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Abstract

In 1976, Paul $\mathrm{E}\mathrm{r}\mathrm{d}\acute{\acute{\mathrm{o}}}\mathrm{s}$ conjectured that there is an integer $v0(r)$ such that for
every $v>v0(r)$ and $v\equiv 1,3$ (mod 6), there exists a Steiner triple system of
order $v$ containing no $\mathrm{i}$ blocks on $i+2$ points for every $1<i\leq r$. Such an
STS is said to be $r$-sparse. This article briefly surveys recent developments
on the existence of $r$-sparse trile systems with certain automorphisms. Com-
plete proofs for unpublished results shall be provided in ffiture papers.

1 Introduction
A Steiner triple system $S$ of order $v$ , briefly STS(v), is an ordered pair $(V, B)$ ,
where $V$ is a finite set of $v$ elements called points, and $B$ is a set of 3-element
subsets of $V$ called blocks, such that each unordered pair of distinct elements of $V$

is contained in exactly one block of $B$ . It is well-known that an STS(v) exists if
and only if $v\equiv 1$ , 3 (mod 6); such orders are called admissible.

A $(k, l)$ -configuration in an STS is a set of $l$ blocks whose union contains pre-
cisely $k$ points. The unique $(6,4)$ -configuration, called the Pasch configuration,
is described by six distinct points on four blocks $\{a, b,c\}$ , $\{a,d,e\}$ , $\{f,b, d\}$ and
$\{f, c,e\}$ . One of two $(7, 5)$ -configurations is called the mitre, described by seven
distinct points on five blocks $\{a, b,e\}$ , $\{a,c,f\}$ , $\{a,d,g\}$ , $\{b,c, d\}$ and $\{e,f,g\};a$
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is referred to as the centre or central element of the mitre and the unique pair of
blocks with no common point, that is, $\{b, c,d\}$ and $\{e,f,g\}$ , is referred to as the
parallel blocks. The other $(7, 5)$ -configuration, the $m\mathrm{i}a$ , is obtained byjoining two
noncollinear points in a Pasch configuration: $\{a,b,c\}$ , $\{a,d,e\}$ , $\{f, b,d\}$ , $\{f, c,e\}$

and $\{g,c,d\}$ . An STS is said to be anti-Pasch or anti-mitre if it contains no Pasch
configuration or mitre configuration, respectively. In particular, an anti-Pasch STS
does not contain a mia configuration.

In 1976, Erd\’o’s [7] conjectured that for every $r\geq 4$ there is an integer $v0(r)$

such that for every $v>v_{0}(r)$ , $v\equiv 1,3$ (mod 6), there is an STS(v) containing no
$(j+2,j)$ -configuration for every $2\leq j\leq r$ . Such an STS is said to be r-sparse.
Every STS is 3-sparse and an $r$-sparse STS is also $(r-1)$ -sparse. An STS is 4-
sparse if and only if it is anti-Pasch; and it is 5-sparse if and only if it is both
anti-Pasch and anti-mitre.

As well as in combinatorial design theory, 4- and 5-sparse triple systems with
particular properties are also important in some applications to information theory
(see, for example, Chee, Colbourn and Ling [3], Johnson and Weller [16], Vasic,
Kurtas and Kuznetsov [23] and Vasic and Milenkovic [24]$)$ , and hence construc-
ti ns for an $r$-sparse STS and related designs are studied extensively from both
sides (see Fujiwara [9, 10, 11], Wolfe [25] and Colbourn and Rosa [5]). Also,
sparseness of triple systems has been studied from the view ofextremal set theory
(see Lefmann, Phelps and R\"odl $\mathrm{f}17]$).

Frequently, actions of a finite group on a triple system have helped us discover
an $r$-sparse STS and develop a construction method. An automorphism of an
STS (v) $=(V, B)$ is a permutation on $V$ that maps each block in $B$ to a block of $B$,

and thefull automorphism group is the group of all automorphisms of the STS. A
flag of an STS $(V, B)$ is pair $(x,B)$ with $x\in V$ and $B\in B$ .

An STS is said to be point-transitive if its full automorphism group contains
a subgroup which acts transitively on the point set. Similarly, we say that an
STS is block-transitive, fiag-transitive, 2-transitively or 2-homogeneous if its ffill
automorphism group contains a subgroup which acts transitively on the blocks,

flags, ordered pairs of points, or unordered pairs ofpoints, respectively.
The well-known construction for STSs Netto [20] involving regular actions

of $GF(q)$ on the point set generates 4- and 5-sparse STSs. The direct product con-
struction for 5-sparse triple systems developed by Ling [18] employs an abelian
group which acts regularly on the point set.

Theorem 1.1 (Ling [18]) Ifthere exist apoint-transitive 5-sparse STS (v) over an
abelian group, v $\equiv 1$ (mod 6) and a 5-sparse STS(w), then there exists a 5-sparse
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STS(vw),

Forbes, Grannell and Griggs [8] discovered a construction method for block-
transitive STSs and found examples of 6-sparse STSs, which have the highest
sparseness at the time of writing. They also developed a recursive construction
similar to Theorem 1.1 for block-transitive 6-sparse STSs and constructed in-
finitely many examples of such STSs. No 6-sparse STS other than these triple
systems is known.

Also, when examining properties ofan STS by using computers, group actions
often simplify its calculations. In fact, by checking for $r$ sparseness the block-
transitive STSs arising from one of known constructions, Forbes, Grannell and
Griggs [8] found the first examples of 6-sparse STSs. By limiting the search
to point-transitive STS(v) over cyclic groups, Colbourn, Mendelsohn, Rosa and
$\check{\mathrm{S}}\mathrm{i}\mathrm{r}\acute{\mathrm{a}}\check{\mathrm{n}}[4]$ found a 5-sparse STS(v) for nearly all admissible $v<1\mathrm{O}\mathrm{O}$.

Furthermore, an $r$-sparse STS with certain automorphisms is of some use for
LDPC codes (see, for example, Vasic, Kurtas and Kuznetsov [23] and Vasic and
Milenkovic [24] $)$ .

This article briefly surveys recent developments on the existence of r-sparse
trile systems with nontrivial automorphsisms. In section 2, we consider $4rightarrow$ and 5-
sparse STSs. In section 3, we list recent results on an STS with higher sparseness.
Complete proofs for unpublished results shall be provided in future papers.

2 4- and 5-sparse systems
In this section, we mainly consider sharply point-transitive 4- and 5-sparse STSs.
The existence problem 4-sparse STS was completely settled by Grannell, Griggs
an $\mathrm{d}$ Whitehead [14]:

Theorem 2.1 (Grannell, Griggs and Whitehead) [14] There exists a 4-sparse
STS (v) ifand only if$v\equiv 1,3$ (mod 6) and $v\neq 7,13$ .

Many of the construction techniques for 4-sparse STSs due to Ling, Colbourn,
Grannell and Griggs [19] and Grannell, Griggs and Whitehead [14] are general-
ized for 5-sparse systems by the author [10] and Wolfe [26]. Recently, Wolfe [26]
proved that there exists a 5-sparse STS for, in some sense, almost all admissible
orders
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Let $S$ and $T$ be two subsets $\mathrm{o}\mathrm{f}Z^{\vdash}=\{1$ , 2, 3, $\ldots$
$\}$ . Define the arithmetic density

of $S$ as compared to $T$ as:

$d(S;T)= \lim_{narrow\infty}\frac{|\{x\in S\cap T\cdot x\leq n\}|}{|\{x\in T.x\leq n\}|}.\cdot$ .

Theorem 2.2 (Wolfe) [26] The arithmetic density of the spectrum of 5-sparse
Steiner triple systems as compared to the set ofall admissible orders is 1.

As is mentioned, 4- and 5-sparse STSs of small or prime power orders had
been known to exist, The author [11] recently gave general constructions for
sharply point-transitive 4- and 5-sparse STSs over an abelian group $G$. Often a
sharply point-transitive STS is simply said to be transitive. Transitive STS(v)
over the cyclic group of order $v$ is said to be cyclic.

Theorem 2.3 (Fujiwara) [11] There exists a cyclic 4-sparse STS(v) for $v\equiv 3$

(mod 6) satisfying one of the condition (i) $(\mathrm{v}, 27)\neq 9$, (ii) $v$ $\equiv 0$ (mod 7) or (ii)
$v\equiv 0$ (mod 5).

Theorem 2.4 (Fujiwara) [11] Ifthere exist a cyclic 5-sparse STS (v) and a cyclic
5-sparse STS(w), where $v$, $w\equiv 1$ (mod 6), then there exists a cyclic 5-sparse
STS(vw).

Theorem 2.5 (Fujiwara) [11] Ifthere exist a transitive 5-sparse STS(v over an
abelian group $G$, $v\equiv 1$ (mod 6) and a transitive 5-sparse STS (w) over an abelian
group $G’$, then there exists a transitive 5-sparse STS( w) over $G\rangle\langle G’$ .

3 Higher sparseness and automorphisms

In this section, we deal with an STS with higher sparseness.
In the previous section, we saw that the Erd’\’os $r$-sparse conjecture is true for

$r=4$ and that a 5-sparse STS exists for almost all admissible orders. While the
Erdos $r$-sparse conjecture says that for any $r\geq 4$ an $r$-sparse STS(v) exists for all
sufficiently large admissible $v$, little is known about the existence of an STS with

higher sparseness. In fact, no example of $r$-sparse systems is realized for $r\geq 7$

(and $v>3$), and no affirmative answer to the $r$-sparse conjecture is known in this
range. As is mentioned, the only existence result on $r$-sparse STSs for $r\geq 6$ is the
infinite series due to Forbes, Grannell and Griggs [8]
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For an STS of higher sparseness admitting a transitive automorphism group,
the author [12] gave some nonexistence results. In what follows, we ignore the
two trivial systems, that is, STS (1) and STS (3), unless they play a significant role.

Theorem 3.1 (Fujiwara) [12] For every r $\geq 13$ , there exists no point-transitive
STS over an abelian group.

This bound can be strengthened whit ceratin additional condition. A point-
transitive STS $(V, B)$ over a group $G$ has a short orbit if there exist a block $B\in I\mathit{3}$

and an element $x\in G$ such that $B^{X}=B$ and $x\neq 1$ , the identity element. $(V, B)$

has a $Z_{3}$ -orbit if $B$ contains a block having the form $\{a, a^{\kappa},a^{x^{2}}\}$ , where $x^{3}=1$ .
$Z_{3}$ -orbit privent an STS from being high-sparse.

Theorem 3.2 (Fujiwara) [12] Assume that there exists apoint-transitive r-sparse
STS over an abelian group G. Further, if the STS has a Z3 orbit they r $\leq 9$ .

Following is an immediate corollary of these theorems.

Corollary 3.3 (Fujiwara) [12] For every $r\geq 13_{\mathrm{J}}$ there exists no cyclic r-sparse
STS(v). In particular, when $v\equiv 3$ (mod 6), no cyclic $r$-sparse STS(v) exists for
every $r\geq 10$ .

The classification of STSs admitting other types of transitive actions and The-
orem 3.1 gives further nonexistence results on an STS with higer sparseness. The
details shall be presented in a future paper so we only mention the consequence.

Corollary 3.4 (Fujiwara) [12] For every r $\geq 5$ , there exists no 2-transitive r-
sparse STS.

Corollary 3.5 (Fujiwara) [12] For every r $\geq 6$, there exists no 2-homogeneous
$r$-sparse STS.

Corollary 3.6 (Fujiwara) [12] For every r $\geq 6$, there exists noflag-transitive r-
sparse STS.

Corollary 3.7 (Fujiwara) [12] For every r $\geq 13_{p}$ there exists no block-transitive
$r$-sparse STS.
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It is notable that the construction developed by Grannell, Griggs and Murphy
[13] can generate finitely many examples of 6-sparse STSs but none of them is
7-sparse {see Forbes, Grannell and Griggs [8] $)$ .

The author [12] also gave stronger bounds on sparseness for Steiner triple
systems admitting a nontrivial automorphism with fixed points.

An STS(v) is said to be 1-rotational over a group $G$ if it admits $G$ as a subgroup
ofthe full automorphism group and $G$ fixes exactly one point and acts regularly on
the other points. A1-rotational automorphism is closely related to an involution.

An STS is said to be reverse if it admits an involutory automorphism fixing
exactly one point. Any 1-rotational STS is reverse. Indeed, for every l-rotational
STS(v) over a group $G$, the order of $G$ is $v-1$ and even. Hence, $G$ has at least one
involution.

Buratti [1] showed that there exists a1-rotational STS(v) over an abelian group
if and only if $v\equiv 3,9$ (mod 24) or $v\equiv 1,19$ (mod 72). He also gave partial
answers for an arbitrary group. The combined work of Doyen [6], Rosa [21]
and Teirlinck [22] established the fact that the spectrum for reverse STS is the
set of all $v\equiv 1,3,9$ or 19 (mod 24). An STS admitting an automorphism with
more than one fixed point is known to exist (see Hartman and Hoffman [15]) and
may also be considered. However, the fixed points must induce a smaller STS as a
subsystem, and hence sparseness ofthe original Steiner system can not exceed that
of the small sub-STS. Most interesting is the case when the induced subsystem is
a trivial STS, that is, one point and no block, or three points and one block. The
following theorem shows that such an STS is at most 4-sparse.

Theorem 3,8 (Fujiwara) [12] For every r $\geq 5$ , there exists no $r$-sparse STS ad-
mitting an involutory automorphismfixing exactly one or three points.

The following is an immediate corollary of the theorem above.

Corollary 3.9 (Fujiwara) [12] For every r $\geq 5$ , there exists no reverse r-sparse
STS.

Since a 1-rotational STS is also reverse, we have:

Corollary 3.10 (Fujiwara) [12] For every r $\geq 5$ , there exists no 1-rotaiortal r-
sparse STS,

It is well known that the points and lines of $AG(n,3)$ forms the elements and
triples of a 1-rotaional, and thus reverse, 4-sparse STS $(3^{f\mathit{1}})$ . In this sense, the
bounds of Theorem 3.8, Corollary 3.9 and 3.10 are best possible
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Corollary 3.10 limits the sparseness ofa1-rotational STS over any finite group
even if it is nonabelian. The same bound for a rotational group action fixing three
points inducing the other trivial subsystem follows from the same argument. How-
ever, if groups are restricted to abelian ones, we can easily obtain much stronger
theorem. In fact, sparseness is limited to the lowest.

Theorem 3.11 (Fujiwara) [12] Ifthefull automorphism group ofan STS $S$ can
tains an abelian subgroup which fixes more than one point and acts transitively
on the otherpoints, then $S$ is not 4-sparse.

In the remainder of this paper, we give a sporadic result on automorphisms,
similar to those we have discussed.

An STS is said to be bicyclic if it admits a permutation on points consisting of
a pair of cycles of length $k$ and $v-k$ as an automorphism. Calahan and Gardner
[2] proved that there exists a bicyclic STS (v) for $k>1$ if and only if $v\equiv 1$ , 3 (mod
6), $k|v$ , and either $k\equiv 1$ (mod 6) and $3k|v$ ; or $k\equiv 3$ (mod 6) and $k\neq 9$ .

Theorem 3.12 (Fujiwara) [12] Let $S$ be a bicyclic $r$-sparse STS and $l$ be length
ofthe smaller cycle ofits bicyclic automorphism. Then,

$r\leq\{$

4there $\mathit{1}=1,3$

9when $\mathit{1}\equiv 3$ (mod 6),
12 when $7\equiv 1$ (mod 6).
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