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SOME APPLICATIONS OF
STATIONARY REFLECTION IN P

MASAHIRO SHIOYA
W Hih
HBERFEER

ABSTRACT. The priniciple of Stationary Reflection in P.A has
been successful in the case & = wy. Unfortunately the principle fails
if kK > wy. Nonetheless some weaker versions are consistent relative
to the existence of some large cardinals. This paper presents some
(hopefully) nontrivial applications of these principles and state re-
lated problems.

1. INTRODUCTION

This paper is concerned with some combinatorinal statements that
hold in the Levy collapse. More specifically we are interested in gener-
alizing or improving the following two results:

Theorem 1 (Foreman-Magidor-Shelah [8]). The club filter on w; is
presaturated after a supercompact cardinel is Levy collapsed to ws.

Theorem 2 (Baumgartner [1]). Fvery club subset of P,,,ws has size at
least 2“1 after an wi-Erdds cardinal is Levy collapsed to w3 (and then
Cohen subsets of wy are added ).

Henceforth x denotes a regular uncountable cardinal. Goldring gen-
eralized and refined Theorem 1:

Theorem 3 (Goldring [13]). The club filter on P, s is presaturated
after a Woodin cardinal > k is Levy collapsed to x*.

We get a further generalization:

Theorem 4 (Shioya [25]). The club filter on P,k is weakly presatu-
rated below {z € Puk : cfsupz = w} for every regular uncountable
i < k after a supercompact cardinal > k is Levy collapsed to k™.

These are the subject of §4.
As to Theorem 2 the following generalization is almost immdeate:
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These are the subject of §4.
As to Theorem 2 the following generalization is almost immdeate:

Proposition 1. Every club subset of Pkt has size at least 2 after
a supercompact cardinal > x is Levy collapsed to k¥ and then Cohen
subsets of wy are added.

Building on recent advances in constructing diamonds on P\, we
get a much stronger result:

Theorem 5 (Shioya [26]). P carries a diamond for every A > &
after a supercompact cardinal > K is Levy collapsed to k¥ and then
Cohen subsets of wy are added.

These matters are taken up in §5.
In [8] the principle SR (for Stationary Reflection) was introduced:
SR in P,, A holds iff for every stationary S C P, A

there is w; C X of size w; s.t. SNP,, X is stationary in P, X.

Proposition 2 (Foreman-Magidor-Shelah [8]). SR in P,, A holds for
every A > woq after a supercompact cardinal is Levy collapsed to ws.

SR in P,, X abstracts substantial combinatorics of the model:
Proposition 3 (Todorcevié [3]). SR in P,, A implies that

1. the club filter on w, is presaturated, and
2. Chang’s Conjecture holds.

Henceforth it is understood that X is sufficiently large whenever SR |

is assumed.
Proposition 3 (2) corresponds to the following

Theorem 6 (Baumgartner [1], Donder-Levinski [5]). Chang’s Conjec
ture holds after an w;-Erdds cardinal is Levy collapsed to wa.

Our proofs of Theorems 4 and 5 are based on suitable generalizations
of SR to higher cardinals. One would come up with the following

version immediately:

SR in P holds iff for every stationary S C P
there is k C X of size x s.t. S NP, X is stationary in P.X.

Unfortunately
Theorem 7 (Shelah—Shioya [23]). SR in PcA fails if wy <k < A.

Instead we introduce in §3 two principles x-SR in P,, A and o-SR in
P A which hold after a supercompact cardinal > & is Levy collapsed
to k7.
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2. PRELIMINARIES

For background material we refer the reader to [17]. Unless otherwise
stated x denotes a regular cardinal > w and A a cardinal > &.

Let f: [A]<¥ — P\ For z C X let clyx be the closure of z under
£, i.e. the smallest set z C A such that z C z and f“[z]<* C P(z). We
denote the set {z C A : clyz = 2} by C(f). It is well-known that the
club filter on P, is generated by the sets of the form P.ANC(f). A
set of the form P\ N C(f) is called o-club if f : [A]* — P, A. It is
also known that the club filter on P\ is generated by the o-club sets
together with the set {z € P Az Nk € £}

Let 4 < v be both regular. Denote the set {y < v : cfy = u}
by S%. Recall from [21] that a club guessing sequence on S is a
map : ¥ € S# — ¢, an unbounded subset of v of order type p such
that if D C v is club, {y € S¥ : ¢, C D} is stationary in v. Gitik
and Shelah [11] constructed such a sequence even with an additional
property (see [24] for a simpler proof):

Lemma 1. Let u < & < v be all reqular. Then there is a club guessing
sequence (c, : ¥ € S¥) such that if v € S¥ Nlim{a < v : cfa > &},
ey C {a<y:cfa>k}. _

Here lim X denotes the set of limit points of X.

For later purposes we present a proof of Proposition 4 due to Foreman-
Todoréevié [9].

Let {cy : v € S%) be a club guessing sequence. Fix z € Py,wy
such that v = supz has cofinality w. List ¢, in increasing order as
{fn:n<w} Setr(z) ={n <w:zN(Vay1 — W) # 0} € W]

Proposition 4. {z € P,,ws : r(z) =1} is stationary for r € [w]*.

Define a tree order < on [we]<¥ by end-extension. Let'T be a subtree
of [we]<“. For a € T set sucr(a) ={a <w::a<aU{a} €T} T
is called stationary if sucr(a) is stationary in wy for every a € T.
[T] denotes the set of infinite branches through T. For a € T let
T*={b—a:a<beT}.

The following lemma, is from [24]:

Lemma 2. Let T be a stationary subtree of [S§|<¥ and F : T — PcA.
Then there are a stationary subtree T* of T and h : T* — v such that
ifa<beT* F(b)yNmin(b—a) C h(a).

Proof of Proposition 4. Let f : [wy]<¥ — P, we. It suffices to give a
countable z € C(f) such that ¢fsupz = w and r(z) =r.

By Lemma 2 we have a stationary subtree T* of [S%|< and a map
h: T* — wsy such that if a < b € T*, (clfb) Nmin(b— a) C h(a). Then



D={y<wy:clfy=yAVae T N[y (h(a) < v € limsucr:(a))} is
club. Take v € S¥ N D with ¢, C D —wy. List ¢, in increasing order
as {V,:n <w}, and r as {n(k) : k < w}.

By induction on & < w we choose Ynx) < a@r < Ya(k)+1 SO that
{a; : i < k} € T* as follows:

Assume we have {o; : ¢ < k}. Since {o; : 4 < k} € T” N [Yamy41]™*
and Y41 € D, we have Yoy < o € Yaky+1 N sucp«{e; : it < k}.
Then {o; : i < k} € T*, as desired.

Set 7 = U, cly{u 1 ¢ <k} € PuwaNC(f). Wehavez Cclpy =7

by {a; : i <w} C v € D. Hencesupz = v by sup;,, & = SUP;, Tn(s) =

5.
Claim. r(z) = {n(k) : k < w}.

Proof. Since o) < &k < Va(k)+1, We have n(k) € r(z) for every k < w.
To see the converse, fix k < [ < w. Then by the choice of A we have
(clp{ai 5 < 1Y) N Yngerny C (elp{es 28 <1} Nogyr Ch({a 16 < k).
Since {a; : i < k} € T* N [Yaw+1] and Yo+ € D, we have
h{{as : & < k}) < Yn)+1- Hence (cle{oy 14 < 1) N Yuer) € Tnli)+1-
Thus N Yag+1) T Yak)+1, 88 desired. O
This completes the proof. O

When applying SR, some “catching-tails” lemma is needed. The
prototype can be found in Shelah’s proof [19] of Chang’s conjecture in
the Levy collapse of a measurable cardinal to w,. It was extensively
exploited in [8]. The following version is used in §5 together with x-SR
in P, A:

Lemma 3. Let D be o-club in P.2° with § = 2. Then there is
d: [20]< — P, 2% such that if z € Pa2° N C(d) and u € Per™, 2€ D
and clg(z Uu)No =cl((zN) Uu)Né.

The following variation is used in §4 together with o-SR in P

Lemma 4. Let D be o-club in P.2* with A = 2” and v > k. List the
Functions : v — Po X a5 {ha : & < \}. Then there is d : < — P, 2}
such that if z € Pe22NC(d) and £ < v, z € C(d) and cla(2U{E})NA =
U{ea(8) e € zn A} =cla((zNX) U{E}) N A

3. PRINCIPLES OF STATIONARY REFLECTION

This section presents two generalizations of SR in P, A to higher
cardinals. Here is the weaker version:

%-SR in P, A holds iff for every stationary S C Pu, A
there is k C X of size k s.t. SNP,, X is stationary in Py, X.
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So SR in P, A from [8] is just wi-SR in Py, A in our sense.

Proposition 5. kx-SR in P, A holds for every A > k1 after a super-
compact cardinal > K is Levy collapsed to k™ (and then Cohen subsets

of wy are added ).
Crucial to the proof is the following well-known fact:

Lemma 5 (Shelah [19]). Every stationary subset of Py, A remains sta-
tionary after forcing with a countably closed poset.

Now assume A<* = X. Fix a bijection ¢ : <*P,A — A. Define

SO ={z €PA:I < kdt:6 — PcA
(z c | Jt“6 Asup{n < & : ¢(tln) € 2} = 8)}.

It is easily seen that S¥, is o-stationary in PcA. We often write

S, for S%,. This causes no confusion because Sy, and SY, agree on a
o-club set if ¥ : <¥P,A — A is another bijection.
Lemma 5 is generalized as follows:

Lemma 6. If A<® = A, every o-stationary subset of Sex remains o-
stationary in P after forcing with a k-closed poset.

S, is maximal with respect to this preoperty:

Lemma 7. If \<F = X, S\ has a o-club subset of PcA after forcing
with a k-closed poset which collapses |A| to k.

It is essential to assume A<F = X in our arguments. So we ask:

Question 1. Letcf X\ < k. Does there ezist a stationary S C P such
that every stationary subset of S remains stationary after forcing with
a k-closed poset?

We have the expected definition and results:

0-SR in P, holds iff for every o-stationary S C Sia
there is « C X of size x s.t. SN PX is o-stationary in P, X.
Proposition 6. ¢-SR in P\ holds for every A > & with A\<* = X after
a supercompact cardinal > k is Levy collapsed to k™.
Proposition 7. If A< = ), ¢-SR in P\ implies K-SR in P, A.
To ask one more question, let us restate Theorem 7 in more detail:

Theorem 8 (Shelah-Shioya [23]). Let wy < kK < A. Then there is a
stationary subset of {z € P\ : cf(z Nk) = wy Acfsup(z N k™) = w}
that does not reflect.

Question 2. Let wy < k < A. Does there exist a stationary subset of
{z € PA:cflznk) =wActfsup(z N k™) = w;} that does not reflect?



4. APPLICATIONS I: WEAK FORMS OF SATURATION

The standard argument shows that in the model of Theorem 1 .,
holds, so the club filter on w; is not ws-saturated. This fact motivates
the following definition due to Baumgartner—Taylor [2]:

A normal filter F on P\ is presaturated iff IFp+ “every set of
ordinals of size < x can be covered by a set of size A in V.

In fact the original definition of presaturation was somewhat weaker.
The current definition has a natural reformulation in combinatorial
terms like Lemma 8 below. In any case a AT-saturated normal filter on

P is presaturated.
The proof of Theorem 3 would be substantially simplified if one uses
Propositions 5 and 8. The price is that we must assume the existence

of a supercompact cardinal.

Proposition 8. x-SR in P, A wmplies that the club filter on P,k is
presaturated.

Tt is known to be impossible to generalize Theorem 3 in a straight-
foward way:

Theorem 9 (Shelah [20], Burke—Matsub'ara [4]). The club filter on P s

is not presaturated if u = & is a successor cardinal > wy or if p < K
are both regular uncountable.

With the following result Gitik “almost” closed the matter:

Theorem 10 (Gitik [10]). It is consistent that the club filter on an
inaccessible cardinal is presaturated.

Gitik’s argument, however, involves square sequences. So one can
still ask:

Question 3. Is it consistent that the club filter on a supercompact car-
dinal is presaturated?

By Theorem 9 the club filter on wp cannot be presaturated. Gitik
and Shelah asked whether it can have a weaker property. The following
definition is due to them:

A normal filter F on P\ is weakly presaturated iff IFp+ “every

countable set of ordinals can be covered by a set of size X in V.

Theorem 11 (Gitik-Shelah [12]). It is consistent that the club filter
on wq 18 weakly presaturated.

The following question seems to be open:
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Question 4. Is it consistent that the club filter on P,,ws is weakly
presaturated?

Theorem 4 follows from Proposition 6 and the following

Theorem 12 (Shioya [25]). o-SR in P.A implies that the club filter
on P,k is weakly presaturated below {x € P,k : cfsup s = w} for every
reqular uncountable p < k.

It is almost certain that much less than a supercompact suffices for
a direct proof of Theorem 4, which should be much more complicated
than that of Theorem 12. The proof of Theorem 12 combines those of

Proposition 8 and the following

Proposition 9. o-SR in PyA implies that the club filter on Py is
precipitous for every regular uncountable u < K.

Recall from [16] that
F' is precipitous iff IFp+ “the generic ultrapower is well-founded”.

It is easy to see that a weakly presaturated filter is precipitous and

moreover the generic ultrapower is closed under countable sequences.
Proposition 9 corresponds to the following

Theorem 13 (Goldring [14]). The club filter on P,;ﬁ is precipitous for
every regular uncountable p < K after a supercompact cardinal > k is
Levy collapsed to s .

Prior to this, Foreman-Magidor—Shelah [8] had proved that the club
filter on P,k is precipitous below some stationary set in the same model.
The set is the projection of IA, the set of Internally Approachable sets.
Goldring observed that IA can be replaced by its technical enlargement
IA*. In fact IA* had already been introduced in [8] in a similar context.
Our Sy, from §3 is a combinatorial reformulation of IA*.

As a sample of an application of o-SR we present a proof of Propo-
sition 9. Before proceeding let us recall

Lemma 8 (Jech—Prikry [16]). F' is precipitous iff for every S € F*
and a sequence {A, : n < w} of mazimal antichains in F* below S
such that Anyy refines A, there is a descending sequence {S, : n < w}
such that S, € An and (., Sn # 0. '

Proof of Proposition 9. As noted in [14], it suffices to show that the
filter C7_ on P,k generated by the o-club sets is precipitous.

Set v = 22" and A = 2”. Fix a o-stationary S C P.x. We can
assume S is co-o-stationary as well. For n < w let {S,¢: £ < v} bea
maximal antichain in (CZ.)* below S such that for € < v thereis ¢ < v



with Spp16 < Sne. Setsuca(() ={€ <v:Spe < Sp-1¢}forn <wand
¢ < v. We stipulate S_; = S. Then {S,¢ : £ € suc,(()} is a maximal
antichain in (C2,)" below S,—1¢. We use 0-SR to give z € P,k and
{¢&, :n < w} Cvsuch that z € SN Sy, and &, € sucy(£,—1) for every

n < w.

‘Let {g, : v < 2*} and {hs : @ < A} list the functions of the form
g: [N — P, and h : v — P, A respectively. Fix a bijection
@ <FPA — X Set '

D={zeP2":Va€ znAh“(zNv) CP(2)) A
Vyez(zNAeCgy)) AVBEzNAVE€zNY

(w({ |J  hal):nedomyp™'(8) € 2)},

acp~H(B)(n)

which is o-club in P.2*. We have d : [2)]<¥ — P,,2* as in Lemma 4.
For n < w and ¢ < v set

Toc={z€PA:H¢€ sucy(¢)
(clglzU{EP N =2 Nk € Spg U (Peck — Sn-1))}-

Claim. S, NC C Ty for some o-club C C PgA.

Proof. Let T C S,y be o-stationary in PeA. We show that TNT, ; # 0.
By 0-SR we have & C X C X of size x such that TN P.X is o-
stationary in P.X. Fix a bijection 7 : X — k. Since

{zeTNPX :nz =Nk}

is o-stationary in P, X, s0is 8’ = {zNk : z € TNP X A7“c = zNk} in
P,k Since {Spe : € € suca(()}U{Pek— Sn-1,¢} is a maximal antichain
in (C2.)*, we have ¢ € suc,(¢) such that 5'N (S, U(Prk—Sn-1,)) is 0-
stationary in Pek. Since {y € Pe2* : yNk € S'N(SneU(Puk—Sn-1¢))}
is o-stationary in P2, we have y € P,2* N C(d) such that £ € y and
7yYNX)=yNk €8 N (SngU(Puk — Sa1))- Since yNk € 5, we
have £ € TNP.X with m“c =2Nk=yNk. Thenz=7""“(zNk) =
714y N k) = yNX. Since zU{£} Cy € C(d), cla(z U{E}) C v
Hence &Nk C clg(z U{€}) Nk CyNk=2NkK € SpgU(Pxk — Sp-1¢)-
Thus z € T N Ty, as desired. O

Take v < 2* with Sex N C(gy) C Npew AccvTne- Set

E={znX:z€P2*NC(d)},
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which is o-club in P,). Let
=1 €PA I < k3t : 6 — E increasing
(z C Ut“é/\ sup{n < & : p(tln) € =} =0)},

a subset of S.x. It is easily seen that S*, is o-stationary in P,A. Set
S*={ze P2 NC(d):vy€ zAzNA € Sk}, which is o-stationary in
P22

Claim. {zNk:z € S*} is o-club in Pyk.
Proof. Build an increasing sequence ¢ : K — E by
1(6) = cla(6 U {ep(tln) :n < SYUJtsu{rhn

Set Y = |Jt“¢ C A\. Then we have x U {¢(t|n) : 7 < k} C Y and
cla(aU{y}) N CY for every a € [Y]<¥. Define f : [Y]<” — P, Y by
fla) = {o(tln) : 1 € anNk} U (clgla U {y}) N A). Note that for every
z € P.Y there is n < k with z C #(n). Hence

C={xePek:Vac[z]Inez(clfans CzAcla Ct(n)}

is o-club in Pyk. We claim that C C {z Nk : z € S*}.

FixzeC. Sety=clfz € P.Y. Thenz CyNe=clyzNk =
Usepmcwlsane Cz by z € C. Set 2z = cly(y U{7}) € Pe2* N C(d).
Theny C zNA =clhiiyU{y}PNA = Uae[y]@ clala U {7H NA C
Usepjee £(@) Cy by y € C(f). Since s € C, w(tln) € F({n}) C clyz =
y for every n € z. Hence sup{n < supz : ¢(tln) € y} = supz. Since
z€C,y=clhz=Uspcla C Upeot(m) € UJt“supz. Hence
t| sup « witnesses y € S%,. Thus z = zNk and z € §*, as desired. [

Build an increasing sequence {z, : n < w} C S* and {&, : n < w} C
v such that z,.1 Nk =20NK € SN Sy, and &, € 2p41 Nsucy(§,-1) as
follows:

Take z5 € §* with zg Nk € S. Assume we have z, as above. Since
Y E 2z, €EP22NC) C D, 2z,N A € C(gy) NSkx C AryTr¢. Since
bn-1 € 2N, 2, N A € T, e, . Hence we have &, € suc,(&,—1) such
that clg((z, NA) U{&}) Nk = 2,NK € Spg, U (Pek — Sn-1¢,.,). Since
2, YK € Sn-l,«fn_m 2. K € Sn,gn. Set Zntl = cld(zn U {gn}) Since
Zny1 € C(d), Zpe1 NA = clg((z, N A) U {&,}) N A by Lemma 1. Hence
Znpt NE=clg(zn NA) UL NE =2, Nk =2N K € SN Spg,.

Claim. z,. 1N A€ S;,.

Proof. Let s : 6* — E witness 2z, N XA € S%,. Define t : §* — E by
t(n) = cla(s(n) U {&}) N A. We claim that ¢ witnesses 2,11 N A € S¥,.



Since s is increasing, so is t. Since z, N A C |Js“d*, we have
Znpt NA=cla((z, NA)U{&) N A

C clg({J 50" U {&H N A
- U cla(s(n) U{&F) N A

n<é*
= | Jteo*.
By the choice of d we have £(1) = Uaes(y) Pa(én) for every 7 < 8.
Fix § < &* with ¢(s|6) € z,NA. Since cla({(z:NA)U{&.}) € C(d) C D,
£(113) = p({Uneuty hal6n) -1 < ) € cla((zMNUTEHNA = 200100
Hence
sup{n < 6" : ©(t}n) € zny1 N A}
= sup{n < 6" : p(s|n) € zn N A}
= ",

[

as desired.

O

This completes the proof.

5. APPLICATIONS II: DIAMONDS
The following definition is due to Jech [15]:
A map g : Pcr — Pg) is a diamond iff
for every A C A the set {z € Pe): ANz = g(x)} is stationary.
We are interested in diamonds because of the following

Proposition 10 (Jech [15]). Assume P\ carries a diemond. Then

1. the club filter on P is not 2*-saturated,
2. P\ can be partitioned into A\<* disjoint stationary sets, and
3. every club subset of PiX has size A<F.

Perhaps the first significant result on diamonds on P is the follow-
ing
Theorem 14 (Donder-Matet [6]). PeX carries a diamond for every
A > 25K,

See [24] for a correction. More recently Shelah established
Theorem 15 (Shelah [22]). P, A carries a diamond for every A > wi.

Unfortunately we could fill in the details of Shelah’s proof ounly in
the case A = wsy. Let us present it first:
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Shelah’s proof for \ = wy. Fix a club guessing sequence (¢, : 7y € Se)
and a disjoint family {I, : n < w} C [w]* with n < min I,. We have a
map ¥(2) : P(w) — P(z) for z € Pu,w; such that 1(2) “IL]Y = P(z)
for every n < w.

Fix £ € P.,,w; such that v = supz has cofinality w. List ¢, in
increasing order as {7y, : » < w}. Set '

r(z) = {n <w: 20 (Js1 = 0) # O} € W]

Let g(z) = Uperge) ¥(@ N 1) (In Nr(z)). We claim that g : P,,we —

P, wo works.
Let A C ws and f : [wo]<¥ — P, wy. It suffices to give a countable

z € C(f) such that ANz = g(z).

For w; < v < ws fix a bijection my @ w; — 7. We can assume if
z € C(f), m“x Nwy) = x N~ for every v €  — wy. For § < wy let
Ts = {a € [S1]<“ : clf(a U d) Nwy = &}, which is a (possibly empty)
subtree of [S¥1]|<¥.

Claim. There are a stationary subtree T* of some Ts and h : T* — wy
such that if a < b € T*, clz(bU§) Nmin(b — a) C A(a).

Proof. First we give § < w; such that [T5] N [C]* # 0 for every club
C C wsy: Suppose to the contrary we have a club Cs C wy for § < wy
such that [T3] N [C5]¥ = 0. Then C = (s, Cs is club in w;. Take
B C 821N C of order type w. We have § < w; with cly(BUS)Nwy = 4.
Then B € [T5] N [Cs]*. Contradiction.

Hence T" = {b € Ts : Ya < BWC C wo club ([TF]N[C]” # 0)} is a
stationary subtree of T as in the proof of Lemma 2. Finally Lemma 2
gives us a stationary subtree T* of 7" and h : T* — wa as required
above. | O

Now
D={y<w:clfy=vAVae T N}H|<(h(a) <~ € limsucr(a))}

is club. Take v € 8%, N D with ¢, C D —w;. List ¢, in increasing order
as {V, : n < w}. ‘

By induction on k < w we choose n(k) < w, Vo) < %% < Va(k)+1
and Jp € [Iw]* so that n(k) < n(k+1), {a : ¢ < k} € T* and
wlcly({ay 15 < kYU Nygy)(Ji) = ANelp({ou 1 4 < kFUS) Nynry as
follows:

First set n(0) = 0. Assume next we have {o; : i < k} and n(k) as
above. Since {; : 7 < k} € T* N [Yn@ey+1]<* and Ynmy41 € D, we have
Yaik) < Qk € Ynk)+1 Nsucy«{a; 14 < k}. Then {a;: 4 <k} € T*. Since
plelp({as 1 & < kFUS) Nynery) “[nge]” = Plelp({es 1 4 < kU Nmry);



we have Ji € [I,g]* as required above. Set

n{k + 1) = min( U J; — (n(k) + 1)) > n(k).

i<k

Note that n(k) < n(l) < minl,q) < minJ; if ¥ <[ < w. Hence
n(k + 1) = min(,,, /i — (n(k) +1)). Thus

{n(k) : k <w}={0}u | %

k<w

Now set z = U, cly({as 1 ¢ < kE}UJS) € Pu,we NC(f). Since
{o;:i<w}US Cvy €D, wehave z Cclyy=. Hencesupz =y by

SUP; <y & = SUPj<y Yn(i) = 7-
Fix k < w. Since {o; : i <k} € T* C T3, clf({aeﬁ i< klUb)Nwy =

8. So z Nwy = 4. Hence cly({o; : ¢ < k} U J) is an initial segment of z
by the standard argument using 7,’s. Thus by vpx) < ax we have

T N Yy = clp({a; 1 ¢ <k} US) N ey
Claim. ANz = g(z).

Proof. First we claim that r(z) = {n(k) : k < w}. Since yu) < i <
Yn(k)+1, We have n(k) € r(z) for every k < w. To sece the converse, fix
k <l < w. Then by the choice of h we have

le({ai ) S_ l} U 5) N 'Yn(k-&—l) - le({ai 11 S l} U 5) N Qpi
c h({os i < kD).

Since {a; : 4 < k} € TN [+ and ymw+1 € D, we have
R({c; i < k}) < Yagy+1- Hence clp({o; 14 < U8 N Yuk+1) C Yntk)+1-

Thus z N Yn+1) C Yn(k)+1, as desired.
Therefore r(z) = {0} U U, J&- Since Ing)’s are mutually dlSJOlnt
Ly N () = Ji, for every k < w. Hence for every kE<w

ANz Ny =ANcly({oy 4 < k} U &) N Yy
= P(cls({o 4 < k}US) N wne)) (i)
= (2 N Ynr)) Un(r) N 7(2)).
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Thus
ANz = UAﬂfEﬂ')’n(k)

k<w

= U V(@ N Yngry) Tny N7(T))

k<w

ner(z)
= g(z).
O

This completes the proof. O

Nonetheless we can provide our own proof of Theorem 15, which
invokes Theorem 14. Subsequently Koenig and Todoréevié [18] figured
out their own proof of Theorem 15. which works uniformly for every

/\>UJ1.

Proof of Theorem 15. By Theorem 1 with k = w; we are done in the
case A > 2¢. So assume A < 2¢. Then N = 2% We construct a
diamond on the set {z € P, A : cfsup(z Nws) = w}.

Fix a club guessing sequence {(c, : ¥ € S¥ ). Let {I, : n < w} C {w]”
be a disjoint family with n < min [,. Since 2 = A*, we have a map
¢ : P(w) — Py, A such that ©¥“[I,]¥ = P, A for every n < w.

Fix z € P, A such that v = sup(z Nw,) has cofinality w. List ¢, in
increasing order as {v, : n < w}. Set

r(z) ={n <w: 2N (Yps1 — Yu) # 0} € [W]*“.
Let 9(x) = Uperm) PInN7(z)). We claim that g : P, A — P, A works.
Let A C Xand f: [A]<Y — P, A It suffices to give a countable
z € C(f) such that cf sup(z Nwy) = w and ANz = g(z).

By Lemma 3 we have a stationary subtree T of [S¥1]<“ and a map
h:T* — wq such that if a < b€ T*, (cly b) Nmin(b — a) C h(a). Then

D = {y < wsy : (clf v)Nwg = yAVa € T*N[H]““(h{a) < v € limsucr(a))}

is club. Take v € S5, N.D with ¢, C D —w;. List ¢, in increasing order
as {m : n < w}.

By induction on k < w we choose n(k) < w, Tum) < ok < Va(k)+1
and Jp € [Iy]“ so that n(k) < n(k+1), {a; : ¢ < k} € T* and
o(Jx) = ANclg{o; 1 4 < k} as follows:

First set n(0) = 0. Assume next we have {o; : 7 < k} and n(k) as
above. Since {¢; : i < k} € T* N [yp)+2]<* and ynmy+1 € D, we have
Tok) < Ok € Yngy41 Nsucr{a; : ¢ < k}. Then {o; : 9 < k} € T*



Since @ “[Inw)]” = PuyA, we have Ji € [Inx]“ as required above. Set
n(k + 1) = min({J,, Ji — (n(k) + 1)) > n(k).

Note that n(k) < n{l) < minl,;y < minJ; if ¥ <1 < w. Hence
n(k + 1) = min(J,, Ji — (n(k) +1)). Thus

{n(k): k <w} = {0} U U .
7 k<w

Set © = |Jy, clp{ai 1 4 <k} € P,,ANC(f). Since {a;: i <w} C
~v € D, we have £ Nwy C 7. Hence sup(z Nws) = 7y by sup;.,, @ =
SUPj<w Yn(i) = 7+
Claim. ANz = g(z).
Proof. First we claim that 7(z) = {n(k) : k£ < w}. Since Y, < a <
Ya(ey+1, We have n(k) € r(z) for every k < w. To see the converse, fix
k < | < w. Then by the choice of h

(le{CE,; 1 < l}) ﬂ"}fn(k_[.l) C (le{Ofi ) < l}) N Oy
Since {o; : i < k} € T* N [Yau)+1)~ and Va1 € D, we have
h{{a; 11 < k}) < Yngk)+1- Hence (le{az- 21 < I N Anes1) C Tnlry+i-
Thus z N Yngkt+1) C Vn(k)+1, a8 desired.

Therefore r(z) = {0} U<, Ji- Since Ing’s are mutually disjoint,
we have Iy Nr(z) = Jp for every k < w. Hence for every k < w
Ancle{o; i <k} = o(J) = o(Inw) Nr(z)). Thus

Anz=|JAnd{a:i <k}
k<w

= |J oy Nr(2))

k<w

U (I, Nr(x))

ner(z)

= g(z).

]

This completes the proof. O

Our proof of Theorem 15 yields the following generalization:

Theorem 16 (Shioya [26]). If 2¥ = 2<%, P\ carries a diamond for
every A > K.

The following result shows that some assumption is necessary for
Theorem 16.
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Theorem 17 (Foreman-Magidor [7]). It is consistent for wy < £ < A
that the club filter on P is 2“1 -saturated.

Theorem 5 follows from Proposition 5 and the following
Theorem 18 (Shioya [26]). Assume wy < & = £ < 2“1 = 2<% and
x-SR in P,,25". Then PcX carries a diamond for every A > k.

That (k*)<* = (k)“ holds in the model of Theorem 18 is inevitable
by the following

Theorem 19 (Baumgartner [1]). For every n < w Pox"" has a club
subset of size at most (k¥)“".

Theorem 18 shows that we have a good control in the case n =1 of
Theorem 19. For n = 2 even the following question remains open:

Question 5. Is it consistent that every club subset of Py,ws has size
we? > wit?

5 5 ¢

See [26] for a proof of Theorem 18. Instead we present a proof of the
following result, which combines those of Theorems 15 and 18:
Proposition 11. Assume w; < kK = k¥ < 29 = 2<% and x-SR in
P25 . Then the set {z € Purt : cf(z Nk) = wAcfsupz = wi}
carries a diamond.

In the case of 2<* = & this gives a new example because Theorem 14
produces one on the set {z € Pyxt : cfsupz = w}.

Proof of Proposition 11. By Lemma 1 we have a club guessing sequence

ey 1y € S1) such that ¢, C S5, if v € St Nlim 57, Fix a disjoint

family {I, : 7 < w1} C [w]** with n < minZ,. Since 2* = 2<%, we
have a map ¥(z) : P(w;) — P(z) such that (z)“[[,]** = P(z) for
every 1 < wj. :

Fix z € P.xT such that v = supz has cofinality w;. List ¢, in

increasing order as {7y, : 7 < ws}. Set
(@) ={n <wi:z0 (w1 —m) # 0}

(Note that r(z) = @ for some x.) Let g(z) = U, e z) ¥(@N7) (LN ().
We claim that g : P.x™ — Pk works. ‘

Fix AC x* and f: [&*]<Y — P,,xT. It suffices to give z € C(f) of
size < k such that cf(z N k) = w, cfsupz = w; and ANz = g(z).

Set @ = 2¢". List the functions : [#]<% — P, 0 as {eg : § < 2°}. For
k <y < k" fix a bijection 7, : £ — 7. Then

D={zeP2:2nkt € C(f)AVB € z(zNB € Cleg)) A
Vy € 2N (k% — k) (7, “(z N k) = 2N7)}



is g-club. Lemma 3 provides us d : [2°]<“ — P, 2% such that if z €
P.2°NC(d) and u € Pes™, 2 € D and clg(zUu)Nb = clg((zN@)Uu)Ne.
Set

C={zeP,0: {acS: chfzU{a}Usup(zNk)) Nk =sup(zNk)}

is stationary in x*}.
Claim. C has a club subsel.

Proof. Let S be stationary in P, 0. We show SN C # 0.

By x-SR we have k C X C 6 of size k such that SNP,,, X is stationary
in P, X. Fix a bijection 7 : £ — X. Since {z € P,, X : 7(zNk) = z}
is club, {x € SNP,, X : 7“(z N k) = z} is stationary in P, X. Hence
S = {sup(zNk) : 7z Nk) =2z € SNP,, X} is stationary in « by
k C X.

Since {z € P2’ NC(d) : 7“(z N k) C z} is club in P2’

§"={zeP2NCd): 7(zNk) CzAzNKES'}

is stationary in P.2?. Hence |JS” = 2°. Since {zNk:z¢€ 5"} C
S' C &, we have 6 € ' such that S* = S, NJ{z € 8": 2Nk =4} is
stationary in x*. Since § € S, we have z € S such that 7“(z N K)=1
and sup(z N k) = 6. We claim that z € C. It suffices to show §* C
{a € S5 icly(zU{a}Ud) Nk = b}

Fix ¢ € S*. We have z € S§” with o € z and 2Nk = §. Then
z = Nk) Crsup(zNk) =7 =7“2zNk) C 2z Since zU
{a}Uds C z€ Cd), s Ccla(zU{a}Ud) Nk CzNk =27 Hence
clg(z U {a}Ud) Nk =4, as desired. O

Now we have 8 < 2 with P,,0 N C(es) C C. Take a countable
y € C(d) with 8 € y. Then § = sup(y N ) has cofinality w. Since
BeyeP,2NnCd C D ynd € PndnCles) C C. Hence
clag(ly N8y U {a} Ud) Nk =4 for some a < x™. So by the choice of d
§ C cla(lyUd) Nk C cla(lyU{atUd) Nk =clg((ynd)U{a}ud)nk =0
Thus clag{y Ud) Nk = 9.

Define a tree order < on [kT]<“? by end-extension. By a subtree of
[k*]<“* we mean a subset T closed under initial segments such that if
b € [kT]<“* has limit order type and a € T for every @ < b, b e T.
Define a subtree of [xT]<“! to be stationary as in §2.

Set T = {a € [S%,]<“ : cly(y Ua U ) Nk = §}. It is easy to check
that T is a nonempty subtree of [kT]<“1.

Claim. There are a stationary subtree T* of T and h: T* — k* such
that if a < b e T*, clgly UbU ) Nmin(b— a) C h(a).
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Proof. First we claim that T is a stationary subtree. FixaeT. It
suffices to show that {@ € S : cla(yUaU{a}Ud)Nk = &} is stationary
in k*.

Set z = clgly Ua). Theny C 2 C clg(y UaU ). Henceby a €T
we have § = sup(y N k) C sup(zN«) C sup(cla(y UaUd) Nk) = 4.
Thus sup(z N k) = 8. Since B € z € P,,2°NCd) C D, 2N €
P, 0N Cleg) € C. Hence {o € &, : cla((2NO) U {a} U §)Nk=24}1is
stationary in x*. Fix o from this set. Then by the choice of d we have
§ C cla(yUalU{a}Uud)Nk C cly(z2U{a}ud)ns = cly((2n8)u{aud)nk =
8. Hence clg(y UaU{a} Ud) Nk =4, as desired.

Fix a € T. The map a — sup(clg(yUaU{a}Ud)Na) is regressive on
sucy(a) by | cla(yUaU{a}Ud)| < & = cf . Hence we have a stationary
S, C sucr(a) and h(a) < k* such that clg(y Ua U {a} Ud)Na C h(a)
for every a € S,,.

Define inductively a stationary subtree 7* of T by sucy-(a) = S, for
a € T*. We show that T* and h|T™ work.

Let a < b € T* and o = min(b — a). Since a U {a} € T*, we have
cla(yUaU{a}Us)Nk = cly(yUbud) Nk = 6. Hence cly(yUaU{a}Us)Nk™
is an initial segment of clg(y Ub U d) N k™ by the standard argument
using 7,’s. Thus clg(y UbU ) Na = cla(y Ua U {a} Ud) Na C A(a),
as desired. d

Define

E={y<k": clylyUy)N&T =7vA
Va € T* N [4]<“*(k(a) < 7y € limsucyrs(a))}.

Since k¥ = k, FE is unbounded. Hence lim E is club in x*. Take
v € S Nlim S5 Nlim E with ¢y, C lim E. Then ¢, C S¢,. Note that
{y <Kk :cfy>w}nNlimE C E. Hence ¢, U{7y} C E by the definition
of E. List ¢, in increasing order as {v, : 7 < w1 }.

By induction on ¢ < wy we choose 7(¢) < wi, Yoe) < 0 < Yp¢)+1 and
Je € [Iye)]“r so that {n{c) : ¢ <} is increasing, {o, : ¢ < ¢} € T and
P(cla(yU{e, 1 ¢ < U N ) (Je) = ANcly(yU{o, : ¢ < (FUO N
as follows:

Assume we have 7(¢), o, and J, for « < ¢ as above. Set

n(¢) = min({_J J, — sup(n() + 1))

¢ 1<

if ¢ > 0. We stipulate n(0) = 0. Since {a, : ¢ < {} € T* N [Yye)41] <
and Yy)+1 € E, we have ) < ¢ € Yp(e)+1 Nsuer={a, : ¢ < {}. Then
{o,:¢ < ¢} € T* Since Y(cla(y U {ea, : ¢ < CFUBS) Nype)) “Unioy]* =



Plelaly U {a, : ¢ < HUS) Nyye), we have Jg € [I]“* as required
above.

Note that 7(¢) < n(¢) < minTye < minJe if ( £ € < w;. Hence
7(¢) = min(lJ, ., J. — 8P, (n(¢) + 1)) for every { > 0. Thus

(n(¢): ¢<w}={0ru |

<wi

Now set z = [, cla(yU{a, : ¢ < (JUS)NKT. Then z € PANC(f)
by U¢ew, Claly U {aw 1 ¢ < CHU §) € P.2° nC(d) c D. Also we have
2Nk = Urw, ClalyU{a s ¢ < CQud)Nk=38by {o: 1 <} €T CT.
Since {@, : ¢t < w1} U8 C v € E, we have z C clglyUy) N KT = 1.
Hence sup z = v by sup,,, & = SUD,cy, Yols) = V-

Fix ( < w;. Since clylyU{e, : ¢ < JUINK =zNkK =4,
cla(yU{a, : ¢ < (}US)NkT is an initial segment of z by the standard
argument using 7,’s. Hence by v, < a¢ we have

N Yoy = claly U {au 0 ¢ < UG Ny
Claim. ANz = g(z).

Proof. First we claim that r(z) = {n(¢) : ¢ < wi}. Since ) < ¢ <
Yo(c)+1, We have (¢) € r(z) for every ¢ < w;. To see the converse, fix
¢ < € < w;. Then by the choice of

cla(y U{a, : ¢ S EFUS) Npyesy C cla(y U{ew 1 S EHUS) Nagn
C h{{e, : ¢ <¢}).

Since {o, 1 ¢ < ¢} € T* N [+ and Y41 € E, we have

h({a, : ¢ < ¢}) < Yney+1- Hence cla(y U_{ab 11 < EPUS) Npern C

Yn(e)+1- Thus Z N pe+1) C To)+1, 38 desired. .
Therefore r(z) = {0} U U, J¢. Since I)’s are mutually disjoint,

Loy Nr(z) = J; for every ¢ <w. Hence for every ¢ < wi

7

AnclglyU{a, :t < U N
= ¢(cla(y U {an 1 ¢ < CHUS) Ny (o)
= (cla(y U {a, : ¢ 3 U8) Nmeg) ngy N7 ().

11
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Thus
ANz = U ANz Yo

(<un

= |J Anda(yUfe. 0 < GU N

{<w

= | v(claly U{a ¢ < FUE) N} ni) N r(z))

{<wi

= |J v(enwme)Iyno Nr(z)

(<w1

= |J v@ny)I;Nnrz)
ner(z)

= g()-

This completes the proof. O
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