Some results on Hessian measures for non-commuting vector fields.¹

Neil S Trudinger

Centre for Mathematics and its Applications Australian National University

In this talk we present some extensions of the theory of Hessian measures developed in [4,5,6] to more general vector fields. Details of proofs are given in [8].

Let $X = (X_1, \dots, X_m)$ be a system of vector fields in Euclidean space \mathbb{R}^n , $m \leq n$, given by

$$X_i = \sigma^{ij} D_j, \qquad i = 1, \cdots, m, \tag{1}$$

where $\sigma^{ij} \in C^{\infty}(\mathbb{R}^n)$, $i = 1, \dots, m, j = 1, \dots, m$. For Ω a domain in \mathbb{R}^n and $u \in C^2(\Omega)$, the Hessian and symmetrized Hessian of u, with respect to X, are defined respectively by

$$X^{2}u = \left[X_{i}X_{j}u\right],$$

$$X_{s}^{2}u = \left[\frac{1}{2}(X_{i}X_{j} + X_{j}X_{i})u\right]_{i,j=1,\cdots,m}.$$
(2)

For a matrix $r \in \mathbb{R}^m \times \mathbb{R}^m$, $k = 1, \dots, m$, we let $S_k(r)$ denote the sums of its $k \times k$ principal minors and define the corresponding operators \mathcal{F}_k by

$$\mathcal{F}_k[u] = S_k(X_s^2 u) \tag{3}$$

A function $u \in C^2(\Omega)$ is called k-convex, with respect to X, if $\mathcal{F}_j[u] \geq 0$ in Ω , for all $j=1,\cdots k$. A function $u \in L^1_{loc}(\Omega)$ is called k-convex, with respect to X, if for each domain $\Omega' \subset \subset \Omega$, there exists a sequence of k-convex functions $\{u_\ell\} \subset C^2(\Omega')$ such that $u_\ell \to u$ as $\ell \to \infty$, in $L^1(\Omega')$. We denote the class of k-convex functions in Ω by $\phi_X^k(\Omega)$ or simply $\phi^k(\Omega)$, when X is understood. The following properties of k-convex functions in the Euclidean case, $X_i = D_i$, $i = 1, \cdots, k$, are proved in [4,5].

¹Research supported by Australian Research Council grant

Theorem 1. For any $u \in \phi^k(\Omega)$ we have $Xu \in L^p_{loc}(\Omega)$ for any p < nk(n-k) and there exists a Borel measure $\mu_k[u]$, extending $\mathcal{F}_k[u] dx$ for $u \in C^2(\Omega)$, such that if $u_\ell \to u$ a.e. (Ω) , then $\mu_k[u_\ell] \to \mu_k[u]$ weakly.

In [8], these results are extended, in part, to anti-self adjoint systems X, $(X_i^* = -X_i, i = 1, \dots, m)$, satisfying the Hörmander condition that at each point of Ω , the Lie algebra generated by X spans \mathbb{R}^n . In particular we prove,

Theorem 2. Let $u \in \phi_X^k(\Omega)$ where X satisfies the above conditions. Then $Xu \in L^p_{loc}(\Omega)$, for any p < Qk(m-1)/Q(m-k), where Q denotes the homogeneous dimension of X. If k=2 and X is of step 2, then the commutators $[X_i, X_j]u \in L^2_{loc}(\Omega)$, $i, j=1, \cdots, m$ and there exists a Borel measure $\mu_2[u]$, extending $\mathcal{F}_2[u] dx$ for $u \in C^2(\Omega)$, such that if $u_\ell \to u$ a.e. (Ω) , then $\mu_2[u_\ell] \to \mu_2[u]$ weakly in Ω .

A more general theory for quasilinear operators extending the case k = 1 is developed in [7]. The restriction to Step 2 may be weakened [8], but so far we are unaware of any extensions of the commutator regularity and weak continuity to the cases k > 2. The proof of Theorem 2 draws upon our techniques in [4,5,7] and stems from an interesting identity, discovered in the special case of the Heisenberg group \mathcal{H}^1 in [1]. Namely, if we define the function G on $\mathbb{R}^m \times \mathbb{R}^m$ by

$$G(r) = S_2(r) + \frac{1}{2} \sum_{i < j} (r_{ij} - r_{ji})^2, \qquad (4)$$

then, for any $u \in C^2(\Omega)$,

$$Y_{j}u := X_{i} \left[\frac{\partial G}{\partial r_{ij}} (X^{2}u) \right] = \left[X_{i}, \left[X_{i}, X_{j} \right] \right] u, \qquad (5)$$

that is Y_j , $j = 1, \dots, m$, are vector fields, (vanishing when X is Step 2).

More generally, we can define subharmonic functions along the lines of [5,6]. In particular we define an upper semi-continuous function $u:\Omega\to [-\infty,\infty)$ to be subharmonic with respect to the operator \mathcal{F}_k if $\mathcal{F}_k[u]\geq 0$ in the viscosity sense, that is for any quadratic polynomial q for which the difference u-q has a finite local maximum at a point $y\in\Omega$, we have $\mathcal{F}_k[q](y)\geq 0$. A k-convex function is then equivalent to a subharmonic function. Furthermore it follows from [3,9], that if X generates the Lie algebra of a Carnot group, then a proper subharmonic function, $(\not\equiv -\infty)$ on a set of positive measure), is k-convex. The equivalence of various notions

of convexity in the case k=m, is treated in [2,9], where other references are also given. In this case, Theorem 2 can be improved to $Xu \in L^{\infty}_{loc}(\Omega)$ if $u \in \phi^k(\Omega)$.

The extension of Theorem 2 to arbitrary step can be expressed in terms of the vector fields $Y = (Y_1, \dots, Y_m)$ defined by (??). For example, if m = 2, then the commutator $[X_1, X_2]u \in L^2_{loc}(\Omega)$ if $Yu \in L^1_{loc}(\Omega)$, while $\mu_2[u_\ell] \to \mu_2[u]$ weakly if also $\{Yu_\ell\}$ is uniformly bounded in $L^1_{loc}(\Omega)$.

Finally we remark that from (??), we have a monotonicity property for arbitrary anti-self adjoint systems of vector fields X, which extends the Euclidean case in [4] and the case of the Heisenberg group in [1]. Namely defining, for $u \in C^2(\Omega)$,

$$\mathcal{G}[u] = G(X^2u) + \frac{1}{2}Xu.Yu, \tag{6}$$

we obtain

$$\int_{\Omega} \mathcal{G}[u] \ge \int_{\Omega} \mathcal{G}[v]),\tag{7}$$

for any functions $u, v \in C^2(\Omega) \cap C^0(\overline{\Omega})$, satisfying $u \leq v$ in Ω , u = v on $\partial\Omega$ with the operator \mathcal{F}_2 degenerate elliptic with respect to their sum u + v. In certain cases, including the Heisenberg group in [1], Theorem 2 may be derived from (??), using the approach in [4], rather than that through integral estimates in [5].

References

- [1] C.E. Gutiérrez and A. Montanari. Maximum and comparison principles for convex functions on the Heisenberg group. *Comm. Part. Diff. Eqns.*, 29:1305–1334, 2004.
- [2] P. Juutinen, G. Lu, J.J. Manfredi, and B. Stroffolini. Convex functions on Carnot groups, (preprint).
- [3] V. Magnani. Lipschitz continuity, Aleksandrov theorem and characterizations for H-convex functions. *Math. Ann. to appear*.
- [4] N.S. Trudinger and X.J. Wang. Hessian Measures I. Topol. Methods Nonlinear Anal., 10:225-239, 1997.

- [5] N.S. Trudinger and X.J. Wang. Hessian Measures II. *Ann. Math*, 150:579–604, 1999.
- [6] N.S. Trudinger and X.J. Wang. Hessian Measures III. J. Funct. Anal., 193:1-23, 2002.
- [7] N.S. Trudinger and X.J. Wang. On the weak continuity of elliptic operators and applications to potential theory. *Amer. J. Math*, 124:369–410, 2002.
- [8] N.S. Trudinger. On Hessian measures for non-commuting vector fields. *Pure App. Math. Quarterly*, 2, 149-163, 2006.
- [9] C. Y. Wang. Viscosity convex functions on Carnot groups, *Proc. Amer. Math. Soc.* 133, 1274-1253, 2004.

Centre for Mathematics and its Applications, AustralianNational University, Canberra, ACT 0200, Australia. Email: neil.trudinger@anu.edu.au