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1 Introduction
Let $H$ be a Hilbert space and let $C$ be a closed convex subset of $H$ . Then a mapping

$T\mathrm{h}\mathrm{o}\mathrm{m}C$ into itself is called nonexpansive if

$||Tx-Ty||\leq||x-y||$ , $\forall x,$ $y\in C$.

For a mapping $T$ of $C$ into itself, we denote by $F(T)$ the set of fixed points of $T$ , i.e.,
$F(T)=\{x\in C:Tx=x\}$ . Let $f$ be a function of $C$ into itself. Then, $f$ is said to be a-
contractive on $C$ if there exists a constant $a\in(\mathrm{O}, 1)$ such that $||f(x)-f(y)||\leq a||x-y||$

for all $x,$ $y\in C$. In 1967, Browder [2] obtained the following:

Theorem 1 (Browder [2]) Let $H$ be a Hilbert space and let $C$ be a closed convex
subset of $H$ . Let $T$ be a nonexpansive mapping of $C$ into itself such that $F(T)$ is
nonempty. Let $x_{0}$ be an arbitrary point of $C$ and define $S_{n}$ : $Carrow C$ by

$S_{n}x=(1-\alpha_{n})Tx+\alpha_{n}x_{0}$

for all $x\in C$ and $n\in \mathrm{N}$ , where $0<\alpha_{n}<1$ . Then the following hold:
(i) $S_{n}$ has a unique fixed point $u_{n}\in C$ ;
(ii) if $\alpha_{n}arrow 0$, then the sequence $\{u_{n}\}$ converges strongly to $P_{F(T)}x_{0}$ , where $P_{F(T)}$ is
the metric projection onto $F(T)$ .
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After Browder’s result, such a problem has been investigated by many authors: see
Takahashi and Kim [9]. In 2000, Moudafi [4] proved the following strong convergence
theorem:

Theorem 2 (Moudafi [4]) Let $H$ be a Hilbert space and let $C$ be a closed convex
subset of $H$. Let $T$ be a nonexpansive mapping of $C$ into itself such that $F(T)$ is
nonempty and let $f$ be $a$-contractive of $C$ into itself. Let

$x_{n}= \frac{1}{1+\epsilon_{n}}Tx_{n}+\frac{\epsilon_{n}}{1+\epsilon_{n}}f(x_{n})$ , (1)

where $\{\epsilon_{n}\}$ is a sequence in $(0,1)$ and $\epsilon_{n}arrow 0$ . Then $\{x_{n}\}$ converges strongly to the
unique solution $\hat{x}\in C$ of the variational inequality

$\hat{x}\in F(T)$ such that $\langle(I-f)\hat{x},\hat{x}-x\rangle\leq 0$ , $\forall x\in F(T)$ ,

i.e., $\hat{x}=P_{F(T)}f(\hat{x})$ .

Further, in 2004, Xu [12] extended Moudafi’s result in the ffamework of a Hilbert
space to that in a uniformly smooth Banach space.

In this paper, motivated by Moudafi’s result, $\cdot \mathrm{w}\mathrm{e}$ introduce a sequence for finding

a common fixed point of a countable family of nonexpansive mappings in a Hilbert
space and prove a strong convergence theorem (Theorem 5) which is a generalization

of Browder’s theorem.
In chapter 4, using the viscosity approximation method and Theorem 5, we study

the problem of find a solution to the equation

$0\in Au$ ,

where $A\subset H\cross H$ is a maximal monotone operator.

2 Preliminaries and Lemmas

Throughout this paper, let $H$ be a real Hilbert space with inner product $\langle$

$\cdot,$

$\cdot)$ and
norm $||\cdot||$ , and let $\mathrm{N}$ be the set of all positive integers. It is known that a Hilbert space
$H$ satisfies Opial’s condition [5], that is, for any sequence $\{x_{n}\}\subset H$ with $x_{n}arrow x$ , we
have

$\lim_{narrow}\inf_{\infty}||x_{n}-x||<\lim_{narrow}\inf_{\infty}||x_{n}-y||$
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for every $y\in H$ with $y\neq x,$ $\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}arrow$ denotes the weak convergence. Let $C$ be a
nonempty closed convex subset of $H$ . We denote by $P_{C}(\cdot)$ the metric projection of $H$

onto $C$ . It is known that for $z\in C,$ $z=P_{C}(x)$ is equivalent to $\langle z-y, x-z\rangle\geq 0$ for
every $y\in C$ . So, we have $||x-Pcx||^{2}\leq||x-y||^{2}-||Pcx-y||^{2}$ for every $y\in C$ . See
[8] for more. details.

The function $f$ : $Harrow(-\infty, \infty]$ is said to be proper, if $D(f)=\{x\in H : f(x)\in \mathbb{R}\}$

is nonempty. For a proper lower semicontinuous convex function $f$ : $Harrow(-\infty, \infty]$ ,
. the subdifferential $\partial f(x)$ of $f$ at $x\in H$ is defined by

$\partial f(x)=\{z\in H : f(x)+\langle y-x, z\rangle\leq f(y), \forall y\in H\}$ .

We know that $\partial f\subset H\cross H$ is a monotone operator, that is,

$\langle x-y, z-w\rangle\geq 0$

whenever $(x, z),$ $(y, w)\in\partial f$ . A monotone operator $A\subset H\cross H$ is said to be maximal if
the graph of $A$ is not properly containd in the graph of any other monotone operator.

We also know that the monotone operator Of is maximal. An operator $B:Harrow H$

is said to be a strongly monotone if there exists $c>0$ such that $\langle$Bx–By, $x-y\rangle$ $\geq$

$c||x-y||^{2}$ for all $x,$ $y\in H$ . If $A$ is a maximal monotone operator, then we can
define, for any $r>0$ , a nonexpansive single valued mapping $J_{f}$ : $R(I+rA)arrow D(A)$

by $\sqrt f=(I+rA)^{-1}$ . It is called the resolvent of $A$ . We also define the Yosida

approxim.ation $A_{\mathrm{r}}$ by $A_{f}=(I-J_{f})/r$ . We know that $A_{f}x\in AJ_{r}x$ for $\mathrm{a}\mathrm{U}x\in R(I+rA)$

and 11 $A_{f}x|| \leq\inf\{||y|| : y\in Ax\}$ , for all $x\in D(A)\cap R(I+rA)$ . We also know that
for a maximal monotone operator $A$ , we have. $A^{-1}0=F(J_{f})$ for all $r>0$ .

Let $T_{1},$ $T_{2},$
$\ldots$ be a infinite family of mappings of $C$ into itself and let $\lambda_{1},$ $\lambda_{2},$

$\ldots$ be

real numbers such that $0\leq\lambda_{i}\leq 1$ for every $i\in$ N. Then, for any $n\in \mathrm{N},$ Takahashi
[7] (see also [6], [10] and [3]) defined a mapping $W_{n}$ of $C$ into itself as follows:

$U_{n,n+1}=I$ ,
$U_{n,n}=\lambda_{n}T_{n}U_{n,n+1}+(1-\lambda_{n})I$ ,

$U_{n,n-1}=\lambda_{n-1}T_{n-1}U_{n,n}+(1-\lambda_{n-1})I$,

:

$U_{n,k}=\lambda_{k}T_{k}U_{n,k+1}+(1-\lambda_{k})I$ ,
$U_{n,k-1}=\lambda_{k-1}T_{k-1}U_{n,k}+(1-\lambda_{k-1})I$,
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$U_{n,2}=\lambda_{2}T_{2}U_{n,3}+(1-\lambda_{2})I$,
$W_{n}=U_{n,1}=\lambda_{1}T_{1}U_{n,2}+(1-\lambda_{1})I$ .

Such a mapping $W_{n}$ is called the $W$-mapping generated by $T_{n},$ $T_{n-1},$
$\ldots,$

$T_{1}$ and
$\lambda_{n},$ $\lambda_{n-1},$

$\ldots,$
$\lambda_{1}$ .

Using [6] and [1], we obtain the following two lemmas.

Lemma 3 Let $C$ be a nonempty closed convex subset of a Banach space $E$. Let
$T_{1},T_{2},$ $\ldots$ be nonexpansive mappings of $C$ into itself such that $\bigcap_{i=1}^{\infty}F(T_{i})$ is nonemp
ty and let $\lambda_{1},$ $\lambda_{2},$

$\ldots$ be real numbers such that $0<\lambda_{1}\leq 1$ and $0<\lambda_{i}\leq b<1$ for
any $i=2,3,$ $\ldots$ . Then for every $x\in C$ and $k\in \mathrm{N}$ , the $\lim_{narrow\infty}U_{n,k^{X}}$ exists.

Using Lemma 3, for $k\in \mathrm{N}$ , we define mappings $U_{\infty,k}$ and $U$ of $C$ into itself as follows:

$U_{\infty,k^{X}}= \lim_{narrow\infty}U_{n,k^{X}}$

and
$Ux= \lim_{narrow\infty}W_{n}x=\lim_{narrow\infty}U_{n,1^{X}}$

for every $x\in C$ . Such a $U$ is called the $W$-mapping generated by $T_{1},T_{2},$
$\ldots$ and

$\lambda_{1},$ $\lambda_{2},$
$\ldots$ .

Lemma 4 Let $C$ be a nonempty closed convex subset of a strictly convex Banach
space $E$ . Let $T_{1},$ $T_{2},$

$\ldots$ be nonexpansive mappings of $C$ into itself such that
$\bigcap_{1=1}^{\infty}.F(T_{i})$ is nonempty and let $\lambda_{1},$ $\lambda_{2},$

$\ldots$ be real numbers such that $0<\lambda_{1}\leq 1$

and $0<\lambda_{1}\leq b<1$ for any $i=2,3,$ $\ldots$ . Let $W_{n}(n=1,2, \ldots)$ be the W-mappings
of $C$ into itself generated by $T_{n},$ $T_{n-1},$

$\ldots,$
$T_{1}$ and $\lambda_{n},$ $\lambda_{n-1},$

$\ldots,$
$\lambda_{1}$ and let $U$ be the

$W$-mapping generated by $T_{1},$ $T_{2},$
$\ldots$ and $\lambda_{1},$ $\lambda_{2},$

$\ldots$ . Then $F(W_{n})= \bigcap_{1=1}^{n}.F(T_{i})$ and
$F(U)= \bigcap_{i=1}^{\infty}F(T_{i})$ .

3 Strong convergence theorem
Next we prove the following strong convergene theorem which generalizes Browder’s

convergence theorem.
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Theorem 5 Let $H$ be a Hilbert space. Let $C$ be a closed convex subset of $H$ and
let $\{T_{n}\}$ be a countable family of nonexpansive mappings of $C$ into itself such that
$\bigcap_{i=1}^{\infty}F(T_{i})\neq\emptyset$ . Let $f$ be an $a$-contractive mapping of $C$ into itself. Let $b$ be a real

number with $0<b<1$ and let $\lambda_{1},$ $\lambda_{2},$
$\ldots$ be real numbers such that $0<\lambda_{1}\leq 1$ and

$0<\lambda_{i}\leq b<1$ for every $i=2,3,$ $\ldots$ . Let $W_{n}(n=1,2, \ldots)$ be $W$-mappings of $C$ into
itself generated by $T_{n},T_{n-1},$

$\ldots,$
$T_{1}$ and $\lambda_{n},$ $\lambda_{n-1},$

$\ldots,$
$\lambda_{1}$ . Let $U$ be the W-mapping

generated by $T_{1},T_{2},$
$\ldots$ and $\lambda_{1},$ $\lambda_{2},$

$\ldots$ , i.e.,

$Ux= \lim_{narrow\infty}W_{\mathrm{n}}x=\lim_{narrow\infty}U_{n,1^{X}}$

for every $x\in C$ . Define $S_{n}$ : $Carrow C$ by

$S_{n}x=(1-\alpha_{n})W_{n}x+\alpha_{n}f(x)$

for each $x\in C$ and $n=1,2,3,$ $\ldots$ . Then the following hold:
(i) $S_{n}$ has a unique fixed point $u_{n}$ in $C$ ;
(ii) if $\alpha_{n}arrow 0$ , then the sequence $\{u_{n}\}$ converges strongly to $u=P_{F(U)}f(u)$ , where
$P_{F(U)}$ is the metric projection onto $F(U)$ .

Proof. Rom Lemma 4, we obtain $\bigcap_{n=1}^{\infty}F(T_{n})=\bigcap_{n=1}^{\infty}F(W_{n})=$

.
$F(U)$ .

(i) Let $x,$ $y\in C$ and $n\in \mathrm{N}$ , we have

$||S_{n}x-S_{n}y||\leq(1-\alpha_{n})||W_{n}x-W_{n}y||+\alpha_{n}||f(x)-f(y)||$

$\leq(1-\alpha_{n})||x-y||+a\alpha_{n}||x-y||$

$=(1-\alpha_{n}(1-a))||x-y||$ .

Then, since $S_{n}$ is a contraction of $C$ into itself, there exists a unique fixed point $u_{n}$

of $S_{n}$ in $C$ .
(ii) Let $z\in F(U)$ . Since

$||u_{n}-z||=||(1-\alpha_{n})(W_{n}u_{n}-z)+\alpha_{n}(f(u_{n})-z)||$

$\leq(1-\alpha_{n})||u_{n}-z||+\alpha_{n}||f(u_{n})-z||$

$\leq(1-\alpha_{n})||u_{n}-z||+\alpha_{n}\{||f(u_{n})-f(z)||+||f(z)-z||\}$

$\leq(1-\alpha_{n})||\mathrm{u}_{n}-z||+a\alpha_{n}||u_{n}-z||+\alpha_{n}||f(z)-z||$ ,

we have
$||u_{n}-z|| \leq\frac{1}{1-a}||f(z)-z||$ .
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Therefore, we obtain $\{u_{n}\},$ $\{W_{n}u_{n}\}$ and $\{f(u_{n})\}$ are bounded. From the definition
of $u_{n}$ , we have

$||u_{n}-W_{n}u_{n}||=||(1-\alpha_{n})W_{n}u_{n}+\alpha_{n}f(u_{n})-W_{n}u_{n}||$

$=\alpha_{n}||W_{n}u_{n}-f(u_{n})||$

$\leq\alpha_{n}\cdot K$,

where $K=2 \sup_{x\in C}||x||$ . Hence we obtain

$\lim_{narrow\infty}||u_{n}-W_{n}u_{n}||=0$ . (2)

Since $\{u_{n}\}$ is bounded, we assume that there exists a subsequence $\{u_{n_{i}}\}\subset\{u_{n}\}$

such that $\{u_{n_{1}}\}$ converges weakly to $u$ . Suppose that $u\neq Uu$ . Then, from Opial’s

theorem, (2) and $\lim_{narrow\infty}||W_{n}u-Uu||=0$ , we have

$\lim\inf||u_{n:}-u||iarrow\infty$

$< \lim\inf||u_{n}‘-Uu||iarrow\infty$

$\leq\lim.\inf\{||u_{n}$ .$-W_{n_{i}}u_{n_{i}}|arrow\infty||+||W_{n_{i}}u_{n_{1}}-W_{n_{i}}u||+||W_{n}u-:Uu||\}$

$\leq\lim\inf\{||u_{n}, -W_{n}u_{n}\dot{|}arrow\infty::||+||u_{n}-:u||+||W_{n}.u-Uu||\}$

$= \lim\inf||u_{n}-:u||iarrow\infty$ .

This is a contradiction. Hence we have $Uu=u$.
Next, we prove $u_{n}‘arrow u=P_{F(U)}f(u)$ . For each $i$ , we have

$\alpha_{n}f:(u_{n}):=\alpha_{n}u_{n:}:+(1-\alpha_{n_{i}})(u_{\mathfrak{n}_{i}}-W_{n},u_{n_{j}})$ .

Since $u$ is a fixed point of $W_{n}.$ , we also have

$\alpha_{n}u=\alpha_{n}.u+(:1-\alpha_{n}):(u-W_{n}.u)$ .

If we substract these two equations and take the inner product of that difference with
$u_{n_{\mathrm{i}}}-u$ , we obtain

$(1-\alpha_{n:})((I-W_{n:})u_{n\iota}-(I-W_{n_{t}})u,u_{n_{i}}-u\rangle+\alpha_{n}‘\langle \mathrm{u}_{n_{i}}-u, u_{n}‘-u\rangle$

$=\alpha_{n}\langle:f(u_{n}):-u, u_{n}$ . $-\dot{u}\rangle$ ,

where $I$ is the identity. From $\langle(I-W_{n_{1}})u_{n_{i}}-(I-W_{n}.)u, u_{n}-:u\rangle\geq 0$ , we have

$||u_{n}-:u||^{2}\leq\langle f(u_{n_{i}})-u,u_{n}-:u\rangle$ .
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Since $\{u_{n_{1}}\}$ converges weakly to $u$ and

$||u_{n_{i}}-u||^{2}\leq\langle f(u_{n}.)-u, u_{n}$ . $-u\rangle$

$=\langle f(u_{n}):-f(u\rangle,$ $u_{n}$. $-u\rangle+\langle f(u)-u,u_{n}-:u\rangle$

$\leq a||u_{n_{i}}-\mathrm{u}||^{2}+\langle f(u)-u, u_{n:}-u\rangle$ ,

we obtain that $\{u_{n_{\}}\}$ converges strongly to $u$ . Finally, we show that $\{u_{n}\}$ converges
strongly to $u$ , where $u=P_{F(U)}u$ . Since $u_{n}=(1-\alpha_{n})W_{n}u_{n}+\alpha_{n}f(u_{n})$ , we have

$(I-f)u_{n}=- \frac{1-\alpha_{n}}{\alpha_{n}}(I-W_{n})u_{n}$ .

Thus, for any $z\in F(U)$ , we obtain

$\langle(I-f)u_{n}, u_{n}-z\rangle=-\frac{1-\alpha_{n}}{\alpha_{n}}\langle(I-W_{n})u_{n},u_{n}-z\rangle$

$=- \frac{1-\alpha_{n}}{\alpha_{n}}\langle(I-W_{n})u_{n}-(I-W_{n})z, u_{n}-z\rangle$

$\leq 0$ ,

and hence $\langle(I-f)u_{n:}, u_{n}$ . $-z\rangle\leq 0$ . Taking the limit, we have

$\langle(I-f)u,u-z\rangle\leq 0$

for all $z\in F(U)$ . This implies $u=P_{F(U)}u$ . We assume that $u_{n_{\mathrm{k}}}arrow\hat{u}$ . Since
$\hat{u}\in F(U)$ , we have

$\langle(I-f)u, u-\hat{u}\rangle\leq 0$.

Further we also obtain
$\langle$ (I–f)\^u, $\hat{u}-u\rangle$ $\leq 0$ .

Summing up two inequalities yields

$\langle$ (I–f)u–(I–f)\^u, $u-\hat{u}\rangle$ $\leq 0$

and hence
$||u-\hat{u}||^{2}\leq\langle fu-f\hat{u}, u-\hat{u}\rangle\leq a||u-\hat{u}||^{2}$ .

This implies that $u=\hat{u}$ . So, we obtain that $u_{n}arrow u=P_{F(U)}u$ .

111



4 Applications

Let $H$ be a Hilbert space and let $A\subset H\cross H$ be a maximal monotone operator.
Next, we consider the problem of finding a point $v\in E$ such that $0\in Av$ , using
the viscosity approximation method. For the viscosity approximation method, for
instance, see Tikhonov [11]. The abstract setting of the viscosity method is as follows:
Let $H$ be a Hilbert space and let $f$ : $Harrow(-\infty, \infty]$ be a real-valued function. Let us
consider the minimization problem

$\min\{f(x);x\in H\}$ . (3)

Let $g:Harrow[0, \infty]$ be a viscosity function and for any $\epsilon>0$ , consider the approximate

minimization problem
$\mathrm{m}\dot{\mathrm{i}}\{f(x)+\epsilon g(x);x\in H\}$ . (4)

The viscosity function $g$ usually has assumputions like strict convexity, continuity and
coerciveness with respect to the norm and plays an important role in the existence

and uniqueness of the solution sequence $\{u_{\epsilon}\}$ of (4).

Motivated by this method, we can prove the following theorem:

Theorem 6 Let $H$ be a Hilbert space. Let $A\subset H\cross H$ be a maximal monotone
operator and let $B\subset H\cross H$ be a maximal monotone operator which is strongly

monotone with modulus 7.
For $r>0$ , let $x_{f}$ be an element of $H$ such that

$0=A_{f}(x_{f})+rB_{\mathrm{r}}(x_{t})$ , (5)

where $A_{f}= \frac{1}{f}(I-J_{f}^{A}),$ $B_{r}= \frac{1}{f}(I-J_{f}^{B})$ . Then $\{x_{f}\}arrow\hat{x}$ as $rarrow \mathrm{O}$ , where $\hat{x}=J_{r}^{A}(\hat{x})$ .

Proof. The viscosity method (5) can be rewritten as

$x_{r}= \frac{1}{1+r}J_{f}^{A}x_{f}+\frac{r}{1+r}J_{f}^{B}x_{\mathrm{r}}$ .

Since $J_{r}^{A}$ is a nonexpansive mapping and $J_{r}^{B}$ is $\frac{1}{1+\mathrm{r}\gamma}$ -contractive, by Theorem 5, we
obtain $x_{f}arrow\hat{x}\in F(J_{f}^{A})$ .
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