  such that

$$T \cap C_1 = \{ \delta \in C_1 \mid \text{o.t.}(X_{\delta}^1) \in S \},$$
  
$$S \cap C_2 = \{ \delta \in C_2 \mid \text{o.t.}(X_{\delta}^2) \in T \}.$$

Since we must have  $\omega_1 < \gamma_1, \gamma_2$  under this situation, we may assume  $\omega_1 < \gamma_1 \le \gamma_2 < \omega_2$ . Let

$$D = C(f) \cap C_1 \cap C_2 \cap \{\delta < \omega_1 \mid X_{\delta}^1 \cap \omega_1 = \delta, \ \omega_1 \in X_{\delta}^1 = X_{\delta}^2 \cap \gamma_1\}.$$

Then D is a club in  $\omega_1$ . It suffices to show that for all  $\delta \in D$ , we have

$$f(\delta) < \text{o.t.}(X_{\delta}^2)$$
.

 $\textbf{Case 1. } \delta \in T \colon \delta < \text{o.t.}(X^1_{\delta}) \in S \subset C(f). \text{ Hence } f(\delta) < \text{o.t.}(X^1_{\delta}) \leq \text{o.t.}(X^2_{\delta}).$ 

Case 2.  $\delta \in S$ :  $\delta < \text{o.t.}(X^1_{\delta}) \leq \text{o.t.}(X^2_{\delta}) \in T \subset C(f)$ . Hence  $f(\delta) < \text{o.t.}(X^2_{\delta})$ .

- 2.8 Note. ([W]) (1) The Strong Reflection Principle (SRP) implies  $\psi_{AC}$ .
- (2)  $\psi_{AC}$  implies  $2^{\omega} = 2^{\omega_1} = \omega_2$ .
- (3) The Martin's Maximum (MM) implies  $\phi_{AC}$ .
- (4)  $\phi_{AC}$  implies  $2^{\omega_1} = \omega_2$ .
- **2.9 Question.** (1) ([LS]) It is known Con(CB+CH) and so CB does not imply  $\psi_{AC}$ . Separate these principles as much as possible.
- (2) Investigate the effects of MM and SRP on  $\tau_{AC}$ .

# §3. Main Lemma

This section builds on the communication [A] by D. Aspero.

- 3.1 Lemma. Let  $\kappa$  be a measurable cardinal,  $\theta$  be a regular cardinal with  $\theta \geq (2^{\kappa})^+$ , N be a countable elementary substructure of  $H_{\theta}$  with  $\kappa \in N$ ,  $\delta < \omega_1$  and  $S \subseteq \omega_1$  be stationary. Then there exists a countable elementary substructure M of  $H_{\theta}$  such that
- (1)  $N \subseteq M$ .
- (2) For any  $a \in H_{\kappa} \cap N$ ,  $a \cap N = a \cap M$ .
- (3)  $\delta < \text{o.t.}(M \cap \kappa) \in S$ .

*Proof.* Since  $H_{\theta} \models$  " $\kappa$  is measurable" and N is an elementary substructure of  $H_{\theta}$  with  $\kappa \in N$ , we may take a normal measure  $D \in N$ . Take any  $s \in \bigcap (N \cap D)$  and define

$$N(s) = \{f(s) \mid f \in N\}.$$

Then N(s) is a countable elementary substructure of  $H_{\theta}$  such that (1)  $N(s) \cap \kappa$  end-extends  $N \cap \kappa$  and s is the least in  $(N(s) \cap \kappa) \setminus (N \cap \kappa)$ . (2) For any  $a \in N \cap H_{\kappa}$ ,  $a \cap N(s) = a \cap N$  holds.

Now iterate this process to construct a continuously  $\subset$ -increasing sequence  $\langle N_i \mid i < \omega_1 \rangle$  of countable elementary substructures of  $H_{\theta}$  with  $N = N_0$ . Notice that  $\langle \text{o.t.}(N_i \cap \kappa) \mid i < \omega_1 \rangle$  provides a club. Hence we have  $N_i$  such that  $\delta < \text{o.t.}(N_i \cap \kappa) \in S$ . Let  $M = N_i$ . This M works.

- 3.2 Definition. For the rest of this section, we fix a continuously strictly increasing sequence  $\langle \kappa_j \mid j \leq \omega_1 \rangle$  of cardinals such that
- (1)  $\kappa_0$  is a measurable cardinal.
- (2) For all successor ordinals j+1,  $\kappa_{j+1}$  are measurable cardinals.
- (3) Hence if  $j \le \omega_1$  is a limit, then  $\kappa_j = \sup \{ \kappa_{j'} \mid j' < j \}$  is singular.
- **3.3 Definition.** Let  $\langle S^j \mid j < \omega_1 \rangle$  be any sequence of stationary subsets of  $\omega_1$  and  $t < \omega_1$ . Then let  $\phi(\langle S^j \mid j < \omega_1 \rangle, t)$  stand for

For all  $(s, \theta, N, \delta)$  such that

- s < t,
- $\theta$  is a regular cardinal with  $\theta \geq (\kappa_{\omega_1})^+$ .
- N is a countable elementary substructure of  $H_{\theta}$  with  $\langle \kappa_j \mid j \leq \omega_1 \rangle, s, t \in N$ ,
- $\delta < \omega_1$ .

There exists a countable elementary substructure M of  $H_{\theta}$  such that

- $\bullet N \subseteq M$
- $N \cap \kappa_s = M \cap \kappa_s$ ,
- For all j with  $s+1 \le j \le t$ , we have  $\delta < \text{o.t.}(M \cap \kappa_j) \in S^j$ .
- **3.4** Lemma. For any sequence  $\langle S^j \mid j < \omega_1 \rangle$  of stationary subsets of  $\omega_1$  and any  $t < \omega_1$ , we have  $\phi(\langle S^j \mid j < \omega_1 \rangle, t)$ .
- *Proof.* Fix  $\langle S^j \mid j < \omega_1 \rangle$  and simply denote  $\phi(t)$ . We show  $\phi(t)$  by induction on  $t < \omega_1$ . First notice  $\phi(0)$  is vacuously true.
  - $\phi(t) \longrightarrow \phi(t+1)$ : Let  $(s, \theta, N, \delta)$  be given as in  $\phi(t+1)$ . Since s < t+1, we consider in two cases.
- Case 1. s = t: Want a countable elementary substructure M of  $H_{\theta}$  such that  $N \subseteq M$ ,  $N \cap \kappa_t = M \cap \kappa_t$  and  $\delta < \text{o.t.}(M \cap \kappa_{t+1}) \in S^{t+1}$ . But this is done by 3.1 Lemma with the measurable  $\kappa_{t+1}$ .

Case 2. s < t: Apply  $\phi(t)$  with  $(s, \theta, N, \delta)$ . Then we have M' such that

- $N \subseteq M'$ .
- $N \cap \kappa_s = M' \cap \kappa_s$ .
- For all j with  $s+1 \le j \le t$ , we have  $\delta < \text{o.t.}(M' \cap \kappa_j) \in S^j$ .

Since  $\kappa_{t+1} \in (N \subseteq) M'$ , we may again apply 3.1 Lemma. So may take a countable elementary substructure M of  $H_{\theta}$  such that

- $M' \subseteq M$ .
- $M' \cap \kappa_t = M \cap \kappa_t$ .
- $\delta < \text{o.t.}(M \cap \kappa_{t+1}) \in S^{t+1}$ .

Then this M works.

t is limit,  $(\forall \bar{t} < t \ \phi(\bar{t})) \longrightarrow \phi(t)$ : Let  $(s, \theta, N, \delta)$  be given as in  $\phi(t)$ . Fix a <-increasing sequence  $(t_n \mid n < \omega_1)$  such that  $t_0 = s$  and  $\sup\{t_n \mid n < \omega\} = t$ . Notice  $t_n \in N \cap \omega_1$ .

Now let us take a sufficiently large regular cardinal  $\chi$  and a countable elementary substructure  $N^*$  of  $H_{\chi}$  such that  $N^*$  contains every thing visible.

- $\langle S^j \mid j < \omega_1 \rangle, H_\theta, N, \delta, \langle t_n \mid n < \omega \rangle \in N^*$  and so  $\langle \kappa_j \mid j \leq \omega_1 \rangle \in N \subset N^*$ .

  And
- $N^* \cap \omega_1 \in S^t$ .

Let  $\langle \delta_n \mid n < \omega \rangle$  be an increasing sequence of ordinals such that  $\delta_0 = \delta$  and  $\sup \{ \delta_n \mid n < \omega \} = N^* \cap \omega_1$ . Construct a sequence of countable elementary substructures  $\langle M_n \mid n < \omega \rangle$  of  $H_\theta$  by recursion on n. We first apply  $\phi(t_1)$  with  $(s, \theta, N, \delta)$  so that

- $N \subseteq M_0, M_0 \in N^*$ .
- $N \cap \kappa_s = M_0 \cap \kappa_s$ .
- For all j with s+1 ≤ j ≤ t<sub>1</sub>, we have δ < o.t.(M<sub>0</sub> ∩ κ<sub>j</sub>) ∈ S<sup>j</sup>.
   It is posssible to have M<sub>0</sub> ∈ N\* by elementarity. Suppose we have constructed M<sub>n</sub> so that
- $N \subseteq M_n, M_n \in N^*$ .
- $N \cap \kappa_s = M_n \cap \kappa_s$ .
- For all j with  $t_n + 1 \le j \le t_{n+1}$ , we have  $\delta_n < \text{o.t.}(M_n \cap \kappa_j) \in S^j$ .

Want  $M_{n+1}$ . By  $\phi(t_{n+2})$  with  $(t_{n+1}, \theta, M_n, \delta_{n+1})$ , we have  $M_{n+1} \in N^*$  such that

- $M_n \subseteq M_{n+1}$ .
- $\bullet \ M_n \cap \kappa_{t_{n+1}} = M_{n+1} \cap \kappa_{t_{n+1}}.$
- For all j with  $t_{n+1}+1 \le j \le t_{n+2}$ , we have  $\delta_{n+1} < \text{o.t.}(M_{n+1} \cap \kappa_j) \in S^j$ .

Let  $M = \bigcup \{M_n \mid n < \omega\}$ . We claim this M works. Among others, we provide details for

• For all j with  $s+1 \le j \le t$ , we have o.t. $(M \cap \kappa_j) \in S^j$ .

We consider in two cases. If  $t_n + 1 \le j \le t_{n+1}$ , then

$$M \cap \kappa_j = M_{n+1} \cap \kappa_j = M_n \cap \kappa_j$$

and so

o.t.
$$(M \cap \kappa_i) \in S^j$$
.

If j = t, then

$$\mathrm{o.t.}(M \cap \kappa_t) = \sup\{\mathrm{o.t.}(M \cap \kappa_{t_{n+1}}) \mid n < \omega\} = \sup\{\mathrm{o.t.}(M_n \cap \kappa_{t_{n+1}}) \mid n < \omega\}.$$

While

$$\sup\{\text{o.t.}(M_n \cap \kappa_{t_{n+1}}) \mid n < \omega\} = \sup\{\delta_n \mid n < \omega\} = N^* \cap \omega_1 \in S^t.$$

Hence we are done.

**3.5 Definition.** Let  $\langle S_i^j \mid j \leq i < \omega_1 \rangle$  be any system of stationary subsets of  $\omega_1$  and  $i < \omega_1$ . Define S[i] by

$$S[i] = \{ X \in [\kappa_i]^\omega \mid (\forall j \le i) \text{ o.t.} (X \cap \kappa_j) \in S_i^j \}.$$

We also define S[\*] by

$$S[*] = \{X \in [\kappa_{\omega_1}]^{\omega} \mid X \cap \omega_1 < \omega_1, (\forall j \le X \cap \omega_1) \text{ o.t.} (X \cap \kappa_j) \in S^j_{X \cap \omega_1} \}.$$

Notice that if  $X \in S[*]$ , then  $X \cap \kappa_{X \cap \omega_1} \in S[X \cap \omega_1]$  holds.

**3.6 Lemma.** For any system  $\langle S_i^j \mid j \leq i < \omega_1 \rangle$  of stationary subsets of  $\omega_1$  and any  $i < \omega_1$ , S[i] is semiproper. By this we mean;

For all regular cardinals  $\theta \geq (\kappa_{\omega_1})^+$  and all countable elementary substructures N of  $H_{\theta}$  with  $\langle \kappa_j \mid j \leq \omega_1 \rangle, i \in N$ , there exist countable elementary substructures M of  $H_{\theta}$  such that  $N \subseteq M$ ,  $N \cap \omega_1 = M \cap \omega_1$  and  $M \cap \kappa_i \in S[i]$ .

*Proof.* Let  $\theta$  be a sufficiently large regular cardinal and N be a countable elementary substructure of  $H_{\theta}$  with  $\langle \kappa_j \mid j \leq \omega_1 \rangle, i \in N$ . Want M such that  $N \subseteq M, N \cap \omega_1 = M \cap \omega_1$  and  $M \cap \kappa_i \in S[i]$ .

By 3.1 Lemma, we first take N' such that

- $N \subseteq N'$ .
- $N \cap \omega_1 = N' \cap \omega_1$ .
- o.t. $(N' \cap \kappa_0) \in S_i^0$ .

We consider in two cases. If i = 0, then let M = N'. This M works.

If 0 < i, then for each  $j < \omega_1$ , let

$$S^{j} = \begin{cases} S_{i}^{j}, & \text{if } j \leq i \\ \omega_{1}, & \text{otherwise.} \end{cases}$$

By  $\phi(\langle S^j \mid j < \omega_1 \rangle, i)$  with  $(0, \theta, N', 0)$ , we have a countable elementary substructure M of  $H_\theta$  such that

- $N' \subseteq M$ .
- $N' \cap \kappa_0 = M \cap \kappa_0$ .
- For all j with  $1 \le j \le i$ , we have o.t. $(M \cap \kappa_j) \in S^j = S_i^j$ .

This M works.

**3.7 Lemma.** For any system  $\langle S_i^j \mid j \leq i < \omega_1 \rangle$  of stationary subsets of  $\omega_1$ , S[\*] is semiproper. By this we mean:

For all regular cardinals  $\theta \geq (\kappa_{\omega_1})^+$  and all countable elementary substructures N of  $H_{\theta}$  with  $\langle \kappa_j \mid j \leq \omega_1 \rangle \in N$ , there exist countable elementary substructures M of  $H_{\theta}$  such that  $N \subseteq M$ ,  $N \cap \omega_1 = M \cap \omega_1$  and  $M \cap \kappa_{\omega_1} \in S[*]$ .

*Proof.* Let  $\theta$  be a sufficiently large regular cardinal and N be a countable elementary substructure of  $H_{\theta}$  with  $\langle \kappa_j \mid j \leq \omega_1 \rangle \in N$ . Let  $\langle t_n \mid n < \omega \rangle$  be a <-increasing sequence of ordinals such that  $t_0 = 0$  and  $\sup\{t_n \mid n < \omega\} = N \cap \omega_1$ .

Let  $\chi$  be a large regular cardinal and  $N^*$  be a countable elementary substructure of  $H_{\chi}$  such that  $N^*$  contains every parameter.

- $\langle S_i^j \mid j \leq i < \omega_1 \rangle$ ,  $H_{\theta}, N, \langle t_n \mid n < \omega \rangle \in N^*$  and so  $\langle \kappa_j \mid j \leq \omega_1 \rangle \in N \subset N^*$  holds. And
- $N^* \cap \omega_1 \in S_{N \cap \omega_1}^{N \cap \omega_1}$ .

Let  $\langle \delta_n \mid n < \omega \rangle$  be an increasing sequence of ordinals such that  $\delta_0 = 0$  and  $\sup \{ \delta_n \mid n < \omega \} = N^* \cap \omega_1$ . Construct a sequence of countable elementary substructures  $\langle M_n \mid n < \omega \rangle$  of  $H_\theta$  by recursion on n.

We first get  $M_0$  such that

- $N \subseteq M_0, M_0 \in N^*$ .
- $N \cap \omega_1 = M_0 \cap \omega_1$ .

•  $\delta_0 < \text{o.t.}(M_0 \cap \kappa_0) \in S^0_{N \cap \omega_1}$ .

It is possible to have  $M_0 \in N^*$  by elementarity. Suppose we have constructed  $M_n$  such that

- $N \subseteq M_n, M_n \in N^*$ .
- $N \cap \omega_1 = M_n \cap \omega_1$ .
- For all j with  $j \leq t_n$ , we have  $\text{o.t.}(M_n \cap \kappa_j) \in S_{N \cap \omega_1}^j$  and  $\delta_n < \text{o.t.}(M_n \cap \kappa_{t_n})$ .

Want  $M_{n+1}$ . By  $\phi(\langle S_{N\cap\omega_1}^j \mid j \leq N \cap \omega_1 \rangle \cap \langle \omega_1, \dots \rangle, t_{n+1})$  with  $(t_n, \theta, M_n, \delta_{n+1})$ , we get  $M_{n+1} \in N^*$  such that

- $M_n \subseteq M_{n+1}$ .
- $M_n \cap \kappa_{t_n} = M_{n+1} \cap \kappa_{t_n}$ .
- For all j with  $t_n + 1 \le j \le t_{n+1}$ , we have  $\delta_{n+1} < \text{o.t.}(M_{n+1} \cap \kappa_j) \in S^j_{N \cap \omega_1}$ .

This completes the construction. Let  $M = \bigcup \{M_n \mid n < \omega\}$ . Then this M works. Among others, we provide details for

• For all j with  $j \leq M \cap \omega_1$ , we have o.t. $(M \cap \kappa_j) \in S^j_{M \cap \omega_1}$ .

First note that  $N \cap \omega_1 = M \cap \omega_1$ . We consider in two cases. If  $j \leq t_n$ , then

$$M \cap \kappa_i = M_n \cap \kappa_i$$
.

And so

o.t.
$$(M \cap \kappa_j) \in S^j_{M \cap \omega_1}$$
.

If  $j = M \cap \omega_1$ , then

$$\mathrm{o.t.}(M \cap \kappa_{M \cap \omega_1}) = \sup\{\mathrm{o.t.}(M \cap \kappa_{t_n}) \mid n < \omega\} = \sup\{\mathrm{o.t.}(M_n \cap \kappa_{t_n}) \mid n < \omega\}.$$

While

$$\sup\{\text{o.t.}(M_n \cap \kappa_{t_n}) \mid n < \omega\} = \sup\{\delta_n \mid n < \omega\} = N^* \cap \omega_1 \in S_{M \cap \omega_1}^{M \cap \omega_1}.$$

Hence we are done.

# §4. Forcing Construction

We force  $\tau_{AC}$  by iteration. Here is a single step.

- **4.1 Definition.** Let  $\langle \kappa_j \mid j \leq \omega_1 \rangle$  be as before. Let  $\langle S_i^j \mid j \leq i < \omega_1 \rangle$  be any system of stationary subsets of  $\omega_1$ . We define  $p = \langle X_i^p \mid i \leq i^p \rangle \in P$ , more precisely,  $P(\langle S_i^j \mid j \leq i < \omega_1 \rangle)$ , if
- (1)  $i^p < \omega_1$ .
- (2)  $X_i^p \in S[i]$ . Namely,  $X_i^p \in [\kappa_i]^\omega$  and for all  $j \leq i$ , o.t. $(X_i^p \cap \kappa_j) \in S_i^j$ .
- (3)  $X_i^p$  are continuously  $\subseteq$ -increasing.

For  $p, q \in P$ , let  $q \leq p$ , if  $q \supseteq p$ .

**4.2 Lemma.** For any  $p \in P$ ,  $t > i^p$  and  $\xi \in \kappa_t$ , there exists  $q \leq p$  such that  $i^q = t$  and  $\xi \in X_t^q$ .

*Proof.* By induction on  $t < \omega_1$ . If t = 0, then it is vacuously true.

 $\underline{t \longrightarrow t+1}$ : Let  $(p,\xi)$  be given. Since we assume  $i^p < t+1$ , we consider in two cases. If  $i^p = t$ , then since S[t+1] is cofinal in  $[\kappa_{t+1}]^{\omega}$ , we may take  $X \in S[t+1]$  with  $X_t^p \cup \{\xi\} \subseteq X$ . Let  $q = p \cup \{(t+1,X)\}$ . Then this q works.

If  $i^p < t$ , then by induction we have  $p' \in P$  such that

- $p' \leq p$ .
- $i^{p'}=t$ .

and, say

•  $0 \in X_t^{p'}$ .

Then take  $X \in S[t+1]$  with  $X_t^{p'} \cup \{\xi\} \subseteq X$ . Let  $q = p' \cup \{(t+1,X)\}$ . Then this q works.

 $\underline{t}$  is limit: Let  $(p,\xi)$  be given. We assume  $i^p < t$ . Let  $(t_n \mid n < \omega)$  be a sequence of ordinals such that  $t_0 = i^p$  and  $\sup\{t_n \mid n < \omega\} = t$ . Since S[t] is stationary in  $[\kappa_t]^\omega$ , we may take a countable elementary substructure N of  $H_\theta$ , where  $\theta$  is a sufficiently large regular cardinal, such that

•  $p, P, \langle t_n \mid n < \omega \rangle \in N$ .

And

•  $N \cap \kappa_t \in S[t]$ .

Let  $\langle \xi_n \mid n < \omega \rangle$  enumerate  $N \cap \kappa_t$  such that  $\xi_n \in N \cap \kappa_{t_{n+1}}$ . Construct a sequence  $\langle p_n \mid n < \omega \rangle$  of conditions of P by recursion on n. Let  $p_0 = p$ . Suppose we have constructed  $p_n$  such that

- $p_n \in N$ .
- $i^{p_n} = t_n$ .

Want  $p_{n+1}$ . By induction we get  $p_{n+1} \in N$  such that

- $p_{n+1} \leq p_n$ .
- $i^{p_{n+1}} = t_{n+1}$ .
- $\bullet \ \xi_n \in X^{p_{n+1}}_{t_{n+1}}.$

This completes the construction. Let  $q = \bigcup \{p_n \mid n < \omega\} \cup \{(t, N \cap \kappa_t)\}$ . Then this q works.

4.3 Lemma. P is  $\sigma$ -Baire and semiproper.

*Proof.* We show P is semiproper. Let  $\theta$  be a sufficiently large regular cardinal and N be a countable elementary substructure of  $H_{\theta}$  with  $P \in N$ . We further assume  $\langle \kappa_j \mid j \leq \omega_1 \rangle \in N$ . Let  $p \in P \cap N$ . Want  $q \leq p$  such that q is (P, N)-semigeneric.

Since S[\*] is semiproper, there exists a countable elementary substructure M of  $H_{\theta}$  such that

- $N \subset M$ .
- $N \cap \omega_1 = M \cap \omega_1$ .
- $M \cap \kappa_{\omega_1} \in S[*]$ .

Hence

$$M \cap \kappa_{M \cap \omega_1} \in S[M \cap \omega_1].$$

Let  $\langle p_n \mid n < \omega \rangle$  be any (P, M)-generic sequence with  $p_0 = p$ . Then let

$$q = \{\ \big| \{p_n \mid n < \omega\} \cup \{(M \cap \omega_1, M \cap \kappa_{N \cap \omega_1})\}.$$

We claim this  $q \in P$  works. This is because for all  $n < \omega$ ,  $q \le p_n$  and so q is (P, M)-generic. Hence  $q \Vdash_P {}^{\omega}M[G] \cap \omega_1^V = M \cap \omega_1^V {}^{\omega}$ . Since  $M \cap \omega_1 = N \cap \omega_1$ , we have  $q \Vdash_P {}^{\omega}N[G] \cap \omega_1^V \subseteq M[G] \cap \omega_1^V = N \cap \omega_1^V {}^{\omega}$ . Hence  $q \Vdash_P {}^{\omega}N[G] \cap \omega_1^V = N \cap \omega_1^V {}^{\omega}$ .

By the above, we may also conclude that P is  $\sigma$ -Baire.

**4.4 Lemma.** Let G be P-generic over V. Let  $\langle \dot{X}_i \mid i < \omega_1 \rangle = \bigcup G$ . Then for all  $j \leq i < \omega_1$ , we have o.t. $(\dot{X}_i \cap \kappa_j) \in S_i^j$  and  $\bigcup \{\dot{X}_i \mid i < \omega_1\} = \kappa_{\omega_1}$ .

*Proof.* By Lemma 4.3,  $\omega_1$  gets preserved. By 4.2 Lemma, we have  $\bigcup G$  is of length  $\omega_1$  and  $\bigcup \{X_i \mid i < \omega_1\} = \kappa_{\omega_1}$ .

3

- 4.5 Theorem. Let  $\rho$  be a regular cardinal such that  $\rho = \sup\{\kappa < \rho \mid \kappa \text{ is measurable}\}$ . Then there exists a  $\rho$ -stage iteration  $P_{\rho}$  such that
- (1)  $P_{\rho}$  is semiproper and has the  $\rho$ -c.c.
- (2) In  $V^{P_{\rho}}$ ,  $\rho = \dot{\omega}_2$  and  $\tau_{AC}$  holds.

Proof. (Out-line) Let  $\rho$  be a regular limit of measurables. Let  $\alpha < \rho$  and suppose we have constructed  $P_{\alpha}$  such that  $P_{\alpha}$  is semiproper and  $P_{\alpha} \in H_{\rho}$ . Then we force with some  $P(\langle S_i^j \mid j \leq i < \omega_1 \rangle)$  by naturally choosing the least sequence  $\langle \kappa_j \mid j \leq \omega_1 \rangle$  in the intermediate stage  $V^{P_{\alpha}}$ . The system  $\langle S_i^j \mid j \leq i < \omega_1 \rangle$  is specified to be calculated at some stage  $\beta \leq \alpha$ . This is done as usual by book-keeping every possible system of subsets  $\langle S_i^j \mid j \leq i < \omega_1 \rangle$  of  $\omega_1$  in  $V^{P_{\beta}}$  for all  $\beta \leq \alpha$ . At the limit stages, we take the simple limit of [M]. This completes the construction of  $P_{\rho}$ . By construction  $P_{\rho}$  is semiproper and  $\omega_1$  is preserved. Since  $P_{\rho}$  is a semiproper iteration such that for all  $\alpha < \rho$ ,  $|P_{\alpha}| < \rho$ , we conclude ([M]) that  $P_{\rho}$  has the  $\rho$ -c.c. Hence by the end, we have dealt with every possible system of stationary subsets of  $\omega_1$ .

Hence  $\tau_{AC}$  holds in  $V^{P_{\rho}}$ . Since relevant measurable cardinals are collapsed, we conclude  $\rho$  becomes the  $\omega_2$  in  $V^{P_{\rho}}$ .

The following, possibly except (2), have been known to D. Aspero and others.

- 4.6 Corollary. ([A] et al) The following are all equiconsistent.
- (1) There exists a regular limit of measurable cardinals.
- (2)  $\tau_{AC}$  holds.
- (3)  $\psi_{AC}$  holds.
- (4)  $\phi_{AC}$  holds.
- (5) CB holds.

Proof. The consistency of (5) implies that of (1) by [DD]. Hence all of these are equiconsistent.

#### References

- [A] D. Aspero, communication, at Nagoya University, November 2003 and Symposium on Mathematical Logic 03, Kobe University, December 17-19, 2003.
- [DD] O. Deiser, D. Donder, Canonical functions, non-regular ultrafilters and Ulam's problem on  $\omega_1$ , Journal of Symbolic Logic, vol. 68 (2003) pp. 713-739.
- [LS] P. Larson, S. Shelah, Bounding by canonical functions, with CH, Journal of Mathematical Logic 3 (2003) no. 2, pp. 193-215.
- [M] T. Miyamoto, A Limit Stage Construction for Iterating Semiproper Preorders, *Proceedings of the 7th and 8th Asian Logic Conferences*, World Scientific (2003) pp. 303-327.
- [W] H. Woodin, The Axiom of Determinacy, Forcing Axioms, and Nonstationary Ideal, de Gruyter Series in Logic and its Applications 1, 1999.