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Abstract

We review recent progress towards the solution of exactly solved isotropic vertex

models with arbitrary toroidal boundary conditions. Quantum space transformations

make it possible the diagonalization of the corresponding transfer matrices by means

of the quantum inverse scattering method. Explicit expressions for the eigenvalues and

Bethe ansatz equations of the twisted isotropic spin chains based on the $B_{n},$ $D_{n}$ and $C_{n}$

Lie algebras are presented. The applicability of this approach to the eight vertex model

with non-diagonal twists is also discussed.
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A vertex model is a classical statistical system defined on a lattice whose geometry is given

by a possibly infinite set of straight lines on the plane [1]. The intersections of these lines are

called vertices or sites and here we consider the situation where not more than two lines meet

at every vertex. Clearly, the square lattice of size $L\cross L$ is the simplest one and from now on

we shall restrict ourselves to it. A physical state is then defined by assigning to each lattice

edge a discrete variable having one out of $q$ possible values.

Next, we suppose that the corresponding row-to-row transfer matrix can be constructed

from elementary local i-th site Boltzmann weights $\mathcal{L}_{Ai}(\lambda)$ where A denotes a spectral parameter.

This operator is best viewed as a $q\cross q$ matrix on the auxiliary space $A=C^{1\mathrm{J}}$ whose elements

are operators acting on the $\prod_{i=1}^{L}\otimes C_{i}^{q}$ Hilbert space. Considering toroidal boundary conditions

on the square lattice, the transfer matrix $T(\lambda)$ can be written in terms of the trace over $A$ of

the $\mathrm{f}\mathrm{o}\mathrm{U}\mathrm{o}\mathrm{w}\mathrm{i}\mathrm{n}\mathrm{g}$ ordered product of operator [2, 3, 4]

$T(\lambda)=\mathrm{T}\mathrm{r}_{A}[\mathcal{G}_{A}L_{AL}(\lambda)\mathcal{L}_{AL-1}(\lambda)\ldots L_{A1}(\lambda)]$ (1)

where $\mathcal{G}_{A}$ are $q\cross qc$-number matrices, representing generalized periodic boundary conditions.

A sufficient condition for integrability, i.e $[T(\lambda), T(\mu)]=0$ for arbitrary values of A and $\mu$ ,

is the existence of an invertible matrix $\check{R}(\lambda, \mu)$ satisfying the property $[2, 3]$

$\check{R}(\lambda, \mu)\mathcal{L}_{Ai}(\lambda)\otimes \mathcal{L}_{Ai}(\mu)=\mathcal{L}_{Ai}(\mu)\otimes \mathcal{L}_{A:}(\lambda)\check{R}(\lambda, \mu)$ (2)

and that the matrix $\mathcal{G}_{A}$ is a possible representation, without spectral parameter dependence,

of the quadratic algebra (2), namely [4]

$[\check{R}(\lambda, \mu), \mathcal{G}_{A}\otimes \mathcal{G}_{A}]=0$ , (3)

As usual the $R$-matrix $\check{R}(\lambda, \mu)$ is required to satisfy the famous Yang-Baxter equation

$\check{R}_{23}(\lambda_{1}, \lambda_{2})\check{R}_{12}(\lambda_{1}, \lambda_{3})\check{R}_{23}(\lambda_{2}, \lambda_{3})=\check{R}_{12}(\lambda_{2}, \lambda_{3})\check{R}_{23}(\lambda_{1}, \lambda_{3})\check{R}_{12}(\lambda_{1}, \lambda_{2})$, (4)

In this paper we will consider integrable models whose corresponding $R$-matrices are ad-

ditive with respect the spectral parameters, $\check{R}(\lambda,\mu)=\check{R}(\lambda-\mu)$ . In this case, the simplest
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spectral parameter dependent representation of the Yang-Baxter algebra (2) turns out to be

$\mathcal{L}_{Ai}(\lambda)=P_{Ai}\check{R}(\lambda)$ , (5)

where $P_{Ai}$ is the exchange operator on the space $A\otimes C_{i}^{q}$ .
If the matrix $\mathcal{G}_{A}$ is non-singular it is possible to derive an integrable quantum spin chain

from $T(\lambda)$ . Assuming that the operator $\mathcal{L}_{Ai}(\lambda)$ is proportional to the permutator $P_{Ai}$ , say at

certain special point $\lambda=0$ , the corresponding one-dimensional Hamiltonian reads [5],

$\mathcal{H}=\sum_{i=1}^{L-1}P_{Ai^{\frac{d\mathcal{L}_{Ai}(\lambda)}{d\lambda}}}|_{\lambda=0}+\mathcal{G}_{L}^{-1}P_{L1}\frac{dL_{L1}(\lambda)}{d\lambda}|_{\lambda=0}\mathcal{G}_{L}$ (6)

When the boundary matrix $\mathcal{G}_{A}$ is non-diagonal, the diagonalization of either the transfer

matrix (1) or the Hamiltonian (6) is indeed a highly non-trivial problem in the field of integrable

models. The main difficulty is concerned with the apparent lack of simple references states to

start the Bethe ansatz analysis. Here we would like to present the steps towards the direction

of solving integrable isotropic vertex models with non-diagonal toroidal boundary conditions.

As concrete examples we will consider those systems whose rational $R$-matrices are invariant

by the $B_{n},$ $D_{n}$ and $C_{n}$ symmetries. One way to construct rational solutions of the Yang-Baxter

equation (4) is by means of the braid-monoid algebra [6] at its degenerated point [7]. This

algebra is generated by the identity $I_{i}$ , by a braid $b_{i}$ and a Temperley Lieb operator $E_{i}$ acting on

sites $i$ of a chain of length $L$ . On the degenerate point the braid operator becomes a generator

of the symmetric group, namely

$b_{i}= \sum_{a,b=1}^{q}\hat{e}_{ab}^{(i)}\otimes\hat{e}_{ba}^{(i+1)}$ (7)

where $\hat{e}_{ab}^{(1)}$ are the $q\cross q$ Weyl matrices acting on the space $C_{i}^{q}$ .
The monoid turns out to be represented by the following expression [8]

$E_{i}= \sum_{a,b,c,d=1}^{q}\alpha_{ab}\alpha_{cd}^{-1}\hat{e}_{ac}^{(i)}\otimes\hat{e}_{bd}^{(1+1)}$ (8)

where the matrix a for the models $B_{n}$ , $D_{n}$ and $C_{n}$ are given by

$\alpha_{B_{\mathfrak{n}}}=\mathcal{I}_{2n+1\mathrm{x}2n+1}$ , $\alpha_{D_{n}}=\mathcal{I}_{2n\mathrm{x}2n}$ , $\alpha_{C_{n}}=$ (9)
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such that $\mathcal{I}_{k\mathrm{x}k}$ is dePned as a $k\cross k$ anti-diagonal matrix.

The set of algebraic relations satisfied by the braid and monoid at its generated point can
be “Baxterized” in terms of rational functions. More specifically, the solution $\check{R}(\lambda)$ in terms

of combinations of the identity, braid and monoid is given by $[7, 8]$

$\check{R}_{i,i+1}(\lambda)=I;+\lambda b_{i}-\frac{\lambda}{\lambda-\delta}E_{i}$ (10)

where the values of parameter 6 are

$\delta_{B_{n}}=-n+\frac{1}{2}$ $\delta_{C_{n}}=-n-1$ $\delta_{D_{n}}=-n+1$ (11)

Let us now turn our attention to the diagonalization of the transfer matrix (1) for the

above $B_{n},$ $D_{n}$ and $C_{n}$ vertex models, 1 considering the most general admissible boundary

matrix satisfying the condition (3), i.e $[E_{i}, \mathcal{G}_{A}\otimes \mathcal{G}_{A}]=0$ . Denoting by $M_{A}$ the matrix that

diagonalize the boundary matrix $\mathcal{G}_{A}$ and by inserting the terms $M_{A}M_{A}^{-1}$ all over the $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}(1)$

one we can write $T(\lambda)$ as

$T(\lambda)$ $=\mathrm{T}\mathrm{r}_{A}[M_{A}D_{A}M_{A}^{-1}M_{A}(M_{A}^{-1}\mathcal{L}_{AL}(\lambda)M_{A})\ldots(M_{A}^{-1}\mathcal{L}_{A1}(\lambda)M_{A})M_{A}^{-1}]$ , (12)

$=\mathrm{h}_{A}[D_{A}\tilde{L}_{AL}(\lambda)\overline{L}_{AL-1}(\lambda)\ldots\overline{\mathcal{L}}_{A1}(\lambda)]$ , (13)

where $D_{A}$ is diagonal matrix whose entries are the eigenvalues of $\mathcal{G}_{A}$ and the $\tilde{L}$-operators are
given by

$\tilde{L}_{Ai}(\lambda)=M_{A}^{-1}L_{Ai}(\lambda)M_{A}$ . (14)

The next step in our approach is to note that it is always possible to choose an invertible

transformation $U_{i}$ on the space $C_{1}^{q}$. such that

$U_{i}^{-1}\tilde{\mathcal{L}}_{Ai}(\lambda)U_{i}=\mathcal{L}_{Ai}(\lambda)$ (15)

and therefore to undo the modifications on the Lax operators (14) by means of quantum space

transformations.

$\iota_{\mathrm{W}\mathrm{e}}$ recall that similar problem for the $A_{n}$ model has been tackled in ref.[9].
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Now one can take advantage of this remarkable property by defining a new transfer matrix

$T’(\lambda)$

$T’( \lambda)=\prod_{j=1}^{L}\otimes U_{j}^{-1}T(\lambda)\prod_{j=1}^{L}\otimes U_{j}=\mathrm{T}\mathrm{r}_{A}[D_{A}\mathcal{L}_{AL}(\lambda)\ldots \mathcal{L}_{A1}(\lambda)]$, (16)

which is precisely the transfer matrix of the vertex model we have started with diagonal twist
$D_{A}$ .

Because the boundary $D_{A}$ is diagonal the transfer matrix $T’(\lambda)$ can be diagonalized with

very little difference kom the standard periodic case [8]. Furthermore, the operators $T(\lambda)$

and $T’(\lambda)$ share the same eigenvalues and if $|\psi’\rangle$ is an eigenstate of $T’(\lambda)$ the corresponding

eigenvector $|\psi\rangle$ of $T(\lambda)$ is then $\prod_{j=1}^{L}\otimes U_{j}|\psi’\rangle$ . Considering that the algebraic framework to

diagonalize $T’(\lambda)$ has already been described in ref.[8], there is no need to repeat it here, and

in what follows we shall present only the final results concerning the Bethe ansatz equations

and eigenvalues of the related Hamiltonian (6). The expression for the latter can be written

in a compact form in terms of the underlying Cartan matrix $C_{ab}$ and the normalized length $\eta_{a}$

of the roots. To each $a$-ath root we associate a set of rapidities $\lambda_{j}^{(a)}$ that satisfy the following

non-linear coupled equations,

$[ \frac{\lambda^{(a)}-^{\delta_{a1}}j2\eta_{l}}{\lambda_{j}^{(a)}+_{2\eta_{a}}^{\delta_{a1}}}=]^{L}=\frac{g_{a}}{g_{a+1}}\prod_{b=1k}^{n}\prod_{=1,k\neq j}^{m_{b}}=\frac{\lambda^{(a)}\lambda^{(b)}-^{C_{ab}}jk2\eta_{a}}{\lambda^{(a)}\lambda_{k}^{(b)}+^{C_{ab}},j2\eta_{a}}=,$ $j=1,$ $\ldots,$ $m_{a};a=1,$ $\ldots,$
$n$ (17)

where $g_{a}$ is the a-th eigenvalue of the matrix $D_{A}$ .

Before proceeding it should be remarked that due to the constraint $[E_{i}, \mathcal{G}_{A}\otimes \mathcal{G}_{A}]=0$ not

all the eigenvalues $g_{a}$ are independent. It turns out that only the first $n$ ratios $\mathit{9}a+1q_{\mathrm{L}}$ are indeed

arbitrary. The eigenvalues $E(L)$ of the Hamiltonian (6) are parameterized by the variables $\lambda_{j}^{(1)}$

by

$E(L)=- \sum_{i=1}^{m_{1}}\frac{1}{[\lambda_{i}^{(1)}]^{2}-1/4}+L$ (18)

We expect that these results extend to all isotropic integrable vertex models invariant

by the discrete representations of Lie algebras as well as to superalgebras. Note that such

systems possess a broader class of possible non-diagonal boundary matrices as compared with
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their trigonometric counterparts. This means that isotropic vertex models with the most

general twisted boundary conditions are in fact genuine systems that deserve to be studied

independently. They are also of potential physical interest, since suitable combinations between

non-diagonal boundaries $\mathcal{G}_{A}$ and rational $\mathcal{L}$-operators can described interesting solvable atom-

fields models [10].

A natural question to be asked is whether or not this approach can also be of utility for

non-rational vertex models. A tantalizing problem would be the solution of the eight-vertex

model in the presence of non-diagonal toroidal boundary conditions. The symmetrical eigth-

vertex model [1] possesses four different Boltzmann weights $a(\lambda),$ $b(\lambda),$ $c(\lambda)$ and $d(\lambda)$ whose

local operators $L_{Ai}(\lambda)$ which are given by the following $2\cross 2$ matrix

$\mathcal{L}_{Ai}(\lambda)=(a(\lambda)\sigma_{i}^{+}\sigma_{i}^{-}+b(\lambda)\sigma_{i}c(\lambda)\sigma_{i}^{+}+d(\lambda)\sigma_{i}=^{\sigma_{i}^{+}}$

$b(\lambda)\sigma_{i}^{+}\sigma_{i}^{-}+a(\lambda)\sigma_{i}$

.
$\sigma_{i}^{+}d(\lambda)\sigma_{i}^{+}+c(\lambda)\sigma_{\=})$ (19)

and $\sigma_{i}^{\pm}$ are Pauli matrices acting on the i-th sites of an one-dimensional lattice of size L.

This vertex model is known to be solvable in the manifold

$2 \Delta=\frac{a^{2}(\lambda)+b^{2}(\lambda)-c^{2}(\lambda)-d^{2}(\lambda)}{a(\lambda)b(\lambda)+c(\lambda)d(\lambda)}$ $\Gamma=\frac{a(\lambda)b(\lambda)-c(\lambda)d(\lambda)}{a(\lambda)b(\lambda)+c(\lambda)d(\lambda)}$ (20)

where $\Delta$ and $\Gamma$ are arbitrary constants. A possible non-diagonal twist compatible with inte-

grability is given by

$\mathcal{G}_{A}=$ (21)

One can now follow the same steps discussed above. Though we could not undo completely

the modifications carried out on the auxiliary space due to the manipulations (13) we find out

that the following quantum space transformation

$\overline{\mathcal{L}}_{A:}(\lambda)=U_{1}^{-1}\overline{\mathcal{L}}_{Ai}(\lambda)U_{i}$ (22)

where the matrix $U_{i}$ is given by

$U_{i}=$ (23)
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This transformation leads us to an operator $\overline{\mathcal{L}}_{Ai}(\lambda)$ that preserves the eight vertex form

(19),

$\overline{\mathcal{L}}_{Ai}(\lambda)=(\overline{a}(\lambda)\sigma_{i}^{+}\sigma_{i}^{-}+\overline{b}(\lambda)\sigma_{i}\overline{c}(\lambda)\sigma_{i}^{+}+\overline{d}(\lambda)\sigma_{i}=^{\sigma_{i}^{+}}$
$\overline{b}(\lambda)\sigma_{i}^{+}\sigma_{i}^{-}+\overline{a}(\lambda)\sigma_{i}\sigma_{i}^{+}\overline{d}(\lambda)\sigma_{i}^{+}+\overline{c}(\lambda)\sigma_{i}=)$ (24)

where the new Boltzmann weights $\overline{a}(\lambda),$ $\overline{b}(\lambda),\overline{c}(\lambda)$ and $\overline{d}(\lambda)$ are given by

$\overline{a}(\lambda)=\frac{a(\lambda)+b(\lambda)+c(\lambda)+d(\lambda)}{2}$ (25)

$\overline{b}(\lambda)=\frac{a(\lambda)+b(\lambda)-c(\lambda)-d(\lambda)}{2}$ (26)

$\overline{c}(\lambda)=\frac{a(\lambda)-b(\lambda)+c(\lambda)-d(\lambda)}{2}$ (27)

$\overline{d}(\lambda)=\frac{a(\lambda)-b(\lambda)-c(\lambda)+d(\lambda)}{2}$ (28)

whose invariants are $\overline{\Delta}=\frac{1}{\Delta}$ and $\overline{\Gamma}=\frac{\Gamma}{\Delta}2$ .
As a consequence of that our remaining task now consists in diagonalizing the following

transfer matrix,

$\overline{T}(\lambda)=\mathrm{T}\mathrm{r}_{A}[D_{A}\overline{\mathcal{L}}_{AL}(\lambda)\overline{\mathcal{L}}_{AL-1}(\lambda)\ldots\overline{\mathcal{L}}_{A1}(\lambda)]$ (29)

where the diagonal boundary matrix is

$D_{A}=$ (30)

By construction $\overline{T}(\lambda)(29)$ and $T(\lambda)$ given by Eqs.(1,19,21) share the same eigenvalues while

the eigenvectors are related by the similarity transformation (23). Though this procedure brings

some simplification in the eigenvalue problem, it is not enough to make the diagonalization

of the transfer matrix $\overline{T}(\lambda)$ amenable by Bethe ansatz analysis. This is because the operator

$\overline{\mathcal{L}}_{Ai}(\lambda)$ has no simple local pseudovacuum that annihilate one of its off-diagonal matrix elements

for arbitrary values of the spectral parameter. The standard way of solving this problem is by

means of the so-called Baxter’s gauge transformations $[1, 2]$ which unfortunately does not work

2This then reemphasize why the isotropic limit $\Delta=1$ is special under both auxiliary and quantum trans-

formations.
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here since the diagonal boundary $D_{A}$ is not an identity matrix. In other words, the problem of

finding gauge transformations $M_{i}(\lambda)$ with the conditions that both the transformed operator
$M_{i+1}^{-1}(\lambda)\overline{\mathcal{L}}_{Ai}(\lambda)M_{i}(\lambda)$ has a local vacuum independent of $\lambda$ and that does not spoil the diagonal

property of $D_{A}$ has eluded us so far. An advantage of this approach, however, is that we can
easily identify the existence of at least one case in each the eigenvalue problem for $\overline{T}(\lambda)(29)$

can be solved by standard algebraic Bethe ansatz. This clearly occurs when the Boltzmann
weight $\overline{d}(\lambda)(28)$ is null. Direct inspection reveals us that this happens at the point in which

the modulus rc of the elliptic functions parameterizing the eight vertex Boltzmann weights

becomes unity. More specifically, at the value $\mathcal{K}=1$ the weights $a(\lambda),$ $b(\lambda),$ $c(\lambda)$ and $d(\lambda)$ are
given by the following expressions

$a(\lambda)=\tanh[\lambda+\gamma]b(\lambda)=\tanh[\lambda]$ (31)

$c(\lambda)=\tanh[\gamma]d(\lambda)=\tanh[\gamma]\tanh[\lambda]\tanh[\lambda+\gamma]$ (32)

which due to (28) implies $\overline{d}(\lambda)=0$ .

Thanks to the above simplification it now remains only the diagonalization of a symmetric

six vertex model, whose solution has appeared in many different contexts in the literature.

The result for the eigenvalue $\Lambda(\lambda)$ of $T(\lambda)$ is therefore

$\Lambda(\lambda)=[\overline{a}(\lambda)]^{L}\prod_{i=1}^{m}\frac{\overline{a}(\lambda_{j}\lambda)}{\overline{b}(\lambda_{j}\lambda)}=-[\overline{b}(\lambda)]^{L}\prod_{i=1}^{m}=\frac{a(\lambda\lambda_{j})}{b(\lambda\lambda_{j})}=$ (33)

where the weights $\overline{a}(\lambda),$ $\overline{b}(\lambda)$ and $\overline{c}(\lambda)$ are

$\overline{a}(\lambda)=\frac{\sinh[\lambda+\gamma]}{\cosh[\lambda]\cosh[\gamma]}$ $\overline{b}(\lambda)=\frac{\sinh[\lambda]}{\cosh[\lambda+\gamma]\cosh[\gamma]}$ $\overline{c}(\lambda)=\frac{\sinh[\gamma]}{\cosh[\lambda+\gamma]\cosh[\lambda]}$ (34)

The integers $m\leq L$ parameterize the multiparticle state of $\overline{T}(\lambda)$ and the Bethe ansatz

roots $\lambda_{j}$ satisfy the equations

$[ \frac{\overline{a}(\lambda_{j})}{\overline{b}(\lambda_{j})}]^{L}=-\prod_{k\neq j}^{m}=\frac{b(\lambda_{k}\lambda_{j})}{a(\lambda_{k}\lambda_{j})}=\frac{a(\lambda_{j}\lambda_{k})}{b(\lambda_{j}\lambda_{k})}=$, $j=1,$ $\ldots,$
$m$ (35)
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It is conceivable that an adaptation of the above ideas might work for the general eight

vertex model (19) with the boundary (21). In fact, the case $\mathcal{K}=0[5]$ 3 was solved by means

of certain functional relations even though the eigenvectors structure is not yet known. If this

could be carried out, even for particular values of the modulus $\mathcal{K}$ , it would be an important

step toward the understanding of properties of the eight vertex.
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