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1 Introduction and main result

This paper is based on a joint work [8] with Prof. H. Ishii.

We investigate the “elgenvalue problem” for fully nonlinear uniformly elliptic
operators.

In 1983, P.-L.Lions [12] studied the eigenvalue problem for the uniformly
elliptic Bellman equations

sup {—tr aa(z)D%u(z) + ba(z)Du(z) + ca(z)u(z) - falz)} =0in Q, (1.1)
ac

ulon =0, _ (1.2)

where 2 is an open bounded subset of R®, A is an index set, aq, by, co and
fo are Lipschitz functions on § with values in S”,R",R and R, respectively,
and u is the real-valued unknown function on . Here S™ denotes the space of
real n X n symmetric matrices. He studied a sort of principle eigenvalues and
eigenfunctions for nonlinear uniformly elliptic operator F[-] : @ x RxR” xS" —
R, where F is given by

F(z,r,p, X) = sup {—tr aa X + bs(z) - p + cor} . (1.3)
a€A

He called these values demi-eigenvalues. He established several interesting
properties of demi-eigenvalues including existence of the corresponding demi-
eigenfunctions by using stochastic control theory.

Here we investigate the demi-eigenvalue problem for general non-convex fully
nonlinear uniformly elliptic operators F[-]. We consider fully nonlinear elliptic

PDEs

Flu)(z) = F(z,u(z), Du(z), D*u(z)) = 0 in Q. (1.4)
Here F is not assumed to have any convexity because we refer (1.4) as Isaacs
operators

F(ZD, "D, X) = 22‘% ﬂilelfB {—tr aa,ﬂ(w)X + ba’ﬂ(w) °p + Ca'ﬁ(w)r - favﬂ(w)}
(15)



Moreover we adapt the notion of viscosity solution as the solution of (1.4).

We prepare some assumptions on  and F. Throughout this paper we
assume that  C R™ is a bounded domain and F is a continuous function on
Q xR x R™® x 8". In addition, we often assume:

(D1) Q satisfies the uniform exterior sphere condition, i.e., there is a constant
r1 > 0 such that for each z € 8 there is a point y € R” for which B(y, )N =
(D2) Q satisfies the uniform interior sphere condition, i.e., there is a constant
ro > 0 such that for each z € 89 there is a point y € Q for which |z — y| = r
and B(y,r3) C Q.

(F1) F is uniformly elliptic, i.e., there are constants 0 < 8 < © < oo such that
for (z,7,p,X) € A xRXxR" xS" and Y € 8",

P~(Y) < F(z,1,p, X +Y) - F(z,r,p,X) < PH(Y),
where P* dencte the Pucci extremal operators:

P~(X) :=inf{—tr AX | A€ S", 6I < A< OI},
PH(X):=sup{—tr AX | AeS", I < AL OI}
(F2) For each (z,X) € @ x 8, the function: (r,p) — F(z,r,p,X) is Lipschitz

continuous on R x R™. More precisely, there is a constant L > 0 such that for
(z,X) € 2 xS™ and (r,p), (¢t,9) € R xR",

|F(z,r,p,X) - F(z,t,q,X)| < L(Ir — t| + [p — ql).

(F3) For each R > 0, there are a constant 7y € ( -;-, 1] and a function wg, satisfying
SUP,>g %19 < oo such that for all z,y € O and (r,p, X) € [-R, R] x B(0, R) x
Sn

?

\F(z,7,p,X) = F(y,r,p, X)| S wr(lz - y["(1 + [IX])),

where wg is so called a modulus, i.e., it is assumed that wg € C([0,00]) is
non-decreasing in [0, 00) and wg(0) = 0. Here the norm || X|| on 8" is || X|| =

sup{|X¢| | € €R™, [¢] =1}.
(F4) Forallz € Q, € RxR"x8™ and 8 > 0,

F(z,s8) = sF(z,¢).

From assumption (F3) we get the following condition on F: .
(F5) There are constants v € (3,1] and Cp > 0, C; > 0 such that for z,y € Q
and X € 8",

|F(z,0,0,X) — F(y,0,0,X)| < Co + Ci]z — y|" | X]\.
We define the function Ar on @ x R x R x 8" by
Ar(z,) = inf{F(z,§ +n) — F(z,n) | n € RxR" x 8"}

Our main results is the following:
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Theorem 1.1. Assume that (D1), (D2) and (F1)-(F4) hold. Then:

(i) There exists a unique number At € R for which there is a viscosity solution
¢ € Lip(Q?) of
Flg) = A*¢ in Q, 4
$>0inQ, ¢lanp =0.

(it) For any A < At and f e O'_gﬁ) such that f > 0 in Q, there exists a unique
viscosity solution u € Lip(Q) of

Flul=Xu+ f in Q,
u>0inQ, wulsn=0.

(iii) The number(demi-eigenvalue) AT is characterized by:

At =sup{\ € R | There is a viscosity supersolution u € C(Q1) of
Flul=X+1inQ, u>0 in Q, ulsgg = 0}.

(iv) Define the number A} by

A% = sup{\ € R | There is a viscosity supersolution v € C(Q) of
Aplvl]=Av+1mQ, v >0 inQ, vlgn}.

Then for any A < )\z and f € C(Q), there erists a unique viscosity
solution u € Lip(Q?) of

Flul=Mu+ f in Q,
ulan = 0.

2 Strong comparison principles

The next comparison theorem is from the theory of viscosity solutions.(See )]

Theorem 2.1. Assume (F1)-(F8) hold and that there is a constant o > 0 such
that for each (z,€) € Q8 x R™ x S™ the function: r — F(z,r,£) — or is non-
decreasing in R. Let u € USC(Q) and v € LSC(Q) be a viscosity subsolution
and a viscosity supersolution of F' = 0 in §2, respectively, and assume thatu < v
on 0. Thenu<v in .

The following theorem is the adaption of the classical strong maximum prin-
ciple to viscosity solutions. (See [8] for the details.)

Theorem 2.2. Assume that (F1) and (F2) hold and that F(x,0) < 0 for all
z € Q. Let u € LSC(Q) be a viscosity supersolution of F = 0 in Q and satisfy
u >0 in Q. Then either u(z) > 0 for allz € Q or u(z) =0 for all z € Q.



Theorem 2.3. Assume that (D2), (F1) and (F2) hold and that F(z,0) < 0
for all z € Q. Let u € LSC(Q) be a viscosity supersolution of F = 0 in Q
and satisfy u(z) > 0 for all x € Q. Then there is a constant § > 0 such that
u(z) > ddist(z, 0Q) for all x € Q.

The next theorem is the strong comparison principle adapted to viscosity
solutions for which we refer to [8].

Theorem 2.4. Assume that (F1)-(F8) hold. Let u € USC(Q) and v € LSC(Q)
be a viscosity subsolution and a viscosity supersolution of F = 0 in (2, respec-
tively. Assume that u(z) < v(z) for all z € Q. Then either u(z) < v(z) for all
z € Q oru(z) =v(z) for allz € Q.

Theorem 2.5. Assume that (D2) and (F1)-(F3) hold. Let u € USC({2) and
v € LSC() be a viscosity subsolution and a viscosity supersolution of F =0 in
Q, respectively. Assume that u(z) < v(z). Then there is a constant € > 0 such
that

u(z) + edist(z, 00) < v(z) for all z € Q.

Let us introduce the function (Ar). which is the lower semi-continuous
envelope of Ar defined by

(Ap)(§) = P\%mf{AF(n) IneQxRxR*xS8", |n—€ <r}.

To prove Theorems 2.4 and 2.5 we use the following proposition.

Proposition 2.6. Assume that (F1)-(F8) hold. Let u € USC(2) and v €
LSC(Q) be a viscosity subsolution and a viscosity supersolution of F = 0 in Q,
respectively. Set w = u —v. Then w € LSC(Q) is a viscosity subsolution of
(Ap)«[w] =0 in Q.

Proof. Suppose by contradiction that there are ¢ € C?(Q) and £ € Q for which
w — ¢ attains its maximum at Z and

(Ar)«(&,w(2), Dp(2), D*p(2)) > 0.

We may assume that w(2) = ¢(£) and z(z) < p(z) for all z € Q\{2}. By using
the lower semi-continuity of (Ar). and continuity of ¢, we deduce that there is
a constant § > 0 such that B(%,4) C O and

(AF)+(z, p(z), Dyp(z), D*p(z)) 2 26 for = € B(%,5) (2.1)

where B(%,8) = {y | ly — 2] < 6}. Define the function v, € LSC(Q) by
v, = v +¢. Let z € B(#,6) and (p,X) € J* v,(z). Then we see that
(p— Dy(z), X — D?p(x)) € J>~v(z). Using (2.1) and that v is a supersolution
of F =0 in 2, we deduce that

F(z,v,(z),p, X) > F(z,v(z),p — Dp(z), X — D*p(z))
+Ap(z, p(z), Dp(z), D?p(z)) > 26.
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This shows that v, is a supersolution of F — 2§ = 0 in intB(Z, 9).

We intend to apply Theorem 2.1. Define Fi(z,r,p, X) = F(z,r,p, X)+ (L+
1)r. We observe that z := v, u are a supersolution of Fy[z] - (L+1)v,(z)—26 =
0 and a subsolution of Fy [z] — (L + 1)u(z) = 0 in int B(£, §), respectively.

Noting that v < v, and u, ~v, € USC(Q2), we infer that there is a function
g € Lip(B(%,6)) such that (L + Lu(r) < g(z) < (L + 1vy(z) + 6 for = €
B(&,6). Fix such a function g € Lip(B(%,d)) and observe that z := vy, u are a
supersolution of F,[z] — g(z) — 6 = 0 and a subsolution of Fr.[z] — g(z) =0 in
int B(£,4), respectively. Choose a constant € > 0 so that maxsp(s 5)(u — v,) <
—cand 2Le > 4, and set vy, ¢ = v,—e. We observe that vy, ¢ (z) > u(z) forallz €
OB(£,4) and vy, (&) < u(Z). Also, since Fi(z,r—e,p, X) > Fr(z,r,p, X)~2Le
for (z,r,p, X) € @ xRxR" x 8" by (F2), we see that z = v,, . is a supersolution
of Fi[z] — g(z) = 0 in int B(%£, ). We now apply Theorem 2.1, to conclude that
Vo,e(z) 2 u(x) for all z € B(Z,4). In particular, we have vy, o(£) > u(%), which
is contradiction. |

3 Sketch of proof

In this paper we will prove (i)-(iii) of Theorem 1.1. To prove Theorem 1.1, we
list the following theorems which we get from the theory of viscosity solutions.

We obtain an estimate of the Lipschitz continuity of viscosity solution of
F = 0. That proof is based on [7]. The Lipschitz constant depends on the norm
~ of u and F especially.

Theorem 3.1. Assume that (D1) and (F1)-(F8) hold. Let u € C(Q) be a
viscosity solution of
} Flu] =0 in Q,
ulan = 0.

Then there is a constant C > 0, depending only on n,7,6,0,r,L,C1, and
diam(R2), such that for (z,y) € A x R,

lu(z) — u(y)] < C(llullpen) + max |F(x,0)| + Co)lz — yl.

The next theorem is concerned with a viscosity solution of F' = 0. Here we
do not assume the strict monotonicity of the function: r — F(z,r,p, X).

Theorem 3.2. Assume that (D1) and (F1)-(F8) hold and that there are a
viscosity subsolution f € C(0) and a viscosity supersolution g € C(Q¥) of F =0
in Q which satisfy f < g inQ and f = g =0 on Q. Then there is a viscosity
solution u € Lip(Q) of F = 0 in Q which satisfies f < u < g in I (and hence
u=0 on 90N).

Sketch of proof. We solve the Dirichlet problem

Flu] =0in Q,
ulaﬂ =0,
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by using a recursive formula. _
We define the sequence {ux}ren C C(Q) by setting uy = f and then by
solving inductively the problem

F(z,ugs1, Dugyr, D?ugq1) + (L + Dugyr = (L + 1)y in Q,
up+1lon = 0.

Then by Perron’s method(See e.g., [5]), we see that the sequence {u}ren is
well-defined and f < u; < up < - < yg £ - £ g. In the other hand,
Theorem 3.1 shows that {uz}r>2 is equi-Lipschitz continuous in Q.
Define u € Lip(Q) by
u(z) = kl_l_’n;o ug(z).

Noting"ths,t as k — oo,
FL(x9r’p’X) - (L + I)Uk(il?) - FL((E, rava) - (L + 1)"(:3)’

uniformly on bounded sets of 2 x R x R" x 8™, by the stability of viscosity
solutions under uniform convergence, we find that u is a solution of

Flu]=0in Q.
It is clear that u|sn = 0. O

We are ready to prove Theorem 1.1.
For A € R we consider the problem

{F[u] =Au+1inQ, (3.1)

u>0in Q, ulpq =0.
and set

J={X € R | (3.1) has a viscosity supersolution u € C(Q)},
At =supJ.

We call At the demi-eigenvalue for the operator F[-] or the function F.

We easily see that J = (—o0,A*) and that if (D1), (F1) and (F2) hold
then we can get A* € R as in [3]. Moreover when (D1) and (F1)-(F3) hold and
F(z,0) <0 for all z € Q), we may replace “supersolution” in the above definition
of J by “solution.” Indeed, fix A € R and assume that u is a supersolution of
(3.1). The function 0 is a subsolution of (3.1). Applying Theorem 3.2, we find
a solution v € C(Q) of (3.1) such that 0 < v < wu on Q. -

Proof of Theorem 1.1(i). We pick a sequence {Ak} C J so that Ay 7~ A*. By
the definition of A*, there is a sequence {1« } such that v, is a viscosity solution
of

Flpe] = M +1 in Q,

Yk 2 0in Q, Yxlan = 0.
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We show that ||¢|lze() — oo. For this, we suppose that there were a
subsequence {, } such that sup,en {9, [| L (2) < 00. Theorem 3.1 shows that
{%r, }jen is equi-Lipschitz continuous. By the Ascoli-Arzela theorem and the

stability of solutions, we find a function ¢ € C'() such that ¥, — % and

Fl] = Ay +1inQ,
Ylaa = 0.

Choose € > 0 so that 2¢f|9||z=) < 1. Then 2y is a viscosity solution of
Flu] = Atu+2 in Q and hence a viscosity supersolution of Flu] = (At +&)u+1
in Q. We have A\t + ¢ € J. This is a contradiction since AT = sup J. Thus we
have shown that ||[¢|| () — 00 a8 k — oo.

Define ér € C(Q) by di(zx) = Wﬁfé;%{ We observe that ¢ is a viscosity
solution of

drloa = 0.

As before, we find a function ¢ € C(Q) which {¢x}ren converges to and is a
viscosity solution of

{Flml = Ntk + e 0 2,

Flg] = ¢ in Q,
dlon = 0.

Since ||| Leo(@) = 1 and ¢ > 0 in §2, we conclude ¢(z) > 0 for all z € Q
by the strong maximum prmclple(Theorem 2.2). Thus we have completed the
proof. O

Then we consider Theorem 1.1(ii). The existence of a viscosity solution and
its Lipschitz continuity can be proved by Theorems 3.1 and 3.2. To see its
uniqueness, we may prove the next proposition.

Proposition 3.3. Assume that (D1) and (F1)-(F4) hold and A € (—o0,A").
Let u € USC(R) and v € LSC(R) be a viscosity subsolution and a viscosity
supersolution of Flw] = Aw + f in Q where f > 0 in Q, respectively. Assume
thatu >0 andv >0inQ andu < v on 0Q. Thenu <wv in Q.

For the proof of the above proposition, we need the following lernma whose
proof is omitted.

Lemma 3.4. Assume (F1)-(F3) hold. Let f,g € C(ﬁ). If a function u € C(R)
is both a viscosity subsolution of Fu] = f in Q and a viscosity supersolution of
Fluy=g in Q. Theng < f in Q. :

Proof of Proposition 8.3. We first consider the case where f # 0. we see that
v # 0. Indeed, if v = 0, then we have

0=F(z,00) > A-0+ f(z) forall z € Q,
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which is a contradiction. Thus we get v > 0 in by Theorem 2.2. Suppose by
contradiction that maxg(u — v) > 0. We set

a = sup{t > 0 | tu(z) < v(z) for all z € O}.

It is seen that 0 < a < 1. Therefore we observe that au is a subsolution of
Flw] = Mw + f and that au < v in Q. In view of Theorem 2.4, we see that
either au = v in Q or au < v in Q. Suppose au < v in 1. By Theorem 2.5,
there exists ¢ > 0 such that

au(z) + edist(z, 69) < v(z) for all z € Q.
On the_other hand, by Theorem 3.1, we find C > 0 so that
| u(z) < Cdist(z, 8Q) for all z € Q.
Thus for § =¢/C,
(a+ 8)u(z) < au(z) + Codist(z, 6Q) = au(z) + edist(z, 02) < v(zx).

This is a contradiction. Therefore we get au = v in Q and a > 0. Since
ay = v is a viscosity subsolution of Flw] = Aw + af in Q as well as a viscosity
supersolution of Flw] = Aw + f in §, we see f < af in O by Lemma 3.4. This
is contradictory to f > 0. Thus we conclude that u < v in Q.

Finally we consider the case where f = 0. By the definition of A*, there is
a supersolution w € C(Q) of Flw] = Aw + 1 in @, w > 0 in , and wjsq = 0.
It is seen as before that w > 0 in . Define the sequence {wg} C C(Q) by
wi(z) = w(z)/k and note that, for each k € N, u and wy is a subsolution and
a supersolution of F[z] = Az + 1/k in Q, respectively. The observation when
f # 0 guarantees that u < wy in Q. Sending k — oo yields that u = 0. It is
now clear that u < v in Q, which completes the proof. O
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