A note on asymptotic solutions of Hamilton-Jacobi equations

Yasuhiro FUJITA (藤田 安啓)
University of Toyama, 930-8555 Toyama, Japan
(富山大学 理学部)
yfujita@sci.toyama-u.ac.jp

This is a survey of my result [10]. In this talk, we consider the viscosity solutions of the Cauchy problem

(1)
$$u_t + \alpha x \cdot Du + H(Du) = f \quad \text{for } (x, t) \in \mathbb{R}^N \times (0, \infty),$$

(2)
$$u|_{t=0} = \phi \qquad \text{for } x \in \mathbb{R}^N,$$

where α is a positive constant. Our goal is to investigate convergence rates of u(t,x) to the stationary state as $t \to \infty$. We assume the following:

- (A1) $H, f, \phi \in C(\mathbb{R}^N)$
- (A2) H is convex on \mathbb{R}^N .

(A3)
$$\lim_{|x|\to\infty}\frac{H(x)}{|x|}=\infty.$$

We denote by L the convex conjugate of H defined by

$$L(x) = \sup \left\{ z \cdot x - H(z) \, | \, z \in \mathbb{R}^N \right\}.$$

Then, L satisfies (A2) and (A3) in place of H. Furthermore, we assume that there is a convex function ℓ on \mathbb{R}^N satisfying

(A4)
$$\lim_{|x|\to\infty}(L(x)-\ell(x))=\infty.$$

(A5)
$$\inf \left\{ f(x) + \ell(-\alpha x) \mid x \in \mathbb{R}^N \right\} > -\infty.$$

(A6)
$$\inf \left\{ \phi(x) + \frac{1}{\alpha} \ell(-\alpha x) \, | \, x \in \mathbb{R}^N \right\} > -\infty.$$

Now, we introduce several notations.

$$c := \min \left\{ f(x) + L(-\alpha x) \mid x \in \mathbb{R}^N \right\}, \qquad f_c(x) := f(x) - c,$$

$$Z := \left\{ x \in \mathbb{R}^N \mid f_c(x) + L(-\alpha x) = 0 \right\},$$

$$C(x,T) = \left\{ X \in AC([0,T]) \mid X(0) = x \right\},$$

$$C(x,y,T) = \left\{ X \in C(x,T) \mid X(T) = y \right\},$$

$$d(x,y) = \inf \left\{ \int_0^T \left[f_c(X(t)) + L(-\alpha X(t) - \dot{X}(t)) \right] dt \mid T > 0, \ X \in C(x,y,T) \right\},$$

$$\psi(x) = \inf \left\{ \int_0^T \left[f_c(X(t)) + L(-\alpha X(t) - \dot{X}(t)) \right] dt + \phi(X(T)) \mid T > 0, \ X \in C(x,T) \right\},$$

$$v(x) = \min_{z \in Z} \left(d(x,z) + \psi(z) \right).$$

The following propositions were proved in [11] (see also the paper of Professor Hitoshi Ishii in this volume).

Proposition 1. There is the unique viscosity solution $u \in C(\mathbb{R}^N \times [0, \infty))$ of (1)-(2) satisfying for any T > 0

(3)
$$\lim_{r \to \infty} \inf \left\{ u(x,t) + \frac{1}{\alpha} L(-\alpha x) \mid (x,t) \in (\mathbb{R}^N \setminus B(0,r)) \times [0,T) \right\} = \infty,$$

where
$$B(a,r) = \{x \in \mathbb{R}^N \mid |x-a| \le r\}$$
 for $a \in \mathbb{R}^N$ and $r > 0$. \square

Proposition 2. For the unique viscosity solution $u \in C(\mathbb{R}^N \times [0, \infty))$ of (1)-(2) satisfying (3), we have

(4)
$$\lim_{t \to \infty} \max_{x \in B(0,R)} |u(x,t) - (ct + v(x))| = 0 \quad \text{for } R > 0. \quad \Box$$

Note that by the stability theorem of viscosity solutions, v is a viscosity solution of the equation

(5)
$$c + \alpha x \cdot Dv + H(Dv) = f$$
 for $x \in \mathbb{R}^N$.

Next, we consider the convergence rate of (4). First, we consider the case such that the convergence rate of (4) is faster than $e^{-\theta t}$ for some constant $\theta > 0$. Besides (A1) \sim (A6), we assume the following:

- (A7) $H \ge 0$ in \mathbb{R}^N with H(0) = 0.
- (A8) $f \ge 0$ in \mathbb{R}^N with f(0) = 0, and there exists a constant $\theta > 0$ such that

$$\theta \int_0^\infty f(xe^{-\alpha t}) dt \le f(x) \text{ for } x \in \mathbb{R}^N.$$

(A9) There exists a constant m > 0 such that

$$0 \le \phi(x) \le m w(x)$$
 for $x \in \mathbb{R}^N$,

where $w \in C(\mathbb{R}^N)$ is a subsolution of

$$\alpha x \cdot Dv(x) + H(Dv(x)) = f(x)$$
 in \mathbb{R}^N ,

and satisfies the following inequality for a constant $\lambda > 0$:

$$0 \le \lambda w(x) \le f(x)$$
 for $x \in \mathbb{R}^N$.

Example 1. Let f be a nonnegative and convex function on \mathbb{R}^N with f(0) = 0. Then, f satisfies (A8) for $\theta = \alpha$.

Example 2. Let G be a nonnegative and convex function on \mathbb{R}^N with G(0) = 0. Assume that there exist constants δ_1, δ_2 $(0 < \delta_1 < \delta_2)$ and $f \in C(\mathbb{R}^N)$ such that

$$\delta_1 G(x) \le f(x) \le \delta_2 G(x)$$
 for $x \in \mathbb{R}^N$.

Then, f satisfies (A8) for $\theta = \alpha \delta_1/\delta_2$.

Example 3. Assume that there are constants $p \in (1, \infty)$ and $a \in (0, 1)$ such that

$$a\left(\alpha|x|^p + H(|x|^{p-2}x)\right) \le f(x) \text{ for } x \in \mathbb{R}^N.$$

Then, as a function $\phi \in C(\mathbb{R}^N)$ of (A9), we can take any one satisfying

$$0 \le \phi(x) \le k|x|^p \quad \text{for } x \in \mathbb{R}^N,$$

where k > 0 is a constant.

Theorem 3. Assume (A1)-(A9). Let $u \in C(\mathbb{R}^N \times [0, \infty))$ be the unique viscosity solution of (1)-(2) satisfying (3). Then, we have $c = 0, Z \ni 0$, and,

(6)
$$-v(x)e^{-\theta t} \le u(x,t) - v(x) \le mv(x)e^{-\theta t} \quad \text{for } (x,t) \in \mathbb{R}^N \times [0,\infty).$$

Finally, we give an example, which shows that there is the case such that the convergence rate of (4) is not faster than t^{-1} .

Example 4. Let $H(x) = |x|^p/p$ for some constant p > 1. Then, $L(x) = |x|^q/q$, where (1/p) + (1/q) = 1. For r > 0, let

$$f(x) = -\frac{\alpha^q}{q} \min\{|x|^q, r^q\} \quad \text{for } x \in \mathbb{R}^N.$$

Let $\phi \in C(\mathbb{R}^N)$ be a function satisfying $\phi(x) \geq 0$ for $x \in \mathbb{R}^N$. Then, we have c = 0, Z = B(0, r), and,

(7)
$$\frac{1}{\alpha}L(-\alpha x)(t+1)^{-1} \le u(x,t) - v(x) \quad \text{for } (x,t) \in Z \times [0,\infty).$$

References

- [1] O. ALVAREZ, Bounded-from-below viscosity solutions of Hamilton-Jacobi equations, Differential Integral Equations 10 (1997), no. 3, 419–436.
- [2] G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Mathématiques & Applications (Berlin), Vol. 17, Springer-Verlag, Paris, 1994.
- [3] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, No. 5. Notas de Matemática (50). North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973.
- [4] M. BARDI AND I. CAPUZZO-DOLCETTA, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. With appendices by Maurizio Falcone and Pierpaolo Soravia, Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, 1997.
- [5] G. Barles and P. E. Souganidis, On the large time behavior of solutions of Hamilton-Jacobi equations, SIAM J. Math. Anal. 31 (2000), no. 4, 925-939.

- [6] M. G. CRANDALL, H. ISHII, AND P.-L. LIONS, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. 27 (1992), 1-67.
- [7] A. DAVINI AND A. SICONOLFI, A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations, preprint, 2005.
- [8] A. FATHI, Théorème KAM faible et théorie de Mather pour les systèmes lagrangiens, C. R. Acad. Sci. Paris Sér. I 324 (1997) 1043-1046
- [9] A. FATHI, Sur la convergence du semi-groupe de Lax-Oleinik, C. R. Acad. Sci. Paris Sér. I Math. 327 (1998), no. 3, 267-270.
- [10] Y. Fujita, Convergence rates of asymptotic solutions to Hamilton-Jacobi equations in Euclidean n space, preprint.
- [11] Y. FUJITA, H. ISHII, AND P. LORETI, Asymptotic solutions to Hamilton-Jacobi equations in Euclidean n space, preprint.
- [12] H. ISHII, Comparison results for Hamilton-Jacobi equations without growth condition on solutions from above, Appl. Anal. 67 (1997), no. 3-4, 357-372.
- [13] J.-M. ROQUEJOFFRE, Convergence to steady states or periodic solutions in a class of Hamilton-Jacobi equations, J. Math. Pures Appl. (9) 80 (2001), no. 1, 85-104.