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1 Introduction

Let C be the set of all complex numbers and R the real line.

The purpose of the present paper is to characterize, by the sets of initial val-
ues, the boundedness of solutions and 7-periodic solutions for the periodic linear
differential equation of the form

d .
Za(t) = Aft)a(t) + £(2) 1)

where A(t) is a 7-periodic continuous p x p matrix function with period 7 > 0 and
f : R — C? a 7-periodic continuous function. It is related with a new representation
of solutions of the linear difference equation of the form

Tpel = B:Cn + b, Tg = W, (2)

where B is a complex p X p matrix and b € CP. :
More recently, Kato, Naito and Shin [4] gave a new representation of solutions of
a special case of the equation (2), that is, the linear difference equation of the form

Tnp1 =€z, +b, 2o =w, (3)

where A is a complex p x p matrix and 7 > 0. Using the representation of solutions,
we obtained a new representation of solutions and the complete classification of the
sets of initial values according to the asymptotic behavior of solutions for the case
where A(?) = A in the equation (1).

This paper is based on the idea of the paper [4] and the characteristis multiplier
on a periodic operator.



2 Linear difference equations

2.1 A representation of solutions of difference equations

Throughout this paper we use the following notations: Let E be the unit p x p
matrix. For a complex p X p matrix H we denote by o(H) the set of all eigenvalues
of H, and by hg(n) the index of n € o(H). Let My(n) = N((H — nE)*2#™) be the
generalized eigenspace corresponding to n € o(H ). Let Q,(H) : C* =+ Mpy(n) be the
projection corresponding to the direct sum decomposition

C= > @&Mu(n).

n€o(H)
These projections have the following properties:

Qn(H)Cp = My(n), HQn(H) = Qn(H)H,

Qn{(H)Q(H) =0 (n # (), Qn(H)* = Qn(H), E= Z Qn(H).

n€c(H)
The solution {z,} of the equation(2) is given as
T, 1= z,(w,b) = B"w + S,(B)b,
where -
S.(B)=>_B* (n2z1), Si(B)=0.
k=0
Let h(p) = hp(p), Qu = Qu(B) for p € o(B). Then
Q za(w,b) = B*"Qw + S,(B)Q,.b. (4)

In this section, we will rearrange the right side of this representation by collecting
the terms which are the same order with respect to n.

To describe the results, we prepare the following notations. For any u € o(B)
such that g # 1, we define a matrix Z,(B) as follows:

Zu(B) = Z,(B, h(p))

where

2,(B,h) = —Z (BB, W),

for h=1,2,--,h(u). Furthermore, we set
v8(Quw, Qub) = Quuw + Z.(B)Qub (n# 1),
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$p(Quw,Qub) = (B — E)Quw + Qb (n=1).

We use the well known notation (n); such that

‘ 1, (k=0),
(n)k:{n(n—“l)(n'—Z)"'(n—“k"*—l), (k:1721"'1n)’
0, (k=n+1n+2, ).

Put

Biy= 1 5(B—pE)" (n#0, pea(B)). (5)

kt k
The following result is a key in this paper.

Theorem 2.1 Let B be non-singular and u € o(B). The component Q,z,(w,b)
of the solution z,(w,b) of the equation (2) is ezpressed as follows:

D) Ifpu+#1, then
h{u)-1
qu'n(wﬁ b) = tu‘ Z ABk wYB Qu 7Q,u ) ;L(B)Q#b
= B" ’YB(Quwanb) #(B)Q,ub
2) If p=1, then

A{p)—1

Qurn(w,b) = Z

k=0

) k+1Br,u08(Quw, Qub) + Quuw.

?-...

2.2 Bounded solutions and constant solutions

In this section, the boundedness of solutions and constant solutions to the equation
(2) are characterized by using representations of solutions obtained in the previous
sections. The following results on the boundedness of solutions follows from Theorem
2.1 immediately.

Theorem 2.2
I The solution z,(w,b) of the equation (2) is bounded if and only if the following
conditions hold: For every p € o(B),
(1) if Lu'l > 1, then pYB(Q#wa Qpb) = 0;
(2) if p #1 and |u| =1, then (B — nE)yp(Quw,Q,b) =0
(3) f p=1, then é(Q w,Q,b) = 0;
IT The following statements are equivalent:
1) The solution z,, of the equation (2) with zo = w is constant.



2) For every p € o(B), the following conditions hold:
(1) if u # 1, then vp(Quw, Qub) = 0;
(2) if p =1, then ép(Quw,Q.b) = 0.
3) .
(E— B)w =b.

Using the same argument as in the proof of Lemma 5.6 in [4], we can obtain
the necessary and sufficient conditions on the existence of bounded solution for the
equation (2).

Theorem 2.3 The following statements are equivalent:
1) The equation (2) has a solution which is bounded;
2) There is a Q,w such that §p(Q,w,Q,b) = 0 is satisfied ;
3) If =1 € o(B), then Qub € (B — ) Ma(s);
4) Ifu=1¢€ o(B), thenb € R(B — uE), the range of B — pE.

Corollary 2.1 All bounded solutions z,(w,b) of the equation (2) are constant so-
lutions whenever vg(Q w, @ ,b) = 0 in the case where |u| < 1,p # 1.

Corollary 2.2 Assume that u # 1, € o(B).
1) There are a bounded solution and a constant solution to the equation (2).
2) A bounded solution z,(w,b) of the equation (2) is a constant solution if and

only if va(Quw,QLb) = 0 for all u € o(B).

3 Bounded solutions of periodic linear differential
equations

In this section, we give criteria on the existence of bounded solutions on R; and
7-periodic solutions to the equation (1); that is,

d
Zalt) = A@)e(t) + £(2),

where A(t) is a T-periodic continuous p x p matrix function with period 7 > 0 and
f : R — CP a 7-periodic continuous function. We will use two methods: the first
method is based on the characteristic multiplier; the second one is based on the
characteristic exponent.
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3.1 Periodic maps

Now we state the properties of the solution operators U(t,s) of the homogeneous
equation corresponding to the equation (1). The operator U(t,s) is defined as

Ut,s)w =ult;s,w) weCr
by using the unique solution u(f;s,w) of the equation u'(t) = A(t)u(t) with the
initial condition u({s) = w € CP.
Lemma 3.1 The solution operators U(t, s),(t,s € R), have the following properties:
DHU((,t)=E foral teR.

)
3) The map (t,s,2) = U(t,s)z is continuous for (t,s,2) E R x R x C?.
HUE+rs+7)=Ult,s).
5) U(s+7,8) =U(s+nr,s).
6) U(t 4+ nr,s) = U™t +7,)U(E,s) = U(t,s)U"(s+ 7,s).
7) U(t,s) is a nonsingular matriz and U(t,s)™" = U(s,t).

Since U(r,0) is a nonsingular matrix, we can take a matrix A such that
U(r,0) = e

Define
P(t) = U(t,0)e*.

Then it is easy to see that P(t + 7) = P(t). We have thus the representation by

Floquet:
U(t,0) = P(t)e".

It is easy to see that

Ult,s) = P(t)el=24P71(s). (6)
Since U(t,0)! exists, we have
P7Ht) = 4U(t,0)71

Moreover, since P(t) is T-periodic, P7}(¢) is also 7-periodic; clearly P(r) = P(0) =
E, P7Y(7)=P71(0) = E.

Define the well known periodic map (operator) (or the Poincareé map or the
monodromy operator) V(t),t € R by

Vity=Ul,t—1)=U{t+1,1).
Then V(0) = U(7,0) = ¢"4, and it is easy to check the following properties.
Vit+7)=V(@), V@)U, s)=Ult,s)V(s).
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It follows from the relation (6) that
V(t) = PRV (0)P(2) 7. (7)

Now we recall elementary results in linear algebra. Let C and D be square
matrices with the same size. Assume that there exits a nonsingular matrix 7' such
that TC = DT. Then the following properties hold true.

a) o(C) = o(D).

b) For 7 € 0(C), TQ,(C) = @,(D)T.

We now will return to the equation {1). Set
Qu(t) = QuV(), (nea(V(®)).
We prepare a well known lemma, cf. [2].

Lemma 3.2 Fort,s € R the following relations hold:
1) o(V(t)) = o(V(s)) = 2(V(0)), 5 €R.
2)
Qut)U(t,s) = U(t,s)Qu(s) for u € o(V(0)).

3) Let 1 € o(V(0)). Then hyy () = hy () and
Ut, s)Myisy (1) = My (1)-
For a u € o(V(0)), where V(0) = ¢™ as described before, we set
a,(A) ={reo(A) | u=e"}.

Lemma 3.3 The following results hold true:
1)
Qut) = POQLOPTI ()= D, PHAPTI().

Agop(A)

Myy(p) = POMyo() = P) Y @Ma().
Aeou(A)
Proof From (7), V(¢)P(t) = P(t)V(0) holds. This implies that
Qut)P(t) = P(#)Q.(0)

and that
My y(p) = P(t) Mv)(p)-
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On the other hand, since

My )(p) = Z DM4(A), (8)
A€o u(4)
we have
Qﬂ(o) = Z Py,
A€o (A)
from which the remainder follows. O

Remark 3.4 From 3) in Lemma 3.2 and 2) in Lemma 3.3 we note that

My () = U(t,0)Myq(p) = P(t)My()(p), (¢t €R).

3.2 Bounded solutions and 7-periodic solutions

We consider general criteria on the existence of bounded solutions and 7-periodic
solutions for the equation (1} by using characteristic multipliers.

Now, we reduce the equation (1) to a difference equation as follows. Let z(¢) :=
z(4;0,w) be the solution of the equation (1) such that z(0) = w, For any ¢ € {0, 00
there is an n € NU {0} such that 0 < ¢ —n7 < 7. Then

i

o(t) = U(t, nr)a(nt) + / Ut,8)f(s)ds, n€NU {0}, (9)

T

Setting =, = z(nr), (9) is reduced to the difference equation of the form
Tpt1 = U{r,0)z, + by, o= w. (10)

Denote by z,(w,b;) the solution of the equation (10). Then (9) is expressed as

z(t) = U(t,n7)z,(w,by) + /11 U(t, s)f(s)ds.

By using the relation Q,(n7) = Q,(7) = @,(0) and Lemma 3.2, we have

Qu(t)e(t) =U(t:m)@u(0)~”ﬂn(w,bf)+/ U(t; 5)Qu(s)f(s)ds.

It is obvious that z(¢) is bounded on Ry if and only if @u(t)2(t) is bounded on
R, for every u € o(V(0)). Since

sup [[U(¢,s)]| < oo,
0<t—s<7
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it follows that
(1) Q.(t)z(t) is bounded on Ry if and only if {Q,(0)x.(w,b)} is bounded; and
(2) Q.(?)z(t) is T-periodic if and only if {Q,(0)zn(w,bys)} is constant.

Using these facts and Theorem 2.1 with (10), the following result is easily ob-
tained.

Theorem 3.1 The following statements hold true.
1) The solution of the equation (1) with z(0) = w is bounded on Ry if and only
if the following conditions hold: For every u € o(V(0)),
() i lul > 1, then 1v(o)(Qu(0), Q,(0b) = 0
(2) if u #1 and |p| =1, then (V(0) — pE)vv(0)(Qu(0)w, @(0)bs) = 0.
(3) if u =1, then bv()(Qu(0)w, Qu(0)bs) = 0;
2) The solution of the equation (1) is T-periodic if and only if for every p €
o(V(0)), the following conditions hold:
(1) if p # 1, then 7V(O)(Qu(0)w,Qu(0)bf) =0
(2) if p = 1, then Sy(o)(@Q.(0)w, Q,(0)bs) = 0.

Needless to say, we can easily obtain the results corresponding to Theorem 2.3,
Corollary 2.1 and 2.2.
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