A Strong Form of ψ_{AC} ## Tadatoshi MIYAMOTO 宮元 忠敏 7th, January, 2006 Mathematics, Nanzan University 南山大学 数理情報 27 Seirei-cho, Seto-shi 489-0863 Japan miyamoto@nanzan-u.ac.jp #### Abstract We formulate a principle, called τ_{AC} , which implies both ψ_{AC} and ϕ_{AC} . We also force τ_{AC} and conclude equiconsistencies of these. ## Introduction In [W], combinatorial principles ψ_{AC} and ϕ_{AC} are introduced. We consider these in ZFC and formulate a stronger principle. We call our stronger one τ_{AC} . This τ_{AC} deals with many stationary subsets of ω_1 at a time. By choosing arrangements of stationary sets, we may conclude ψ_{AC} and ϕ_{AC} . In §1, we fix notations. In §2, we recap ψ_{AC} and ϕ_{AC} and so forth and define τ_{AC} . We mention immediate implications. In §3, we prepare technical lemmas. This builds on the communication [A] with D. Aspero. In §4, we outline a forcing construction of τ_{AC} and conclude equiconsistencies based on [DD]. ## §1. Preliminary 1.1 Notation. For a set X, |X| denotes the cardinality of X and for a set Y of ordinals, o.t. (Y) denotes the order-type of (Y, <). For a set A, $[A]^{\omega}$ denotes $\{X \mid X \subseteq A, |X| = \omega\}$. For a set x, TC(x) denotes the \in -transitive closure of x. For a regular cardinal θ , $H_{\theta} = \{x \mid |TC(x)| < \theta\}$. A countable elementary substructure N of H_{θ} means (N, \in) is a countable elementary substructure of (H_{θ}, \in) . Hence we assume no other predicates and functions on H_{θ} . A notion of forcing P is semiproper, if for all sufficiently large regular cardinals and countable elementary substructures N of H_{θ} with $P \in N$ (and possibly other parameters are in N), if $p \in P \cap N$, then there exists $q \leq p$ such that for all P-names $\tau \in N$ with $\Vdash_P "\tau \in \omega_1^V "$, we have $q \Vdash_p "\tau \in N"$. We call this $q \in P$ considerable. Equivalently, $q \Vdash_P "N[G] \cap \omega_1^V = N \cap \omega_1^V "$, where $N[G] = \{\tau[G] \mid \tau \text{ is a } P\text{-name with } \tau \in N\}$. Clubs and stationary subsets of ω_1 have standard meanings. We consider stronger stationary sets to come up with notions of forcing which are semiproper. - 1.2 Definition. Let K be any set with $K \supseteq \omega_1$. For $S \subseteq [K]^\omega$, we say S is semiproper, if for all sufficiently large regular cardinals θ and all countable elementary substructures N of H_θ with $K \in N$ (and possibly other parameters are in N), there exist countable elementary substructures M of H_θ such that $N \subseteq M$, $N \cap \omega_1 = M \cap \omega_1$ and $M \cap K \in S$. - **1.3 Proposition.** Let $S \subseteq [K]^{\omega}$ be semiproper, then S is stationary in $[K]^{\omega}$. In particular, S is cofinal in $[K]^{\omega}$. *Proof.* Let $S \subseteq [K]^{\omega}$ be semiproper. Let $f: {}^{<\omega}K \longrightarrow K$. It suffices to find $X \in S$ which is closed under f. To this end, let θ be a sufficiently large regular cardinal and N be a countable elementary substructure of H_{θ} with $K, f \in N$. Then since S is semiproper, there exists a countable elemetary substructure M of H_{θ} with $M \cap K \in S$. Let $X = M \cap K$. Then this X works. ## §2. Implications We recap three principles from [W] and [LS]. **2.1 Definition.** ([W]) Let S be any stationary subset of ω_1 . We define \tilde{S} . $\gamma \in \tilde{S}$, if $\omega_1 \leq \gamma < \omega_2$, there exists a bijection $\pi : \omega_1 \longrightarrow \gamma$ such that $$\{\alpha < \omega_1 \mid \text{o.t.}(\{\pi(\beta) \mid \beta < \alpha\}) \in S\}$$ contains a club. **2.2 Definition.** ([W]) ψ_{AC} stands for the following statement. For any stationary costationary subsets S and T, there exist $\gamma < \omega_2$, a bijection $\pi : \omega_1 \longrightarrow \gamma$ and a closed unbounded set $C \subset \omega_1$ such that $$\{\alpha < \omega_1 \mid \text{o.t.}(\{\pi(\beta) \mid \beta < \alpha\}) \in S\} \cap C = T \cap C.$$ - **2.3 Definition.** ([W]) ϕ_{AC} stands for the following statement. - (1) There is an ω_1 sequence of distinct reals. - (2) Suppose $\langle S_n \mid n < \omega \rangle$ and $\langle T_n \mid n < \omega \rangle$ are sequences of pairwise disjoint subsets of ω_1 . Suppose the S_n are stationary and suppose that $$\omega_1 = \bigcup \{T_n \mid n < \omega\}.$$ Then there exists $\eta < \omega_2$ and a continuous increasing function $F: \omega_1 \longrightarrow \eta$ with cofinal range such that for each $n < \omega$ and $j \in T_n$ $$F(j) \in \widetilde{S_n}$$. **2.4 Definition.** ([LS]) The cofinal bounding (The complete bounding, CB) means that for any function $f: \omega_1 \longrightarrow \omega_1$, there exist γ with $\omega_1 \leq \gamma < \omega_2$, a bijection $\pi: \omega_1 \longrightarrow \gamma$ and a club C such that for each $\alpha \in C$, $f(\alpha) < \text{o.t.}(\{\pi(\beta) \mid \beta < \alpha\})$. The following is strongest among these. - **2.5 Definition.** τ_{AC} holds, if for any system $\langle S_i^j \mid j \leq i < \omega_1 \rangle$ of stationary subsets of ω_1 , there exists a continuously <-increasing sequence $\langle \gamma_j \mid j \leq \omega_1 \rangle$ of ordinals with $\omega_1 < \gamma_0 < \gamma_{\omega_1} < \omega_2$ and a continuously \subseteq -increasing countable sets $\langle X_i \mid i < \omega_1 \rangle$ such that - $X_i \in [\gamma_i]^{\omega}$. - $\bigcup \{X_i \mid i < \omega_1\} = \gamma_{\omega_1}$. - For all $j \leq i$, we have $\text{o.t.}(X_i \cap \gamma_i) \in S_i^j$. - 2.6 Proposition. τ_{AC} implies both ψ_{AC} and ϕ_{AC} . *Proof.* We show ψ_{AC} gets implied by τ_{AC} . Let both S and T be stationary and costationary. Define S_i^0 by $$S_i^0 = \left\{ egin{array}{ll} S, & ext{if } i \in T \ \omega_1 \setminus S, & ext{otherwise.} \end{array} ight.$$ We do not care about other S_i^j . Apply τ_{AC} to this $\langle S_i^j \mid j \leq i < \omega_1 \rangle$. We get a continuously <-increasing sequence $\langle \gamma_j \mid j \leq \omega_1 \rangle$ and a continuously \subseteq -increasing sequence $\langle X_i \mid i < \omega_1 \rangle$. For each $i < \omega_1$, let $Y_i = X_i \cap \gamma_0$. Then • $\omega_1 < \gamma_0 < \omega_2$. - Y_i are continuously \subseteq -increasing countable subsets of γ_0 with $\bigcup \{Y_i \mid i < \omega_1\} = \gamma_0$. - $i \in T$ iff o.t. $(Y_i) \in S$. Let π be any bijection $\pi: \omega_1 \longrightarrow \gamma_0$. Then $$\{i < \omega_1 \mid \{\pi(\beta) \mid \beta < i\} = Y_i\}$$ contains a club C. We conclude $$\{i < \omega_1 \mid \text{o.t.}(\{\pi(\beta) \mid \beta < i\}) \in S\} \cap C = T \cap C.$$ Next, we show ϕ_{AC} gets implied by τ_{AC} . Let $\langle S_n \mid n < \omega \rangle$ and $\langle T_n \mid n < \omega \rangle$ be given. For each $j \leq i < \omega_1$, define $$S_i^j = S_n$$, if $j \in T_n$. Since $\omega_1 = \bigcup \{T_n \mid n < \omega\}$ is a disjoint union, this is well-defined. Apply τ_{AC} to this $\langle S_i^j \mid j \leq i < \omega_1 \rangle$. We get a continuously <-increasing sequence $\langle \gamma_j \mid j \leq \omega_1 \rangle$ and a continuously \subseteq -increasing sequence $\langle X_i \mid i < \omega_1 \rangle$. Let $\gamma = \gamma_{\omega_1}$ and for each $j < \omega_1$, let $F(j) = \gamma_j$. Then we have - $\omega_1 < \gamma < \omega_2$. - $F: \omega_1 \longrightarrow \gamma$ is a continuous increasing function whose range is cofinal in γ . Want to observe • For each $n < \omega$ and $j \in T_n$, we have $F(j) \in \tilde{S}_n$. Fix n, j with $j \in T_n$. Then $\langle X_i \cap \gamma_j \mid i < \omega_1 \rangle$ is a continuously \subseteq -increasing sequence of countable subsets of F(j) such that $\bigcup \{X_i \cap \gamma_j \mid i < \omega_1\} = F(j)$ and for all i with $j \leq i < \omega_1$, we have o.t. $(X_i \cap \gamma_j) \in S_i^j = S_n$. Let $\pi : \omega_1 \longrightarrow F(j)$ be any bijection. Since $$\{i < \omega_1 \mid j \le i, \{\pi(\beta) \mid \beta < i\} = X_i \cap \gamma_j\}$$ contains a club C and we have $$C \subseteq \Big\{ i < \omega_1 \mid \text{o.t.} \big(\{ \pi(\beta) \mid \beta < i \} \big) \in S_n \Big\}.$$ Hence $F(j) \in \tilde{S}_n$. The following is communicated by D. Aspero. We provide our proof. - 2.7 Proposition. ([A]) (1) ϕ_{AC} implies CB. - (2) ψ_{AC} also implies CB. Proof. For (1): Let $f: \omega_1 \longrightarrow \omega_1$ and $C(f) = \{i < \omega_1 \mid i \text{ is closed under } f\}$. Then C(f) is a club in ω_1 . Partition C(f) into ω -many stationary pieces $\langle C(f)_n \mid n < \omega \rangle$. We also partition ω_1 into any $\langle T_n \mid n < \omega \rangle$. Apply ϕ_{AC} to $\langle C(f)_n \mid n < \omega \rangle$ and $\langle T_n \mid n < \omega \rangle$. We have $\eta < \omega_2$ and an increasing continuous function $F: \omega_1 \longrightarrow \eta$ with cofinal range such that for all $n < \omega$ and $j \in T_n$, we have $F(j) \in C(f)_n$. Since $\omega_1 \leq F(j)$ and the F(j) are cofinal in η , we may choose $j < \omega_1$ such that $\omega_1 < F(j)$. Let $n < \omega$ be such that $j \in T_n$ and let $\gamma = F(j)$. Then $\omega_1 < \gamma < \omega_2$ holds. Since $\gamma \in C(f)_n \subset C(f)$, there exists a bijection $\pi : \omega_1 \longrightarrow \gamma$ such that $\{\alpha < \omega_1 \mid \text{o.t.}(\{\pi(\beta) \mid \beta < \alpha\}) \in C(f)\}$ contains a club C. Let $X_{\alpha} = \{\pi(\beta) \mid \beta < \alpha\}$ for all $\alpha < \omega_1$. Let $$D = \{ \alpha < \omega_1 \mid \omega_1 \in X_{\alpha}, \ \omega_1 \cap X_{\alpha} = \alpha \}.$$ Then D is a club in ω_1 . It suffices to show that for all $\alpha \in C \cap D$, $f(\alpha) < \text{o.t.}(X_{\alpha})$ hold. But $\alpha < \text{o.t.}(X_{\alpha}) \in C(f)$, so this is immediate. For (2): Let $f: \omega_1 \longrightarrow \omega_1$ and $C(f) = \{i < \omega_1 \mid i \text{ is closed under } f\}$. Then C(f) is a club in ω_1 . Partition C(f) into two stationary sets S and T. So $C(f) = S \cup T$ and $S \cap T = \emptyset$. Apply ψ_{AC} to (S, T) and (T, S). So for k = 1, 2, there exist γ_k , C_k , a continuously \subseteq -increasing sequence of countable subsets $\langle X_\delta^k \mid \delta < \omega_1 \rangle$ of γ_k with $\bigcup \{X_\delta^k \mid \delta < \omega_1\} = \gamma_k$ such that $$T \cap C_1 = \{ \delta \in C_1 \mid \text{o.t.}(X_{\delta}^1) \in S \},$$ $$S \cap C_2 = \{ \delta \in C_2 \mid \text{o.t.}(X_{\delta}^2) \in T \}.$$ Since we must have $\omega_1 < \gamma_1, \gamma_2$ under this situation, we may assume $\omega_1 < \gamma_1 \le \gamma_2 < \omega_2$. Let $$D = C(f) \cap C_1 \cap C_2 \cap \{\delta < \omega_1 \mid X_{\delta}^1 \cap \omega_1 = \delta, \ \omega_1 \in X_{\delta}^1 = X_{\delta}^2 \cap \gamma_1\}.$$ Then D is a club in ω_1 . It suffices to show that for all $\delta \in D$, we have $$f(\delta) < \text{o.t.}(X_{\delta}^2)$$. $\textbf{Case 1. } \delta \in T \colon \delta < \text{o.t.}(X^1_{\delta}) \in S \subset C(f). \text{ Hence } f(\delta) < \text{o.t.}(X^1_{\delta}) \leq \text{o.t.}(X^2_{\delta}).$ Case 2. $\delta \in S$: $\delta < \text{o.t.}(X^1_{\delta}) \leq \text{o.t.}(X^2_{\delta}) \in T \subset C(f)$. Hence $f(\delta) < \text{o.t.}(X^2_{\delta})$. - 2.8 Note. ([W]) (1) The Strong Reflection Principle (SRP) implies ψ_{AC} . - (2) ψ_{AC} implies $2^{\omega} = 2^{\omega_1} = \omega_2$. - (3) The Martin's Maximum (MM) implies ϕ_{AC} . - (4) ϕ_{AC} implies $2^{\omega_1} = \omega_2$. - **2.9 Question.** (1) ([LS]) It is known Con(CB+CH) and so CB does not imply ψ_{AC} . Separate these principles as much as possible. - (2) Investigate the effects of MM and SRP on τ_{AC} . # §3. Main Lemma This section builds on the communication [A] by D. Aspero. - 3.1 Lemma. Let κ be a measurable cardinal, θ be a regular cardinal with $\theta \geq (2^{\kappa})^+$, N be a countable elementary substructure of H_{θ} with $\kappa \in N$, $\delta < \omega_1$ and $S \subseteq \omega_1$ be stationary. Then there exists a countable elementary substructure M of H_{θ} such that - (1) $N \subseteq M$. - (2) For any $a \in H_{\kappa} \cap N$, $a \cap N = a \cap M$. - (3) $\delta < \text{o.t.}(M \cap \kappa) \in S$. *Proof.* Since $H_{\theta} \models$ " κ is measurable" and N is an elementary substructure of H_{θ} with $\kappa \in N$, we may take a normal measure $D \in N$. Take any $s \in \bigcap (N \cap D)$ and define $$N(s) = \{f(s) \mid f \in N\}.$$ Then N(s) is a countable elementary substructure of H_{θ} such that (1) $N(s) \cap \kappa$ end-extends $N \cap \kappa$ and s is the least in $(N(s) \cap \kappa) \setminus (N \cap \kappa)$. (2) For any $a \in N \cap H_{\kappa}$, $a \cap N(s) = a \cap N$ holds. Now iterate this process to construct a continuously \subset -increasing sequence $\langle N_i \mid i < \omega_1 \rangle$ of countable elementary substructures of H_{θ} with $N = N_0$. Notice that $\langle \text{o.t.}(N_i \cap \kappa) \mid i < \omega_1 \rangle$ provides a club. Hence we have N_i such that $\delta < \text{o.t.}(N_i \cap \kappa) \in S$. Let $M = N_i$. This M works. - 3.2 Definition. For the rest of this section, we fix a continuously strictly increasing sequence $\langle \kappa_j \mid j \leq \omega_1 \rangle$ of cardinals such that - (1) κ_0 is a measurable cardinal. - (2) For all successor ordinals j+1, κ_{j+1} are measurable cardinals. - (3) Hence if $j \le \omega_1$ is a limit, then $\kappa_j = \sup \{ \kappa_{j'} \mid j' < j \}$ is singular. - **3.3 Definition.** Let $\langle S^j \mid j < \omega_1 \rangle$ be any sequence of stationary subsets of ω_1 and $t < \omega_1$. Then let $\phi(\langle S^j \mid j < \omega_1 \rangle, t)$ stand for For all (s, θ, N, δ) such that - s < t, - θ is a regular cardinal with $\theta \geq (\kappa_{\omega_1})^+$. - N is a countable elementary substructure of H_{θ} with $\langle \kappa_j \mid j \leq \omega_1 \rangle, s, t \in N$, - $\delta < \omega_1$. There exists a countable elementary substructure M of H_{θ} such that - $\bullet N \subseteq M$ - $N \cap \kappa_s = M \cap \kappa_s$, - For all j with $s+1 \le j \le t$, we have $\delta < \text{o.t.}(M \cap \kappa_j) \in S^j$. - **3.4** Lemma. For any sequence $\langle S^j \mid j < \omega_1 \rangle$ of stationary subsets of ω_1 and any $t < \omega_1$, we have $\phi(\langle S^j \mid j < \omega_1 \rangle, t)$. - *Proof.* Fix $\langle S^j \mid j < \omega_1 \rangle$ and simply denote $\phi(t)$. We show $\phi(t)$ by induction on $t < \omega_1$. First notice $\phi(0)$ is vacuously true. - $\phi(t) \longrightarrow \phi(t+1)$: Let (s, θ, N, δ) be given as in $\phi(t+1)$. Since s < t+1, we consider in two cases. - Case 1. s = t: Want a countable elementary substructure M of H_{θ} such that $N \subseteq M$, $N \cap \kappa_t = M \cap \kappa_t$ and $\delta < \text{o.t.}(M \cap \kappa_{t+1}) \in S^{t+1}$. But this is done by 3.1 Lemma with the measurable κ_{t+1} . Case 2. s < t: Apply $\phi(t)$ with (s, θ, N, δ) . Then we have M' such that - $N \subseteq M'$. - $N \cap \kappa_s = M' \cap \kappa_s$. - For all j with $s+1 \le j \le t$, we have $\delta < \text{o.t.}(M' \cap \kappa_j) \in S^j$. Since $\kappa_{t+1} \in (N \subseteq) M'$, we may again apply 3.1 Lemma. So may take a countable elementary substructure M of H_{θ} such that - $M' \subseteq M$. - $M' \cap \kappa_t = M \cap \kappa_t$. - $\delta < \text{o.t.}(M \cap \kappa_{t+1}) \in S^{t+1}$. Then this M works. t is limit, $(\forall \bar{t} < t \ \phi(\bar{t})) \longrightarrow \phi(t)$: Let (s, θ, N, δ) be given as in $\phi(t)$. Fix a <-increasing sequence $(t_n \mid n < \omega_1)$ such that $t_0 = s$ and $\sup\{t_n \mid n < \omega\} = t$. Notice $t_n \in N \cap \omega_1$. Now let us take a sufficiently large regular cardinal χ and a countable elementary substructure N^* of H_{χ} such that N^* contains every thing visible. - $\langle S^j \mid j < \omega_1 \rangle, H_\theta, N, \delta, \langle t_n \mid n < \omega \rangle \in N^*$ and so $\langle \kappa_j \mid j \leq \omega_1 \rangle \in N \subset N^*$. And - $N^* \cap \omega_1 \in S^t$. Let $\langle \delta_n \mid n < \omega \rangle$ be an increasing sequence of ordinals such that $\delta_0 = \delta$ and $\sup \{ \delta_n \mid n < \omega \} = N^* \cap \omega_1$. Construct a sequence of countable elementary substructures $\langle M_n \mid n < \omega \rangle$ of H_θ by recursion on n. We first apply $\phi(t_1)$ with (s, θ, N, δ) so that - $N \subseteq M_0, M_0 \in N^*$. - $N \cap \kappa_s = M_0 \cap \kappa_s$. - For all j with s+1 ≤ j ≤ t₁, we have δ < o.t.(M₀ ∩ κ_j) ∈ S^j. It is posssible to have M₀ ∈ N* by elementarity. Suppose we have constructed M_n so that - $N \subseteq M_n, M_n \in N^*$. - $N \cap \kappa_s = M_n \cap \kappa_s$. - For all j with $t_n + 1 \le j \le t_{n+1}$, we have $\delta_n < \text{o.t.}(M_n \cap \kappa_j) \in S^j$. Want M_{n+1} . By $\phi(t_{n+2})$ with $(t_{n+1}, \theta, M_n, \delta_{n+1})$, we have $M_{n+1} \in N^*$ such that - $M_n \subseteq M_{n+1}$. - $\bullet \ M_n \cap \kappa_{t_{n+1}} = M_{n+1} \cap \kappa_{t_{n+1}}.$ - For all j with $t_{n+1}+1 \le j \le t_{n+2}$, we have $\delta_{n+1} < \text{o.t.}(M_{n+1} \cap \kappa_j) \in S^j$. Let $M = \bigcup \{M_n \mid n < \omega\}$. We claim this M works. Among others, we provide details for • For all j with $s+1 \le j \le t$, we have o.t. $(M \cap \kappa_j) \in S^j$. We consider in two cases. If $t_n + 1 \le j \le t_{n+1}$, then $$M \cap \kappa_j = M_{n+1} \cap \kappa_j = M_n \cap \kappa_j$$ and so o.t. $$(M \cap \kappa_i) \in S^j$$. If j = t, then $$\mathrm{o.t.}(M \cap \kappa_t) = \sup\{\mathrm{o.t.}(M \cap \kappa_{t_{n+1}}) \mid n < \omega\} = \sup\{\mathrm{o.t.}(M_n \cap \kappa_{t_{n+1}}) \mid n < \omega\}.$$ While $$\sup\{\text{o.t.}(M_n \cap \kappa_{t_{n+1}}) \mid n < \omega\} = \sup\{\delta_n \mid n < \omega\} = N^* \cap \omega_1 \in S^t.$$ Hence we are done. **3.5 Definition.** Let $\langle S_i^j \mid j \leq i < \omega_1 \rangle$ be any system of stationary subsets of ω_1 and $i < \omega_1$. Define S[i] by $$S[i] = \{ X \in [\kappa_i]^\omega \mid (\forall j \le i) \text{ o.t.} (X \cap \kappa_j) \in S_i^j \}.$$ We also define S[*] by $$S[*] = \{X \in [\kappa_{\omega_1}]^{\omega} \mid X \cap \omega_1 < \omega_1, (\forall j \le X \cap \omega_1) \text{ o.t.} (X \cap \kappa_j) \in S^j_{X \cap \omega_1} \}.$$ Notice that if $X \in S[*]$, then $X \cap \kappa_{X \cap \omega_1} \in S[X \cap \omega_1]$ holds. **3.6 Lemma.** For any system $\langle S_i^j \mid j \leq i < \omega_1 \rangle$ of stationary subsets of ω_1 and any $i < \omega_1$, S[i] is semiproper. By this we mean; For all regular cardinals $\theta \geq (\kappa_{\omega_1})^+$ and all countable elementary substructures N of H_{θ} with $\langle \kappa_j \mid j \leq \omega_1 \rangle, i \in N$, there exist countable elementary substructures M of H_{θ} such that $N \subseteq M$, $N \cap \omega_1 = M \cap \omega_1$ and $M \cap \kappa_i \in S[i]$. *Proof.* Let θ be a sufficiently large regular cardinal and N be a countable elementary substructure of H_{θ} with $\langle \kappa_j \mid j \leq \omega_1 \rangle, i \in N$. Want M such that $N \subseteq M, N \cap \omega_1 = M \cap \omega_1$ and $M \cap \kappa_i \in S[i]$. By 3.1 Lemma, we first take N' such that - $N \subseteq N'$. - $N \cap \omega_1 = N' \cap \omega_1$. - o.t. $(N' \cap \kappa_0) \in S_i^0$. We consider in two cases. If i = 0, then let M = N'. This M works. If 0 < i, then for each $j < \omega_1$, let $$S^{j} = \begin{cases} S_{i}^{j}, & \text{if } j \leq i \\ \omega_{1}, & \text{otherwise.} \end{cases}$$ By $\phi(\langle S^j \mid j < \omega_1 \rangle, i)$ with $(0, \theta, N', 0)$, we have a countable elementary substructure M of H_θ such that - $N' \subseteq M$. - $N' \cap \kappa_0 = M \cap \kappa_0$. - For all j with $1 \le j \le i$, we have o.t. $(M \cap \kappa_j) \in S^j = S_i^j$. This M works. **3.7 Lemma.** For any system $\langle S_i^j \mid j \leq i < \omega_1 \rangle$ of stationary subsets of ω_1 , S[*] is semiproper. By this we mean: For all regular cardinals $\theta \geq (\kappa_{\omega_1})^+$ and all countable elementary substructures N of H_{θ} with $\langle \kappa_j \mid j \leq \omega_1 \rangle \in N$, there exist countable elementary substructures M of H_{θ} such that $N \subseteq M$, $N \cap \omega_1 = M \cap \omega_1$ and $M \cap \kappa_{\omega_1} \in S[*]$. *Proof.* Let θ be a sufficiently large regular cardinal and N be a countable elementary substructure of H_{θ} with $\langle \kappa_j \mid j \leq \omega_1 \rangle \in N$. Let $\langle t_n \mid n < \omega \rangle$ be a <-increasing sequence of ordinals such that $t_0 = 0$ and $\sup\{t_n \mid n < \omega\} = N \cap \omega_1$. Let χ be a large regular cardinal and N^* be a countable elementary substructure of H_{χ} such that N^* contains every parameter. - $\langle S_i^j \mid j \leq i < \omega_1 \rangle$, $H_{\theta}, N, \langle t_n \mid n < \omega \rangle \in N^*$ and so $\langle \kappa_j \mid j \leq \omega_1 \rangle \in N \subset N^*$ holds. And - $N^* \cap \omega_1 \in S_{N \cap \omega_1}^{N \cap \omega_1}$. Let $\langle \delta_n \mid n < \omega \rangle$ be an increasing sequence of ordinals such that $\delta_0 = 0$ and $\sup \{ \delta_n \mid n < \omega \} = N^* \cap \omega_1$. Construct a sequence of countable elementary substructures $\langle M_n \mid n < \omega \rangle$ of H_θ by recursion on n. We first get M_0 such that - $N \subseteq M_0, M_0 \in N^*$. - $N \cap \omega_1 = M_0 \cap \omega_1$. • $\delta_0 < \text{o.t.}(M_0 \cap \kappa_0) \in S^0_{N \cap \omega_1}$. It is possible to have $M_0 \in N^*$ by elementarity. Suppose we have constructed M_n such that - $N \subseteq M_n, M_n \in N^*$. - $N \cap \omega_1 = M_n \cap \omega_1$. - For all j with $j \leq t_n$, we have $\text{o.t.}(M_n \cap \kappa_j) \in S_{N \cap \omega_1}^j$ and $\delta_n < \text{o.t.}(M_n \cap \kappa_{t_n})$. Want M_{n+1} . By $\phi(\langle S_{N\cap\omega_1}^j \mid j \leq N \cap \omega_1 \rangle \cap \langle \omega_1, \dots \rangle, t_{n+1})$ with $(t_n, \theta, M_n, \delta_{n+1})$, we get $M_{n+1} \in N^*$ such that - $M_n \subseteq M_{n+1}$. - $M_n \cap \kappa_{t_n} = M_{n+1} \cap \kappa_{t_n}$. - For all j with $t_n + 1 \le j \le t_{n+1}$, we have $\delta_{n+1} < \text{o.t.}(M_{n+1} \cap \kappa_j) \in S^j_{N \cap \omega_1}$. This completes the construction. Let $M = \bigcup \{M_n \mid n < \omega\}$. Then this M works. Among others, we provide details for • For all j with $j \leq M \cap \omega_1$, we have o.t. $(M \cap \kappa_j) \in S^j_{M \cap \omega_1}$. First note that $N \cap \omega_1 = M \cap \omega_1$. We consider in two cases. If $j \leq t_n$, then $$M \cap \kappa_i = M_n \cap \kappa_i$$. And so o.t. $$(M \cap \kappa_j) \in S^j_{M \cap \omega_1}$$. If $j = M \cap \omega_1$, then $$\mathrm{o.t.}(M \cap \kappa_{M \cap \omega_1}) = \sup\{\mathrm{o.t.}(M \cap \kappa_{t_n}) \mid n < \omega\} = \sup\{\mathrm{o.t.}(M_n \cap \kappa_{t_n}) \mid n < \omega\}.$$ While $$\sup\{\text{o.t.}(M_n \cap \kappa_{t_n}) \mid n < \omega\} = \sup\{\delta_n \mid n < \omega\} = N^* \cap \omega_1 \in S_{M \cap \omega_1}^{M \cap \omega_1}.$$ Hence we are done. # §4. Forcing Construction We force τ_{AC} by iteration. Here is a single step. - **4.1 Definition.** Let $\langle \kappa_j \mid j \leq \omega_1 \rangle$ be as before. Let $\langle S_i^j \mid j \leq i < \omega_1 \rangle$ be any system of stationary subsets of ω_1 . We define $p = \langle X_i^p \mid i \leq i^p \rangle \in P$, more precisely, $P(\langle S_i^j \mid j \leq i < \omega_1 \rangle)$, if - (1) $i^p < \omega_1$. - (2) $X_i^p \in S[i]$. Namely, $X_i^p \in [\kappa_i]^\omega$ and for all $j \leq i$, o.t. $(X_i^p \cap \kappa_j) \in S_i^j$. - (3) X_i^p are continuously \subseteq -increasing. For $p, q \in P$, let $q \leq p$, if $q \supseteq p$. **4.2 Lemma.** For any $p \in P$, $t > i^p$ and $\xi \in \kappa_t$, there exists $q \leq p$ such that $i^q = t$ and $\xi \in X_t^q$. *Proof.* By induction on $t < \omega_1$. If t = 0, then it is vacuously true. $\underline{t \longrightarrow t+1}$: Let (p,ξ) be given. Since we assume $i^p < t+1$, we consider in two cases. If $i^p = t$, then since S[t+1] is cofinal in $[\kappa_{t+1}]^{\omega}$, we may take $X \in S[t+1]$ with $X_t^p \cup \{\xi\} \subseteq X$. Let $q = p \cup \{(t+1,X)\}$. Then this q works. If $i^p < t$, then by induction we have $p' \in P$ such that - $p' \leq p$. - $i^{p'}=t$. and, say • $0 \in X_t^{p'}$. Then take $X \in S[t+1]$ with $X_t^{p'} \cup \{\xi\} \subseteq X$. Let $q = p' \cup \{(t+1,X)\}$. Then this q works. \underline{t} is limit: Let (p,ξ) be given. We assume $i^p < t$. Let $(t_n \mid n < \omega)$ be a sequence of ordinals such that $t_0 = i^p$ and $\sup\{t_n \mid n < \omega\} = t$. Since S[t] is stationary in $[\kappa_t]^\omega$, we may take a countable elementary substructure N of H_θ , where θ is a sufficiently large regular cardinal, such that • $p, P, \langle t_n \mid n < \omega \rangle \in N$. And • $N \cap \kappa_t \in S[t]$. Let $\langle \xi_n \mid n < \omega \rangle$ enumerate $N \cap \kappa_t$ such that $\xi_n \in N \cap \kappa_{t_{n+1}}$. Construct a sequence $\langle p_n \mid n < \omega \rangle$ of conditions of P by recursion on n. Let $p_0 = p$. Suppose we have constructed p_n such that - $p_n \in N$. - $i^{p_n} = t_n$. Want p_{n+1} . By induction we get $p_{n+1} \in N$ such that - $p_{n+1} \leq p_n$. - $i^{p_{n+1}} = t_{n+1}$. - $\bullet \ \xi_n \in X^{p_{n+1}}_{t_{n+1}}.$ This completes the construction. Let $q = \bigcup \{p_n \mid n < \omega\} \cup \{(t, N \cap \kappa_t)\}$. Then this q works. 4.3 Lemma. P is σ -Baire and semiproper. *Proof.* We show P is semiproper. Let θ be a sufficiently large regular cardinal and N be a countable elementary substructure of H_{θ} with $P \in N$. We further assume $\langle \kappa_j \mid j \leq \omega_1 \rangle \in N$. Let $p \in P \cap N$. Want $q \leq p$ such that q is (P, N)-semigeneric. Since S[*] is semiproper, there exists a countable elementary substructure M of H_{θ} such that - $N \subset M$. - $N \cap \omega_1 = M \cap \omega_1$. - $M \cap \kappa_{\omega_1} \in S[*]$. Hence $$M \cap \kappa_{M \cap \omega_1} \in S[M \cap \omega_1].$$ Let $\langle p_n \mid n < \omega \rangle$ be any (P, M)-generic sequence with $p_0 = p$. Then let $$q = \{\ \big| \{p_n \mid n < \omega\} \cup \{(M \cap \omega_1, M \cap \kappa_{N \cap \omega_1})\}.$$ We claim this $q \in P$ works. This is because for all $n < \omega$, $q \le p_n$ and so q is (P, M)-generic. Hence $q \Vdash_P {}^{\omega}M[G] \cap \omega_1^V = M \cap \omega_1^V {}^{\omega}$. Since $M \cap \omega_1 = N \cap \omega_1$, we have $q \Vdash_P {}^{\omega}N[G] \cap \omega_1^V \subseteq M[G] \cap \omega_1^V = N \cap \omega_1^V {}^{\omega}$. Hence $q \Vdash_P {}^{\omega}N[G] \cap \omega_1^V = N \cap \omega_1^V {}^{\omega}$. By the above, we may also conclude that P is σ -Baire. **4.4 Lemma.** Let G be P-generic over V. Let $\langle \dot{X}_i \mid i < \omega_1 \rangle = \bigcup G$. Then for all $j \leq i < \omega_1$, we have o.t. $(\dot{X}_i \cap \kappa_j) \in S_i^j$ and $\bigcup \{\dot{X}_i \mid i < \omega_1\} = \kappa_{\omega_1}$. *Proof.* By Lemma 4.3, ω_1 gets preserved. By 4.2 Lemma, we have $\bigcup G$ is of length ω_1 and $\bigcup \{X_i \mid i < \omega_1\} = \kappa_{\omega_1}$. 3 - 4.5 Theorem. Let ρ be a regular cardinal such that $\rho = \sup\{\kappa < \rho \mid \kappa \text{ is measurable}\}$. Then there exists a ρ -stage iteration P_{ρ} such that - (1) P_{ρ} is semiproper and has the ρ -c.c. - (2) In $V^{P_{\rho}}$, $\rho = \dot{\omega}_2$ and τ_{AC} holds. Proof. (Out-line) Let ρ be a regular limit of measurables. Let $\alpha < \rho$ and suppose we have constructed P_{α} such that P_{α} is semiproper and $P_{\alpha} \in H_{\rho}$. Then we force with some $P(\langle S_i^j \mid j \leq i < \omega_1 \rangle)$ by naturally choosing the least sequence $\langle \kappa_j \mid j \leq \omega_1 \rangle$ in the intermediate stage $V^{P_{\alpha}}$. The system $\langle S_i^j \mid j \leq i < \omega_1 \rangle$ is specified to be calculated at some stage $\beta \leq \alpha$. This is done as usual by book-keeping every possible system of subsets $\langle S_i^j \mid j \leq i < \omega_1 \rangle$ of ω_1 in $V^{P_{\beta}}$ for all $\beta \leq \alpha$. At the limit stages, we take the simple limit of [M]. This completes the construction of P_{ρ} . By construction P_{ρ} is semiproper and ω_1 is preserved. Since P_{ρ} is a semiproper iteration such that for all $\alpha < \rho$, $|P_{\alpha}| < \rho$, we conclude ([M]) that P_{ρ} has the ρ -c.c. Hence by the end, we have dealt with every possible system of stationary subsets of ω_1 . Hence τ_{AC} holds in $V^{P_{\rho}}$. Since relevant measurable cardinals are collapsed, we conclude ρ becomes the ω_2 in $V^{P_{\rho}}$. The following, possibly except (2), have been known to D. Aspero and others. - 4.6 Corollary. ([A] et al) The following are all equiconsistent. - (1) There exists a regular limit of measurable cardinals. - (2) τ_{AC} holds. - (3) ψ_{AC} holds. - (4) ϕ_{AC} holds. - (5) CB holds. Proof. The consistency of (5) implies that of (1) by [DD]. Hence all of these are equiconsistent. #### References - [A] D. Aspero, communication, at Nagoya University, November 2003 and Symposium on Mathematical Logic 03, Kobe University, December 17-19, 2003. - [DD] O. Deiser, D. Donder, Canonical functions, non-regular ultrafilters and Ulam's problem on ω_1 , Journal of Symbolic Logic, vol. 68 (2003) pp. 713-739. - [LS] P. Larson, S. Shelah, Bounding by canonical functions, with CH, Journal of Mathematical Logic 3 (2003) no. 2, pp. 193-215. - [M] T. Miyamoto, A Limit Stage Construction for Iterating Semiproper Preorders, *Proceedings of the 7th and 8th Asian Logic Conferences*, World Scientific (2003) pp. 303-327. - [W] H. Woodin, The Axiom of Determinacy, Forcing Axioms, and Nonstationary Ideal, de Gruyter Series in Logic and its Applications 1, 1999.