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1 Introduction

We investigate the transport behaviors of a simple lattice gas system with a periodic boundary,
which consists of only two particles interacting repulsively and the potential‘forces acting on
them. Nonequilibrium lattice gases are simple mathematical models, which have been useful and
important in studies of the several properties of nonequilibrium systems with numerous degrees
of freedom[1]. Under nonequilibrium conditions, lattice gas systems have been known to show
some nontrivial phenomena, such as the appearance of long-range spatial correlations(3] and
anomalous drift motions[2|, even if the system involves only two particles. In our system, the
following novel transport properties are found when only one particle is driven by an external
driving field; With the increase in the mean velocity of the driven particle, the coefficient of
effective drag of this particle (=[driving field strength|/[mean velocity]) varies in the form,
increase — decrease — increase — decrease. Moreover, under other conditions, the coefficient of
effective drag shows change similar to that observed in the shear-thickening polymer or colloidal

solutions.

2 Model

Now, we introduce a lattice gas model, which is the same as that studied in our previous paper|2].
We consider a lattice system with two parallel one-dimensional lanes where each lane involves
L sites with a periodic boundary. Each lane contains only one particle which moves randomly
to the nearest sites without changing lanes. The sites occupied by particles in the 1st and 2nd
lanes are denoted z; and x9, respectively, which are given as integer numbers from 0 to L — 1.

The effect of potential forces acting on the particles is described by the following Hamiltonian:
H(zy,z2) = V(z1) + V{za) + Via(z1, 72), (1)

where V{(z) represents the one-body potential on each lane, and Vio{x1, o) represents the in-
teraction potential between the two particles. Furthermore, an external driving field is applied
to the particle on the 2nd lane. We denote the field strength F.
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Figure 1: Hlustrations of effects of potential and external fleld in each lane.

The time evolution of this system is described by the iteration of the following three steps.
First, one of the two particles is randomly chosen. Let the position of the chosen particle be z.
Second, its neighboring site y, z — 1 or z + 1, is randomly chosen. Third, the chosen particle
moves from z to y with the following probability

1
1+ exp[Q(z — y; 21, 22) /ksT)’

C($»y;$1,$2) =

2)

with
Q(Z‘ - y;:l)hil;'g) = H(l‘&,l’é) - H(1‘1,$2> - F(‘ZJQ - 12)7 ('3>

where (z},z}) = (z1,y) when z = 23, and (2}, 25) = (y, r2) when z = z1. T is temperature and
the Boltzmann constant kg is set 1. Here, the time step is given by [No. of above iterations]/{No.
of particles (= 2)].

Specifically, we study the case where V(z) = V|L/2 — z| (Fig. 1), and Via(z1,22) = Ids; 2,
using the L x L unit matrix &;. Also, we focus on the case L = 4. We found that this size is

the minimum required to exhibit the phenomenon we demonstrate in the presented paper.

3 Simulation

Now, we demonstrate a simulation of this system. In particular, we focus on the cases with
Fas|F| < I+V and T is small enough compared to I and V. Then, the influences of the
potential forces and the interactions are strong compared to those of the driving field. In order
to characterize the system, we define the mean velocity of the driven particle (in the 2nd lane)
in steady state v as the difference of the long time average of the moving ratio in the positive
and negative directions. Here, the direction z; : 0 — 1 — ... — (L ~ 1) — 0 — is positive. For
simplicity, I = 1 and F' > 0 are set.

Figures 2(a) and (b) show u as a function of F for (a) V = 0.25 with T'= 0.05 or T = 0.07
and (b) V = 0.6 with T = 0.08 or T = 0.1. As shown in them, two types of F' — u relations,
i) u increases steeply with F, ii) u increases slowly with F, appear depending on the range
of F. From these results, the relations between u and the coefficient of effective drag of the
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Figure 2: Mean velocity u as a function of F for (a) V = 0.25 with T' = 0.05 or T = 0.07 and
(b) V = 0.6 with T = 0.08 or T = 0.1, and coeflicient of effective drag n as a function of u for
() V=0250rV=03with T =0.05 or T =0.07 and (d) V = 0.55 or V = 0.6 with T' = 0.08
or T'=0.1.

driven particle n defined as F/u are straightforwardly obtained. Figures 2(c) and (d) show 7
as a function of u for (¢) V = 0.25 or V = 0.3 with T = 0.05 or T = 0.07 and (d) V = 0.55
or V =106 with 7 = 0.08 or T = 0.1. As shown in Fig. 2(c¢), n varies in the form, increase —
decrease — increase — decrease, with the increase in u in the case with V' < I/2 and a small T
(for example V = 0.3 and T = 0.05).

When the smaller V and a little larger T are given (for example, V = 0.25 and T = 0.07),
the change in 7 becomes less sharp, and simpler in the form, increasing — decreasing, with the
increase in u (Fig. 2(c)). In this case, the u — 1 profile is given in a form qualitatively similar
to that between the shear rate and shear viscosity coefficient of the shear-thickening polymer
solutions obtained experimentally[4, 5. On the other hand, if a larger V' is given as in the range
I/2 <V < I (for example, V = 0.55 and V = 0.6), n varies in the form, decrease — increase —
decrease, with the increase in u independently of T (Fig. 2(d)). In this case, the u — 1 profile
appears qualitatively similar to that between the shear rate and shear viscosity coefficient of the

shear-thickening colloidal solutions obtained experimentally(6].

4 Summary and discussions

In this paper, we investigated the transport behaviors of a simple nonequilibrium lattice gas
system. Our results can be easily explained by the considerations of the transition probabilities
among (21, z2) ({z1,22): (0,0) ~ (3,3).)[7]. We expect our results to provide important hints to
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uncover the possible mechanism for several rheological characteristics of several soft materials.
Detailed studies for the presented systems should be reported in the other paper in future[7].
Moreover, studies of extended models, including more lanes or particles in the space with more
sites or continuous space, and the relations between such toy systems and either real systems
or more realistic models of the polymer or colloidal solutions[4, 5, 6] represent important future
issues.

The author thanks to M. Sano, and M. Otsuki for useful discussions. This research was
supported in part by a Grant-in-Aid for JSPS Fellows (10039).
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