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Abstract

The Hamiltonian of the XXZ spin chain has the $sl_{2}$ loop algebra symmetry if the $q$

parameter is given by a root of unity, $q_{0}^{2N}=1$ , for an integer $N$ . We review an algorithm
for determining the dimensions of the degenerate eigenspace generated by a given regular
Bethe state in some sectors. The proof of the algorithm has been formulated in Ref. [3] as
follows: We show in some sectors that regular Bethe ansatz eigenvectors are highest weight
vectors and generate irreducible representations of the $sl_{2}$ loop algebra; We prove that
every finite-dimensional highest weight representation of the $sl_{2}$ loop algebra is irreducible;
We then derive the dimensions of the highest weight representation generated by a given
regular Bethe state through the Drinfeld polynomial, which is expressed explicitly in terms
of the Bethe roots.

1 Introduction

The XXZ spin chain is one of the most important exactly solvable quantum systems. The
Hamiltonian under the periodic boundary conditions is given by

$H_{XXZ}= \frac{1}{2}\sum_{j=1}^{L}(\sigma_{j}^{X}\sigma_{j+1}^{X}+\sigma_{j}^{Y}\sigma_{j+1}^{Y}+\Delta\sigma_{j}^{Z}\sigma_{j+1}^{Z})$ . (1)

Here the XXZ anisotropic coupling $\Delta$ is related to the $q$ parameter by $\Delta=(q+q^{-1})/2$ . Recently
it was shown that when $q$ is a root of unity the XXZ Hamiltonian commutes with the generators
of the $sl_{2}$ loop algebra [5]. Let $q_{0}$ be a primitive root of unity satisfying $q_{0}^{2N}=1$ for an integer
$N$ . We introduce operators $S^{\pm(N)}$ as follows

$S^{\pm(N)}$ $=$ $\sum_{1\leq j_{1}<\cdots<j_{N}\leq L}q^{\frac{N}{0^{2}}\sigma^{Z}}\otimes\cdots\otimes q^{\frac{N}{0^{2}}\sigma^{Z}}\otimes\sigma_{j_{1}}^{\pm}\otimes q^{\frac{(N-2)}{\mathrm{Q}2}\sigma^{Z}}\otimes\cdots\otimes q^{\frac{(N-2)}{02}\sigma^{Z}}$

$\otimes\sigma_{j_{2}}^{\pm}\otimes q\otimes\cdots\otimes\sigma_{j_{N}}^{\pm}\otimes q_{0}^{-\tau^{\sigma^{Z}}}\otimes\cdots\otimes q_{0}^{-\frac{N}{2}\sigma^{Z}}\frac{\{N-4)}{02}\sigma^{zN}$ (2)
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The operators $S^{\pm(N)}$ are derived from the $N\mathrm{t}\mathrm{h}$ power of the generators $S^{\pm}$ of the quantum
group $U_{q}(sl_{2})$ . We also define $T^{(\pm)}$ by the complex conjugates of $S^{\pm(N)}$ , i.e. $T^{\pm(N)}=(S^{\pm(N)})^{*}$

The operators, $S^{\pm(N)}$ and $T^{\pm(N)}$ , generate the $sl_{2}$ loop algebra, $U(L(sl_{2}))$ , in the sector

$S^{Z}\equiv 0$ (mod $N$). (3)

Here the value of the total spin $S^{Z}$ is given by an integral multiple of $N$ . It was shown [5] that
in the sector (3) the operators commute with the Hamiltonian of the XXZ spin chain:

$[S^{\pm(N)}, H_{XXZ}]=[T^{\pm(N)}, H_{XXZ}]=0$ . (4)

We now discuss the main physical question in the paper. Let us denote by $|R\rangle$ a regular
Bethe state with $R$ down spins. Here we define regular Bethe states by such Bethe ansatz eigen-
vectors that are constructed from finite and distinct solutions of the Bethe ansatz equations,
whose precise definition will be given in \S 2. For any given regular Bethe state in the sector (3),
we may have the following degenerate eigenvectors of the XXZ Hamiltonian

$S^{-(N)}|R\rangle$ , $T^{-(N)}|R\rangle$ , $(S^{-(N)})^{2}|R\rangle$ , $T^{-(N)}S^{+(N)}T^{-(N)}|R\rangle,$ $\cdots$ .

However, it is nontrivial how many of them are linearly independent. The number gives the
degree of the spectral degeneracy. We thus want to know the dimensions of the degenerate
eigenspace generated by the Bethe state $|R\rangle$ .

Recently, the main question has been solved as far as regular Bethe states in some sectors
such as (3) are concerned. [3] For the XXZ spin chain at roots of unity, Fabricius and $\mathrm{M}\mathrm{c}\mathrm{C}\mathrm{o}\mathrm{y}$

had made important observations on the degenerate multiplicities of the $sl_{2}$ loop algebra. [6,
7, 8]. Moreover, they had conjectured the concept of ‘Drinfeld polynomials of Bethe ansatz
eigenvectors’. Motivated by the previous results [6, 7, 8], an algorithm for determining the
dimensions of the representation generated by a given regular Bethe state in some sectors such
as (3) has been rigorously formulated. In fact, it is proven that the ‘Drinfeld polynomial of a
regular Bethe state’ corresponds to the standard Drinfeld polynomial defined for the irreducible
representation generated by the regular Bethe state. The conjecture of Fabricius and $\mathrm{M}\mathrm{c}\mathrm{C}\mathrm{o}\mathrm{y}$

has now been proven at least in the sectors such as (3). However, the proof of the algorithm
as formulated in Ref. [3] is not very concise. Thus, the purpose of the paper is to review the
main points of the algorithm briefly with some illustrative examples.

The contents of the paper is given as follows. In \S 2, we introduce Bethe ansatz equations
and regular solutions of the Bethe ansatz equations. We define regular Bethe states. In \S 3, we
discuss briefly the $sl_{2}$ loop algebra symmetry of the XXZ spin chain at roots of unity. Here, the
conditions of roots of unity are specified precisely. In \S 4, we explain the Drinfeld realization of
the $sl_{2}$ loop algebra, i.e. the classical analogues of the Drinfeld realization of the quantum affine
group $U_{q}(\hat{s}l_{2})$ . In \S 5, we review the algorithm for determining the degenerate multiplicity of a
regular Bethe state in the sectors. Here we note that theorem 4 generalizes the $su(2)$ symmetry
of the XXX spin chain shown by Takhtajan and Faddeev [15]. In \S 7 we discuss some examples
of the Drinfeld polynomials explicitly.
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2Bethe ansatz equations and the transfer matrix

2.1 Regular solutions of the Bethe ansatz equations

Let us assume that a set of complex numbers, $t_{1},\tilde{t}_{2},$

$\ldots,$
$t_{R}\sim\sim$ satisfy the Bethe ansatz equations

at a root of unity:

$( \frac{\sinh(t_{j}+\eta_{0})\sim}{\sinh(t_{j}-\eta_{0})\sim})^{L}=\prod_{k=1;k\neq j}^{M}\frac{\sinh(t_{j}t_{k}+2\eta_{0})\sim\sim}{\sinh(t_{J}t_{k}-2\eta_{0})\sim,\sim}=$ , for $j=1,2,$ $\ldots$ , R. (5)

Here the parameter $\eta$ is defined by the relation $q=\exp(2\eta)$ , and $\eta_{0}$ is given by $q_{0}=\exp(2\eta_{0})$ .
If a given set of solutions of the Bethe ansatz equations are finite and distinct, we call them
regular. We call a set of solutions of the Bethe ansatz equations Bethe roots.

A set of regular solutions of the Bethe ansatz equations leads to an eigenvector of the XXZ
Hamiltonian. We call it a regular Bethe state of the XXZ spin chain or a oegular $XXZ$ Bethe
state, briefly. Explicit expressions of regular Bethe states are derived through the algebraic
Bethe ansatz method. [11]

2.2 Transfer matrix of the six-vertex model
We now introduce $L$ operators for the XXZ spin chain. Let $V$ be two-dimensional vector spaces
for $n=0,1,$ $\ldots,$

$L$ . We define an operator-valued matrix $L_{n}(z)$ by

$L_{n}(z)==$ (6)

Here $L_{n}(z)$ is a matrix acting on the auxiliary vector space $V_{0}$ , where $I_{n}$ and $\sigma_{n}^{a}(a=z, \pm)$ are
operators acting on the $n$ th vector space $V_{n}$ . The symbol $I$ denotes the two-by-two identity
matrix, $\sigma^{\pm}$ denote $\sigma^{+}=E_{12}$ and $\sigma^{-}=E_{21}$ , and $\sigma^{x},$ $\sigma^{y},$ $\sigma^{z}$ are the Pauli matrices.

We define the monodromy matrix $T$ by the product:

$T(z)=L_{L}(z)\cdots L_{2}(z)L_{1}(z)$ . (7)

Here the matrix elements of $T(z)$ are given by

$T(z)=$ (8)

We define the transfer matrix of the six vertex model $\tau_{6V}(z)$ by the following trace:

$\tau_{6V}(z)=\mathrm{t}\mathrm{r}T(z)=A(z)+D(z)$ . (9)

We call the transfer matrix homogeneous. It is invariant under lattice translation.

3 The $sl_{2}$ loop algebra symmetry at roots of unity
We shall show the $sl_{2}$ loop algebra symmetry of the XXZ spin chain at roots of unity in some
sectors. We shall discuss two cases with even $L$ and odd $L$ .

96



3.1 Roots of unity conditions

Let us explicitly formulate roots of unity conditions as follows.

Definition 1 (Roots of unity conditions) We say that $q_{0}$ is a root of unity with $q_{0}^{2N}=1$ ,

if one of the three conditions hold: (i) $q\mathrm{o}$ is a primitive $Nth$ root of unity with $N$ odd $(q_{0}^{N}=1)_{i}$

(ii) $q_{0}$ is a pnmitive $2Nth$ root of unity with $N$ odd $(q_{0}^{N}=-1)_{i}(iii)q_{0}$ is a pnmitive $2Nth$ root

of unity with $N$ even $(q_{0}^{N}=-1)$ . We call the cases (i) and (iii) type $I$, the case (ii) type II.

In the case of $S^{Z}\equiv 0$ (mod $N$) we consider all the tree conditions of roots of unity. However,
in the case of $S^{Z}\equiv N/2$ (mod $N$) with $N$ odd, we consider only the condition (i) of roots of
unity, i.e. $q_{0}$ is a primitive $N\mathrm{t}\mathrm{h}$ root of unity with $N$ odd $(q_{0}^{N}=1)$ .

3.2 (Anti-)Commutation relations at roots of unity

We show the $sl_{2}$ loop algebra symmetry of the XXZ spin chain in the following two sectors: (a)
in the sector $S^{Z}\equiv 0(\mathrm{m}o\mathrm{d}N)$ where $q_{0}$ is a root of unity with $q_{0}^{2N}=1$ , as specified in definition
1; (b) in the sector $S^{Z}\equiv N/2$ (mod $N$) with $N$ odd where $q_{0}$ is a primitive $N\mathrm{t}\mathrm{h}$ root of unity.

Let us assume that there exist a set of regular solutions of Bethe ansatz equations (5) with
$R$ down-spins, i.e. $R$ regular Bethe roots. We also assume that the lattice size $L$ , the number
of regular Bethe roots $R$ and the integer $N$ satisfy the following relation:

$L-2R=nN$ , $n\in$ Z. (10)

If $n$ is even, the regular Bethe state $|R\rangle$ is in the sector $S^{Z}\equiv 0$ (mod $N$), while if $n$ is odd and
$N$ is also odd, then it is in the sector $S^{Z}\equiv N/2$ (mod $N$). Here we recall that the symbol $|R\rangle$

denotes the regular Bethe state constructed from the given $R$ regular Bethe roots.
It has been shown [5] that operators $S^{\pm(N)}$ and $T^{\pm(N)}$ (anti-)commute with the transfer

matrix of the six-vertex model $\tau_{6V}(v)$ in the sector $S^{Z}\equiv 0$ (mod $N$) at $q_{0}$ with $q_{0}^{2N}=1$ .

$S^{\pm(N)}\tau_{6V}(z)=q_{0}^{N}\tau_{6V}(z)S^{\pm(N)}$ , $T^{\pm(N)}\tau_{6V}(z)=q_{0}^{N}\tau_{6V}(z)T^{\pm(N)}$ . (11)

Furthermore, it is also shown [3] that in the sector $S^{Z}\equiv N/2$ (mod $N$) when $N$ is odd and
$q_{0}$ satisfies $q_{0}^{N}=1$ , operators $S^{\pm(N)}$ and $T^{\pm(N\rangle}$ (anti-)commute with the transfer matrix of the
six-vertex model $\tau_{6V}(v)$ .

Rom the (anti-)commutation relations (11) it follows that the operators $S^{\pm(N)}$ and $T^{\pm(N)}$

commute with the XXZ Hamiltonian in the sector $S^{Z}\equiv 0$ (mod $N$) when $q_{0}$ satisfies $q_{0}^{2N}=1$ ,
and in the sector $S^{Z}\equiv N/2$ when $N$ is odd and $q_{0}^{N}=1$ . Here we recall that the XXZ
Hamiltonian $H_{XXZ}$ is given by the logarithmic derivative of the (homogeneous) transfer matrix
$\tau_{6V}(v)$ .

3.3 The algebra generated by $S^{\pm(N)}$ and $T^{\pm(N)}$

Let us discuss the algebra generated by the operators [5], $S^{\pm(N)}$ and $T^{\pm(N)}$ . When $q_{0}$ is of type
I, we have the following identification:[5]

$E_{0}^{+}=T^{-(N)}$ , $E_{0}^{-}=T^{+(N)}$ , $E_{1}^{+}=S^{+(N)}$ , $E_{1}^{-}=S^{-(N)}$ , $-H_{0}=H_{1}= \frac{2}{N}S^{Z}$ (12)
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When $q$ is of type II, we have the following: [4]

$E_{0}^{+}=\sqrt{-1}T^{-(N)},$ $E_{0}^{-}=\sqrt{-1}T^{+(N)},$ $E_{1}^{+}=\sqrt{-1}S^{+(N)},$ $E_{1}^{-}=\sqrt{-1}S^{-(N)},$ $-H_{0}=H_{1}= \frac{2}{N}S^{Z}$ .
(13)

Here $\sqrt{-1}$ denotes the square root of-l. (cf. (A.13) of [4]; see also [12].) The operators $E_{j}^{\pm}$

and $H_{j}$ for $j=0,1$ , are the Chevalley generators of the affine Lie algebra $S^{\wedge}l_{2}$ . In fact, the
operators $E_{j}^{\pm},$ $H_{j}$ for $j=0,1$ , satisfy the defining relations [10] of the $sl_{2}$ loop algebra [5]:

$H_{0}+H_{1}=0,$ $[H_{i}, E_{j}^{\pm}]=\pm a_{ij}E_{j}^{\pm}$ , $(i,j=0,1)$ (14)
$[E_{i}^{+}, E_{j}^{-}]=\delta_{ij}H_{j}$ , $(i,j=0,1)$ (15)
$[E_{i}^{\pm}, [E_{i}^{\pm}, [E_{i}^{\pm}, E_{J}^{\pm}, ]]]=0,$ $(i,j=0,1, i\neq j)$ (16)

Here, the Cartan matrix $(a_{ij})$ of $A_{1}^{(1)}$ is defined by

$=$ (17)

The Serre relations (16) hold if $q_{0}$ is a primitive $2N\mathrm{t}\mathrm{h}$ root of unity, or a primitive $N\mathrm{t}\mathrm{h}$ root
of unity with $N\mathrm{o}\mathrm{d}\mathrm{d}.[5]$ We derive it through the higher order quantum Serre relations due
to Lusztig. [14] The Cartan relations (14) hold for generic $q$ . The relation (15) holds for the
identification (12) when $q_{0}$ is a root of unity of type I, and for the identification (13) when $q_{0}$

is aroot if unity of type II.
In the sector $S^{Z}\equiv 0$ (mod $N$) we have the commutation relation [5]:

$[S^{+(N)}, S^{-(N)}]=(-1)^{N-1}q^{N} \frac{2}{N}S^{Z}$ (18)

Here the sign factor $(-1)^{N-1}q^{N}$ is given by 1 or $-1$ when $q$ is a root of unity of type I or II,
respectively. In the case of the sector $S^{Z}\equiv N/2$ (mod $N$) with $N$ odd and $q_{0}$ a primitive $N\mathrm{t}\mathrm{h}$

root of unity, we have the following commutation relation:

$[S^{+(N)}, S^{-(N)}]= \frac{2}{N}S^{Z}$ (19)

3.4 Some remarks

Let the symbol $U_{q}^{\mathrm{r}\alpha}(g)$ denote the algebra generated by the $q$-divided powers of the Chevalley
generators of a Lie algebra $g[2]$ . The correspondence of the algebra $U_{q}^{\mathrm{r}_{0}\infty}(g)$ at a root of unity,
$q_{0}$ , to the Lie algebra $U(g)$ was obtained essentially through the machinery introduced by
Lusztig $[13, 14]$ both for finite-dimensional simple Lie algebras and infinite-dimensional aflline
Lie algebras. In fact, by using the higher order quantum Serre relations [14], it has been shown
in the above that the affine Lie algebra $U(\hat{s}l_{2})$ is generated by the operators such as $S^{\pm(N)}$ at
roots of unity. However, in the case of the affine Lie algebras $\hat{g}$ , the highest weight conditions
for the Drinfeld generators are different from those for the Chevalley generators. Through
the highest weight vectors of the Drinfeld generators, finite-dimensional representations were
discussed by Chari and Pressley for $U_{q}^{\mathrm{r}_{0}\mathrm{a}\mathrm{e}}(\hat{g})[2]$.
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4The Drinfeld realization of the $sl_{2}$ loop algebra

Finite-dimensional representations of the $sl_{2}$ loop algebra, $U(L(sl_{2}))$ , are derived by taking
the classical analogues of the Drinfeld realization of the quantum $sl_{2}$ loop algebr$a,$ $U_{q}(L(sl_{2}))$ .
$[1, 2]$ The classical analogues of the Drinfeld generators, $\overline{x}_{k}^{\pm}$ and $\overline{h}_{k}(k\in \mathrm{Z})$ , satisfy the defining
relations in the following:

$[\overline{h}_{j},\overline{x}_{k}^{\pm}]=\pm 2\overline{x}_{j+k}^{\pm}$ , $[\overline{x}_{j}^{+},\overline{x}_{k}^{-}]=\overline{h}_{j+k}$ , for $j,$ $k\in \mathrm{Z}$ . (20)

Here $[\overline{h}_{j},\overline{h}_{k}]=0$ and $[\overline{x}_{j}^{\pm},\overline{x}_{k}^{\pm}]=0$ for $j,$ $k\in$ Z.
Let us now define highest weight vectors. In a representation of $U(L(sl_{2}))$ , a vector $\Omega$ is

called a highest weight vector if $\Omega$ is annihilated by generators $\overline{x}_{k}^{+}$ for all integers $k$ and such
that $\Omega$ is a simultaneous eigenvector of every generator of the Cartan subalgebra, $\overline{h}_{k}(k\in \mathrm{Z})$ :
$[1, 2]$

$\overline{x}_{k}^{+}\Omega$ $=$ $0$ , for $k\in \mathrm{Z}$ , (21)
$\overline{h}_{k}\Omega=$ $\overline{d}_{k}^{+}\Omega$ , $\overline{h}_{-k}\Omega=\overline{d}=_{k}\Omega$ , for $k\in \mathrm{Z}_{\geq 0}$ (22)

We call a representation of $U(L(sl_{2}))$ highest weight if it is generated by a highest weight
vector. The set of the complex numbers $\overline{d}_{k}^{\pm}$ given in (22) is called the highest weight. It is
shown [1] that every finite-dimensional irreducible representation is highest weight. To a finite-
dimensional irreducible representation $V$ we associate a unique polynomial through the highest
weight $\overline{d}_{k}^{\pm}$ . $[1]$ We call it the Drinfeld polynomial. Here the degree $r$ is given by the weight $\overline{d}_{0}^{\pm}$ .

As we shown in [3], the highest weight vector of $V$ is a simultaneous eigenvector of operators
$(\overline{x}_{0}^{+})^{k}(\overline{x}_{1}^{-})^{k}/(k!)^{2}$ for $k>0$ , and the Drinfeld polynomial of the representation $V$ has another
expression as follows

$P(u)= \sum_{k=0}^{f}\lambda_{k}(-u)^{k}$ , (23)

where $\lambda_{k}$ denote the eigenvalues of operators $(\overline{x}_{0}^{+})^{k}(\overline{x}_{1}^{-})^{k}/(k^{\mathrm{I}}.)^{2}$. Here we remark that the ex-
pression of the Drinfeld polynomial (23) is due to Jimbo. [9]

5 Algorithm for evaluating the degenerate multiplicity

5.1 New theorem on the $sl_{2}$ loop algebra

We prove in Ref. [3] the following:

Theorem 2 Every finite-dimensional highest weight representation of the $sl_{2}$ loop algebra is
irreducible.

The dimensionality of the representation generated by a Bethe state is fundamental in
enumerating the degenerate multiplicity of the energy level of the Bethe state in the spectrum
of the XXZ spin chain. It often coincides with the degenerate multiplicity of the energy level.

Let $\Omega$ be a highest weight vector and $V$ the representation generated by $\Omega$ . Suppose that
$V$ is finite-dimensional and $\overline{h}_{0}\Omega=r\Omega$ . We define a polynomial $P_{\Omega}(u)$ by the relation (23) with
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the eigenvalues $\lambda_{k}$ . We show that the roots of the polynomial $P_{\Omega}(u)$ are nonzero and finite,
and the degree of $P_{\Omega}(u)$ is given by $r$ . Let us factorize $P_{\Omega}(u)$ as follows

$P_{\Omega}(u)= \prod_{k=1}^{s}(1-a_{k}u)^{m_{k}}$ , (24)

where $a_{1},$ $a_{2},$
$\ldots,$

$a_{s}$ are distinct, and their multiplicities are given by $m_{1},$ $m_{2},$ $\ldots$ , $m_{s}$ , respec-
tively. Then, we call $a_{j}$ the evaluation parameters of $V$ . Here we note that $r$ is given by the
sum: $r=m_{1}+\cdots+m_{s}$ .

Theorem 2 shows that $V$ is irreducible and that $P_{\Omega}(u)$ corresponds to the Drinfeld polyno-
mial of $V$ . For any given highest weight vector we thus obtain the Drinfeld polynomial bom
the highest weight via (23). Furthermore, we have the following:

Proposition 3 Let $V$ be such a finite-dimensional highest weight representation that has eval-
uation parameters $a_{j}$ with multiplicities $m_{j}$ for $j=1,2,$ $\ldots,$

$s$ . Then, $V$ is $isomo\varphi hic$ to the
follounng tensor product of evaluation representations: $V_{m_{1}}(a_{1})\otimes V_{m_{2}}(a_{2})\otimes\cdots\otimes V_{m_{*}}(a_{s})$ . The
dimensions of $V$ are given by the product $(m_{1}+1)(m_{2}+1)\cdots(m_{s}+1)$ .

5.2 Regular Bethe states as highest weight vectors
For the XXZ spin chain at roots of unity, Fabricius and $\mathrm{M}\mathrm{c}\mathrm{C}\mathrm{o}\mathrm{y}$ made important observations
on the highest weight conjecture [6, 7, 8]. Motivated by them, we show in Ref. [3] the following:

Theorem 4 (i) Every regular Bethe state $|R\rangle$ in the sector $S^{Z}\equiv 0$ (mod $N$) at $q0$ is a highest
weight vector of the $sl_{2}$ loop algebra. Here $q\mathrm{o}$ is a root of unity with $q_{0}^{2N}=1$ , as specified in
definition 1; (ii) Every regular Bethe state $|R\rangle$ in the sector $S^{Z}\equiv N/2$ (mod $N$) at $q0$ is a
highest weight vector of the $sl_{2}$ loop algebra. Here $N$ is odd and $q_{0}$ is a $pr\dot{\tau}mitiveNth$ root of
unity.

By the method of the algebraic Bethe ansatz, we derive the following relations [3]:

$S^{+(N)}|R\rangle=T^{+(N)}|R\rangle$ $=$ $0$ ,

$(S^{+(N)})^{k}(T^{-(N)})^{k}/(k!)^{2}|R\rangle$ $=$ $Z_{k}^{+}|R\rangle$ for $k\in \mathrm{Z}_{\geq 0}$ ,

$(T^{+(N)})^{k}(S^{-(N)})^{k}/(k!)^{2}|R\rangle$ $=$ $Z_{k}^{-}|R\rangle$ for $k\in \mathrm{Z}_{\geq 0}$ . (25)

Here, the operators $S^{\pm(N)},$ $T^{+(N)},$ $T^{-(N)}$ and $2S^{Z}/N$ satisfy the same defining relations of the
$sl_{2}$ loop algebra as generators $\overline{x}_{0}^{\pm},\overline{x}_{-1}^{+},\overline{x}_{1}^{-}$ and $\overline{h}_{0}$ , respectively, and hence the relations (25)
correspond to (21) and (22).

In $\mathrm{e}\mathrm{q}\mathrm{s}$ . (25) eigenvalues $\mathcal{Z}_{k}^{\pm}$ are explicitly evaluated as follows

$\mathcal{Z}_{k}^{+}=(-1)^{kN}\tilde{\chi}_{kN}^{+}$ , $Z_{k}^{-}=(-1)^{kN}\tilde{\chi}_{kN}^{-}$ . (26)

Here the $\tilde{\chi}_{m}^{\pm}$ have been defined by the coefficients of the following expansion with respect to
small $x$ :

$\frac{\phi(x)}{\tilde{F}^{\pm}(xq_{0})\tilde{F}^{\pm}(xq_{0}^{-1})}=\sum_{j=0}^{\infty}\tilde{\chi}_{j}^{\pm}x^{j}$ (27)

where $\phi(x)=(1-x)^{L}$ and $\tilde{F}^{\pm}(x)=\Pi_{j=1}^{R}(1-x\exp(\pm 2t_{j}))\sim$ .
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5.3 Drinfeld polynomials of regular Bethe states and the degeneracy

Let $|R\rangle$ be a regular Bethe state at $q_{0}$ in such a sector as specified in theorem 4. The Drinfeld
polynomial of the regular Bethe state $|R\rangle$ is explicitly derived by putting $\lambda_{k}=(-1)^{kN}\overline{\chi}_{kN}^{+}$ into
eq. (23). Here, the coefficients $\tilde{\chi}_{kN}^{\pm}$ are explicitly evaluated as [3]

$\tilde{\chi}_{kN}^{\pm}=\sum_{=n0}^{\min(LkN)}(- 1)^{n}(_{n}^{L})\sum_{n_{1}+\cdots+n_{R}=kN- n}e^{\pm\Sigma_{j=1}^{R}2^{\wedge}}\prod_{j=1}^{R}n_{j}t_{j}[n_{j}+1]_{q0}$ . (28)

Here $[n]_{q}=(q^{n}-q^{-n})/(q-q^{-1})$ and the sum is taken over all nonnegative integers $n_{1},$ $n_{2},$ $\ldots,$ $n_{R}$

satisfying $n_{1}+\cdots+n_{R}=kN-n$ : when $R=0,$ $n$ is given by $n=kN$ .
We thus obtain the algorithm for the degeneracy of a regular Bethe state as follows.

Corollary 5 Let $|R\rangle$ be a regular Bethe state such as specified in theorem 4. If the Drin-
feld polynomial of the representation $V$ generated by $|R\rangle$ gives evaluation parameters $a_{j}$ with
multiplicities $m_{j}$ for $j=1,2,$ $\ldots,$

$s$ , then we have $\dim V=(m_{1}+1)(m_{2}+1)\cdots(m_{s}+1)$ .

In particular, when $m_{j}=1$ for $j=1,2,$ $\ldots,$
$s$ , we have $r=s$ and the dimensions are given by

the $r\mathrm{t}\mathrm{h}$ power of 2, 2‘, where $r=(L-2R)/N$.

6 Examples of Drinfeld polynomials of Bethe states

6.1 The vacuum state with even $L$

We now calculate the Drinfeld polynomial $P(u)$ for the the vacuum state $|0\rangle$ where $L=6$ and
$N=3$ with $q_{0}^{3}=1$ . When $N$ is odd and $q_{0}^{N}=1$ , we have $\lambda_{k}^{+}=Z_{k}^{+}=(-1)^{k}\tilde{\chi}_{kN}^{+}$ . Rom the
formula (28) we have

$\tilde{\chi}_{3}^{+}=(-)^{3}=-20$ , $\tilde{\chi}_{6}^{+}=(-1)^{6}=1$ (29)

Thus we have $\lambda_{1}^{+}=20$ and $\lambda_{2}^{+}=1$ , and the Drinfeld polynomial is given by

$P(u)=1-20u+u^{2}$ (30)

Here, the evaluation parameters are given by

$a_{1},$
$a_{2}=10\pm 3\sqrt{11}$ (31)

We note that the two evaluation parameters are distinct, and the degree of $P$ is two, i.e. $r=2$,
$m_{1}=m_{2}=1$ . Therefore, the degenerate multiplicity is given by $2^{2}=4$ .

6.2 The vacuum state with odd $L$

Let us calculate the Drinfeld polynomial $P(u)$ for the odd $L$ case. We consider the the vacuum
state $|0\rangle$ where $L=9$ and $N=3$ with $q_{0}^{3}=1$ . The vacuum state $|0\rangle$ is in the sector $S^{Z}\equiv 3/2$

(mod 3), since $S^{Z}=9/2=3/2+3$ .
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Ilirom the formula (28) we have

$\tilde{\chi}_{3}^{+}=(-)^{3}=-84$ , $\tilde{\chi}_{6}^{+}=(-1)^{6}=84$ , $\tilde{\chi}_{9}^{+}=(-1)^{9}=-1$ . (32)

Thus we have $\lambda_{1}^{+}=84,$ $\lambda_{2}^{+}=84$ , and $\lambda_{3}^{+}=1$ . The Drinfeld polynomial is given by

$P(u)=1-84u+84u^{2}-u^{3}$ (33)

Here, the evaluation parameters are given by

$a_{1},$ $a_{2}= \frac{1}{2}(83\pm 9\sqrt{85})$ (34)

We note that the three evaluation parameters are distinct, and the degree of $P$ is three, i.e.
$r=3,$ $m_{1}=m_{2}=m_{3}=1$ . Therefore, the degenerate multiplicity is given by $2^{3}=8$ .

6.3 The regular Bethe state with one down-spin $(R=1)$

For the case of $R=1$ , the Bethe ansatz equations at generic $q$ are given by

$( \frac{\sinh(t_{j}+\eta)}{\sinh(t_{j}-\eta)})^{L}=1$ for $j=0,1,$ $\cdots,$ $L-1$ . (35)

We solve the Bethe ansatz equations in terms of variable $\exp(2t_{j})$ as follows.

$\exp(2t_{j})=\frac{1-\omega_{j}q}{q-\omega_{j}}$ , for $j=0,1,$ $\ldots,$ $L-1$ , (36)

where $\omega_{j}$ denotes an $L\mathrm{t}\mathrm{h}$ root of unity: $\omega_{j}=\exp(2\pi\sqrt{-1}j/L)$ , for $j=0,1,$ $\ldots,$ $L-1$ .
Let us assume that the regular Bethe state with one down-spin is in the sector $S^{Z}\equiv 0$ (mod

$N)$ and $q_{0}$ be a root of unity with $q_{0}^{2N}=1$ , or in the sector $S^{Z}\equiv N/2$ (mod $N$) where $q\mathrm{o}$ is a
primitive $N\mathrm{t}\mathrm{h}$ root of unity with $N$ odd. Then we have from (28)

$\tilde{\chi}_{kN}^{+}=\sum_{\ell=0}^{\min(nN+2,kN)}(-1)^{j}[kN+1-\ell]_{q0}(\frac{1-\omega_{j}q_{0}}{q_{0}-\omega_{j}})^{kN-\ell}$ (37)

Here we have from (10) that $L=nN+2$ when $R=1$ .
Let us consider the case of $N=3$ , and $q_{0}=\exp(\pm 2\pi\sqrt{-1}/3)$ . Here $L=8$ . The regular

Bethe state with rapidity $t_{2}\sim$ (the case of $j=2$ in eq. (36)) has the Drinfeld polynomial in the
following:

$P(u)=1-13(2-\sqrt{3})u+(7-4\sqrt{3})u^{2}$ (38)

where the evaluation parameters $a_{1}$ and $a_{2}$ are given by

$a_{1},$ $a_{2}= \frac{1}{2}(13\pm\sqrt{165})(2-\sqrt{3})$ (39)

The dimensions of the highest weight representation generated by the Bethe state are therefore
given by $2^{2}=4$ .
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